Derleme
BibTex RIS Kaynak Göster

Pharmacological Approaches in Obesity Treatment

Yıl 2023, Cilt: 45 Sayı: 1, 142 - 150, 23.01.2023
https://doi.org/10.20515/otd.1093390

Öz

Obesity is becoming an increasing epidemic disease in the world and in our country. Unless it is treated it causes morbidity and mortality. Individual and environmental factors play a role in the development of obesity. The impairment in energy homeostasis, which is controlled by neurological and metabolic pathways, results in obesity. The first step in the treatment process of obesity is lifestyle and diet changes. However, second-line treatments are often needed. At this stage, pharmacotherapy could be an option considering the pathophysiology of obesity. The genetic background of the person, the impairment in energy homeostasis and environmental factors play a role in the formation of obesity. For this reason, pharmacological approaches are used by targeting deficiencies caused by genetic mutations and effective pathways in energy homeostasis. Among these, there are options such as orlistat, cetilistat, liraglutide, lorcaserin, burpropion/naltrexone combination, phentermine/topiramate combination, metformin, which are currently used, while meterleptin and cemelanotide, which are effective in obesity caused by genetic mutations, have been approved for the obesity indication and benefit in obesity by using off-label. agents are available. Pharmacological approaches for the treatment of obesity are increasing day by day. There are also many options being investigated such as semaglutide, oxytocin, bromocriptine, resveratrol, β3 adrenergic receptor agonists, velneperit, davalintide (AC2307), glucose-dependent insulinotropic polypeptide (GIP) analogues, beloranib, and tesofensin. In addition to these, there are also ongoing vaccine studies for prevention of obesity. When we consider the obesity risk factors and the development process holistically, the options for the prevention and treatment of obesity increase and strengthen our hand in the fight against obesity.

Kaynakça

  • 1. Narouze S, Souzdalnitski D. Obesity and chronic Pain:Systematic review of prevalence and implications for pain practice. Reg Anesth Pain Med. 2015;40(2):91-111.
  • 2. Blüher M. Obesity: global epidemiology and pathogenesis. Nat. Rev Endocrinol. 2019;15(5):288-98.
  • 3. Srivastava G, Apovian C. Future pharmacotherapy for obesity: New anti-obesity drugs on the horizon. Curr. Obes. Rep. 2018;7(2):147-61.
  • 4. Cataldi M, Muscogiuri G, Savastano S, et al. Gender-related issues in the pharmacology of new anti-obesity drugs. Obes Rev. 2019;20(3):375-84.
  • 5. Jackson VM, Breen DM, Fortin JP, et al. Latest approaches for the treatment of obesity. Expert Opin Drug Discov. 2015;10(8):825-39.
  • 6. Coulter AA, Rebello CJ, Greenway FL. Centrally acting agents for obesity: Past, present, and future. Drugs. 2018;78(11):1113-32.
  • 7. Ballinger A, Peikin SR. Orlistat: its current status as an anti-obesity drug. Eur. J. Pharmacol. 2002;440(2):109-17.
  • 8. Seo MH, Lee W-Y, Kim SS, et al. 2018 Korean Society for the study of obesity guideline for the management of obesity in Korea. J Obes Metab Syndr. 2019;28(1):40.
  • 9. Singhal V, Sella AC, Malhotra S. Pharmacotherapy in pediatric obesity: current evidence and landscape. Curr. Opin. Endocrinol. Diabetes Obes. 2021;28(1):55-63.
  • 10. Kopelman P, Groot Gde H, Rissanen A, et al. Weight loss, HbA1c reduction, and tolerability of cetilistat in a randomized, placebo-controlled phase 2 trial in obese diabetics: comparison with orlistat (Xenical). Obesity (Silver Spring). 2010;18(1):108-15.
  • 11. Cheng L, Wang J, Dai H, et al. Brown and beige adipose tissue: a novel therapeutic strategy for obesity and type 2 diabetes mellitus. Adipocyte. 2021;10(1):48-65.
  • 12. Alruwaili H, Dehestani B, le Roux CW. Clinical impact of liraglutide as a treatment of obesity. Clin Pharmacol. 2021;13:53-60.
  • 13. DiNicolantonio JJ, Chatterjee S, Keefe JH, Meier P. Lorcaserin for the treatment of obesity? A closer look at its side effects. Open Heart. 2014;1(1):e000173.
  • 14. Apovian CM, Aronne LJ, Bessesen DH, et al. Pharmacological management of obesity: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2015;100(2):342-62.
  • 15. Diabetes Prevention Program Research Group, Long-term safety, tolerability, and weight loss associated with metformin in the diabetes prevention program outcomes study. Diabetes Care. 2012;35(4):731-7.
  • 16. Tirthani E, Said MS, Rehman A. Genetics and obesity: StatPearls Publishing, Treasure Island (FL); 2021 2021.
  • 17. Markham A. Setmelanotide: First approval. Drugs. 2021;81(3):397-403.
  • 18. Knudsen LB, Lau J. The discovery and development of liraglutide and semaglutide. Front. Endocrinol. 2019;10.
  • 19. Blundell J, Finlayson G, Axelsen M, et al. Effects of once-weekly semaglutide on appetite, energy intake, control of eating, food preference and body weight in subjects with obesity. Diabetes Obes. Metab. 2017;19(9):1242-51.
  • 20. Chaves VE, Tilelli CQ, Brito NA, Brito MN. Role of oxytocin in energy metabolism. Peptides. 2013;45:9-14.
  • 21. Iwasa T, Matsuzaki T, Mayila Y, et al. Oxytocin treatment reduced food intake and body fat and ameliorated obesity in ovariectomized female rats. Neuropeptides. 2019;75:49-57.
  • 22. Deblon N, Veyrat-Durebex C, Bourgoin L, et al. Mechanisms of the anti-obesity effects of oxytocin in diet-induced obese rats. PLoS One. 2011;6(9):e25565.
  • 23. Lawson EA. The effects of oxytocin on eating behaviour and metabolism in humans. Nat. Rev. Endocrinol. 2017;13(12):700-9.
  • 24. Roe ED, Chamarthi B, Raskin P. Impact of bromocriptine-QR therapy on glycemic control and daily insulin requirement in type 2 diabetes mellitus subjects whose dysglycemia Is poorly controlled on high-dose insulin: A pilot study. J Diabetes Res. 2015;2015:834903.
  • 25. Hansen HH, Perens J, Roostalu U, et al. Whole-brain activation signatures of weight-lowering drugs. Mol. Metab. 2021;47:101171.
  • 26. Tavares G, Marques D, Barra et al. Dopamine D2 receptor agonist, bromocriptine, remodels adipose tissue dopaminergic signalling and upregulates catabolic pathways, improving metabolic profile in type 2 diabetes. Mol. Metab. 2021;51:101241.
  • 27. Khedr EG, Al-Ashmawy GM, Abu-Risha SE-S, Ebeed A. Bromocriptine improves obesity by action on lipid profiles and leptin. J. innov. pharm. 2019;6(2):33-37.
  • 28. Springer M, Moco S. Resveratrol and its human metabolites—Effects on metabolic health and obesity. Nutrients. 2019;11(1):143.
  • 29. Hui S, Liu Y, Huang L, et al. Resveratrol enhances brown adipose tissue activity and white adipose tissue browning in part by regulating bile acid metabolism via gut microbiota remodeling. Int J Obes. 2020;44(8):1678-90.
  • 30. Zhou L, Xiao X, Zhang Q, Zheng J, Deng M. Deciphering the anti-obesity benefits of resveratrol: The “Gut Microbiota-Adipose Tissue” axis. Front. Endocrinol. 2019;10.
  • 31. Arch JR. beta(3)-Adrenoceptor agonists: potential, pitfalls and progress. Eur J Pharmacol. 2002;440(2-3):99-107.
  • 32. CANNON B, NEDERGAARD J. Brown Adipose Tissue: Function and Physiological Significance. Physiol. Rev. 2004;84(1):277-359.
  • 33. Powell A, Apovian C, Aronne L. New Drug Targets for the Treatment of Obesity. Clin. Pharm. Therap. 2011;90(1):40-51.
  • 34. Domin H. Neuropeptide Y Y2 and Y5 receptors as potential targets for neuroprotective and antidepressant therapies: Evidence from preclinical studies. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2021;111:110349.
  • 35. Lutz TA. Control of food intake and energy expenditure by amylin—therapeutic implications. Int. J. Obes. 2009;33(1):S24-S7.
  • 36. Tsilingiris D, Liatis S, Dalamaga M, Kokkinos A. The Fight Against Obesity escalates: New drugs on the horizon and metabolic implications. Curr. Obes. Rep. 2020;9(2):136-49.
  • 37. Williams DM, Nawaz A, Evans M. Drug therapy in obesity: A review of current and emerging treatments. Diabetes Ther. 2020;11(6):1199-216.
  • 38. Pathak V, Gault VA, Flatt PR, Irwin N. Antagonism of gastric inhibitory polypeptide (GIP) by palmitoylation of GIP analogues with N- and C-terminal modifications improves obesity and metabolic control in high fat fed mice. Mol. Cell. Endocrinol. 2015;401:120-9.
  • 39. Bailey CJ. GIP analogues and the treatment of obesity-diabetes. Peptides. 2020;125:170202.
  • 40. Nørregaard PK, Deryabina MA, Tofteng Shelton P, et al. A novel GIP analogue, ZP4165, enhances glucagon-like peptide-1-induced body weight loss and improves glycaemic control in rodents. Diabetes Obes Metab . 2018;20(1):60-8.
  • 41. Kim DD, Krishnarajah J, Lillioja S, et al. Efficacy and safety of beloranib for weight loss in obese adults: a randomized controlled trial. Diabetes Obes Metab . 2015;17(6):566-72.
  • 42. Kim YM, An JJ, Jin Y-J, et al. Assessment of the anti-obesity effects of the TNP-470 analog, CKD-732. J. Mol. Endocrinol. 2007;38(4):455-65.
  • 43. Crinò A, Fintini D, Bocchini S, Grugni G. Obesity management in Prader-Willi syndrome: current perspectives. Diabetes Metab Syndr Obes. 2018;11:579-93.
  • 44. Rosa-Gonçalves P, Majerowicz D. Pharmacotherapy of obesity: Limits and perspectives. Am. J. Cardiovasc. Drugs. 2019;19(4):349-64.
  • 45. Axel AM, Mikkelsen JD, Hansen HH. Tesofensine, a novel triple monoamine reuptake inhibitor, induces appetite suppression by indirect stimulation of alpha1 adrenoceptor and dopamine D1 receptor pathways in the diet-induced obese rat. Neuropsychopharmacology. 2010;35(7):1464-76.
  • 46. van de Giessen E, de Bruin K, la Fleur SE, van den Brink W, Booij J. Triple monoamine inhibitor tesofensine decreases food intake, body weight, and striatal dopamine D2/D3 receptor availability in diet-induced obese rats. Eur Neuropsychopharmacol. 2012;22(4):290-9.
  • 47. Hansen HH, Hansen G, Tang-Christensen M, et al. The novel triple monoamine reuptake inhibitor tesofensine induces sustained weight loss and improves glycemic control in the diet-induced obese rat: comparison to sibutramine and rimonabant. Eur J Pharmacol. 2010;636(1-3):88-95.
  • 48. Sjödin A, Gasteyger C, Nielsen AL, et al. The effect of the triple monoamine reuptake inhibitor tesofensine on energy metabolism and appetite in overweight and moderately obese men. Int. J. Obes. 2010;34(11):1634-43.
  • 49. Azegami T, Yuki Y, Sawada S, et al. Nanogel-based nasal ghrelin vaccine prevents obesity. Mucosal Immunol. 2017;10(5):1351-60.
  • 50. Fulurija A, Lutz TA, Sladko K, et al. Vaccination against GIP for the treatment of obesity. PLoS One. 2008;3(9):e3163.
  • 51. Azegami T, Itoh H. Immunotherapy for Obesity. In: Nakagami H, editor. Therapeutic Vaccines as Novel Immunotherapy: Biological and Clinical Concepts. Singapore: Springer Singapore; 2019. p. 33-44.
  • 52. Bourinbaiar AS, Jirathitikal V. Effect of oral immunization with pooled antigens derived from adipose tissue on atherosclerosis and obesity indices. Vaccine. 2010;28(15):2763-8.
  • 53. Dhurandhar NV, Whigham LD, Abbott DH, et al. Human adenovirus Ad-36 promotes weight gain in male Rhesus and Marmoset monkeys. J Nutr. 2002;132(10):3155-60.
  • 54. Na HN, Nam JH. Adenovirus 36 as an obesity agent maintains the obesity state by increasing MCP-1 and inducing inflammation. J Infect Dis. 2012;205(6):914-22.
  • 55. Na HN, Nam JH. Proof-of-concept for a virus-induced obesity vaccine; vaccination against the obesity agent adenovirus 36. Int. J. Obes. 2014;38(11):1470-4.

Obezite Tedavisinde Farmakolojik Yaklaşımlar

Yıl 2023, Cilt: 45 Sayı: 1, 142 - 150, 23.01.2023
https://doi.org/10.20515/otd.1093390

Öz

Obezite; dünyada ve ülkemizde giderek artış gösteren bir salgın hastalık haline gelmektedir. Tedavi edilmediği durumlarda morbidite ve mortaliteye sebep olmaktadır. Obezite gelişiminde kişisel ve çevresel faktörler rol almaktadır. Nörolojik ve metabolik yolaklarla kontrol edilen enerji homeostazındaki bozulma obezite ile sonuçlanmaktadır. Obezite gelişimi sonrası tedavi sürecinde ilk basamak hayat tarzı ve diyet değişiklikleridir. Ancak çoğu zaman ikinci basamak tedavilere ihtiyaç duyulur. Bu aşamada obezite patofizyolojisi göz önünde bulundurularak farmakoterapi seçenekleri değerlendirilir. Kişinin genetik altyapısı, enerji homeostazındaki bozulma ve çevresel etkenler obezite oluşumunda rol oynamaktadır. Bu nedenle genetik mutasyonlar sonucu oluşan eksiklikler ve enerji homeostazında etkili yolaklar hedeflenerek farmakolojik yaklaşımlar kullanılır. Bunlar arasında hali hazırda kullanılan orlistat, cetilistat, liraglutid, lorkaserin, burpropion/naltrekson kombinasyonu, fentermin/topiramat kombinasyonu, metformin gibi seçenekler mevcutken, genetik mutasyonlar sonucu oluşan obezitede etkili metreleptin ve setmelanotid gibi obezite endikasyonu için onay almış ve endikasyon dışı kullanılarak obezitede fayda sağlanmış ajanlar mevcuttur. Obezite tedavisi için farmakolojik yaklaşımlar gün geçtikçe artmaktadır. Günümüzde obezite tedavisinde umut vadeden semaglutid, oksitosin, bromokriptin, resveratrol, β3 adrenerjik reseptör agonistleri ,velneperit, davalintide (AC2307), glukoz-bağımlı insülinotropik polipeptid (GIP) analogları, beloranib, tesofensin gibi birçok seçenek de mevcuttur. Bunların yanında obezitenin önlenmesine yönelik aşı çalışmaları da sürdürülmektedir. Obezite risk faktörlerini, gelişim sürecini bütüncül olarak ele aldığımızda obezitenin önlenmesi ve tedavisi için seçenekler artmakta olup obeziteye karşı mücadelede elimizi güçlendirmektedir.

Kaynakça

  • 1. Narouze S, Souzdalnitski D. Obesity and chronic Pain:Systematic review of prevalence and implications for pain practice. Reg Anesth Pain Med. 2015;40(2):91-111.
  • 2. Blüher M. Obesity: global epidemiology and pathogenesis. Nat. Rev Endocrinol. 2019;15(5):288-98.
  • 3. Srivastava G, Apovian C. Future pharmacotherapy for obesity: New anti-obesity drugs on the horizon. Curr. Obes. Rep. 2018;7(2):147-61.
  • 4. Cataldi M, Muscogiuri G, Savastano S, et al. Gender-related issues in the pharmacology of new anti-obesity drugs. Obes Rev. 2019;20(3):375-84.
  • 5. Jackson VM, Breen DM, Fortin JP, et al. Latest approaches for the treatment of obesity. Expert Opin Drug Discov. 2015;10(8):825-39.
  • 6. Coulter AA, Rebello CJ, Greenway FL. Centrally acting agents for obesity: Past, present, and future. Drugs. 2018;78(11):1113-32.
  • 7. Ballinger A, Peikin SR. Orlistat: its current status as an anti-obesity drug. Eur. J. Pharmacol. 2002;440(2):109-17.
  • 8. Seo MH, Lee W-Y, Kim SS, et al. 2018 Korean Society for the study of obesity guideline for the management of obesity in Korea. J Obes Metab Syndr. 2019;28(1):40.
  • 9. Singhal V, Sella AC, Malhotra S. Pharmacotherapy in pediatric obesity: current evidence and landscape. Curr. Opin. Endocrinol. Diabetes Obes. 2021;28(1):55-63.
  • 10. Kopelman P, Groot Gde H, Rissanen A, et al. Weight loss, HbA1c reduction, and tolerability of cetilistat in a randomized, placebo-controlled phase 2 trial in obese diabetics: comparison with orlistat (Xenical). Obesity (Silver Spring). 2010;18(1):108-15.
  • 11. Cheng L, Wang J, Dai H, et al. Brown and beige adipose tissue: a novel therapeutic strategy for obesity and type 2 diabetes mellitus. Adipocyte. 2021;10(1):48-65.
  • 12. Alruwaili H, Dehestani B, le Roux CW. Clinical impact of liraglutide as a treatment of obesity. Clin Pharmacol. 2021;13:53-60.
  • 13. DiNicolantonio JJ, Chatterjee S, Keefe JH, Meier P. Lorcaserin for the treatment of obesity? A closer look at its side effects. Open Heart. 2014;1(1):e000173.
  • 14. Apovian CM, Aronne LJ, Bessesen DH, et al. Pharmacological management of obesity: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2015;100(2):342-62.
  • 15. Diabetes Prevention Program Research Group, Long-term safety, tolerability, and weight loss associated with metformin in the diabetes prevention program outcomes study. Diabetes Care. 2012;35(4):731-7.
  • 16. Tirthani E, Said MS, Rehman A. Genetics and obesity: StatPearls Publishing, Treasure Island (FL); 2021 2021.
  • 17. Markham A. Setmelanotide: First approval. Drugs. 2021;81(3):397-403.
  • 18. Knudsen LB, Lau J. The discovery and development of liraglutide and semaglutide. Front. Endocrinol. 2019;10.
  • 19. Blundell J, Finlayson G, Axelsen M, et al. Effects of once-weekly semaglutide on appetite, energy intake, control of eating, food preference and body weight in subjects with obesity. Diabetes Obes. Metab. 2017;19(9):1242-51.
  • 20. Chaves VE, Tilelli CQ, Brito NA, Brito MN. Role of oxytocin in energy metabolism. Peptides. 2013;45:9-14.
  • 21. Iwasa T, Matsuzaki T, Mayila Y, et al. Oxytocin treatment reduced food intake and body fat and ameliorated obesity in ovariectomized female rats. Neuropeptides. 2019;75:49-57.
  • 22. Deblon N, Veyrat-Durebex C, Bourgoin L, et al. Mechanisms of the anti-obesity effects of oxytocin in diet-induced obese rats. PLoS One. 2011;6(9):e25565.
  • 23. Lawson EA. The effects of oxytocin on eating behaviour and metabolism in humans. Nat. Rev. Endocrinol. 2017;13(12):700-9.
  • 24. Roe ED, Chamarthi B, Raskin P. Impact of bromocriptine-QR therapy on glycemic control and daily insulin requirement in type 2 diabetes mellitus subjects whose dysglycemia Is poorly controlled on high-dose insulin: A pilot study. J Diabetes Res. 2015;2015:834903.
  • 25. Hansen HH, Perens J, Roostalu U, et al. Whole-brain activation signatures of weight-lowering drugs. Mol. Metab. 2021;47:101171.
  • 26. Tavares G, Marques D, Barra et al. Dopamine D2 receptor agonist, bromocriptine, remodels adipose tissue dopaminergic signalling and upregulates catabolic pathways, improving metabolic profile in type 2 diabetes. Mol. Metab. 2021;51:101241.
  • 27. Khedr EG, Al-Ashmawy GM, Abu-Risha SE-S, Ebeed A. Bromocriptine improves obesity by action on lipid profiles and leptin. J. innov. pharm. 2019;6(2):33-37.
  • 28. Springer M, Moco S. Resveratrol and its human metabolites—Effects on metabolic health and obesity. Nutrients. 2019;11(1):143.
  • 29. Hui S, Liu Y, Huang L, et al. Resveratrol enhances brown adipose tissue activity and white adipose tissue browning in part by regulating bile acid metabolism via gut microbiota remodeling. Int J Obes. 2020;44(8):1678-90.
  • 30. Zhou L, Xiao X, Zhang Q, Zheng J, Deng M. Deciphering the anti-obesity benefits of resveratrol: The “Gut Microbiota-Adipose Tissue” axis. Front. Endocrinol. 2019;10.
  • 31. Arch JR. beta(3)-Adrenoceptor agonists: potential, pitfalls and progress. Eur J Pharmacol. 2002;440(2-3):99-107.
  • 32. CANNON B, NEDERGAARD J. Brown Adipose Tissue: Function and Physiological Significance. Physiol. Rev. 2004;84(1):277-359.
  • 33. Powell A, Apovian C, Aronne L. New Drug Targets for the Treatment of Obesity. Clin. Pharm. Therap. 2011;90(1):40-51.
  • 34. Domin H. Neuropeptide Y Y2 and Y5 receptors as potential targets for neuroprotective and antidepressant therapies: Evidence from preclinical studies. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2021;111:110349.
  • 35. Lutz TA. Control of food intake and energy expenditure by amylin—therapeutic implications. Int. J. Obes. 2009;33(1):S24-S7.
  • 36. Tsilingiris D, Liatis S, Dalamaga M, Kokkinos A. The Fight Against Obesity escalates: New drugs on the horizon and metabolic implications. Curr. Obes. Rep. 2020;9(2):136-49.
  • 37. Williams DM, Nawaz A, Evans M. Drug therapy in obesity: A review of current and emerging treatments. Diabetes Ther. 2020;11(6):1199-216.
  • 38. Pathak V, Gault VA, Flatt PR, Irwin N. Antagonism of gastric inhibitory polypeptide (GIP) by palmitoylation of GIP analogues with N- and C-terminal modifications improves obesity and metabolic control in high fat fed mice. Mol. Cell. Endocrinol. 2015;401:120-9.
  • 39. Bailey CJ. GIP analogues and the treatment of obesity-diabetes. Peptides. 2020;125:170202.
  • 40. Nørregaard PK, Deryabina MA, Tofteng Shelton P, et al. A novel GIP analogue, ZP4165, enhances glucagon-like peptide-1-induced body weight loss and improves glycaemic control in rodents. Diabetes Obes Metab . 2018;20(1):60-8.
  • 41. Kim DD, Krishnarajah J, Lillioja S, et al. Efficacy and safety of beloranib for weight loss in obese adults: a randomized controlled trial. Diabetes Obes Metab . 2015;17(6):566-72.
  • 42. Kim YM, An JJ, Jin Y-J, et al. Assessment of the anti-obesity effects of the TNP-470 analog, CKD-732. J. Mol. Endocrinol. 2007;38(4):455-65.
  • 43. Crinò A, Fintini D, Bocchini S, Grugni G. Obesity management in Prader-Willi syndrome: current perspectives. Diabetes Metab Syndr Obes. 2018;11:579-93.
  • 44. Rosa-Gonçalves P, Majerowicz D. Pharmacotherapy of obesity: Limits and perspectives. Am. J. Cardiovasc. Drugs. 2019;19(4):349-64.
  • 45. Axel AM, Mikkelsen JD, Hansen HH. Tesofensine, a novel triple monoamine reuptake inhibitor, induces appetite suppression by indirect stimulation of alpha1 adrenoceptor and dopamine D1 receptor pathways in the diet-induced obese rat. Neuropsychopharmacology. 2010;35(7):1464-76.
  • 46. van de Giessen E, de Bruin K, la Fleur SE, van den Brink W, Booij J. Triple monoamine inhibitor tesofensine decreases food intake, body weight, and striatal dopamine D2/D3 receptor availability in diet-induced obese rats. Eur Neuropsychopharmacol. 2012;22(4):290-9.
  • 47. Hansen HH, Hansen G, Tang-Christensen M, et al. The novel triple monoamine reuptake inhibitor tesofensine induces sustained weight loss and improves glycemic control in the diet-induced obese rat: comparison to sibutramine and rimonabant. Eur J Pharmacol. 2010;636(1-3):88-95.
  • 48. Sjödin A, Gasteyger C, Nielsen AL, et al. The effect of the triple monoamine reuptake inhibitor tesofensine on energy metabolism and appetite in overweight and moderately obese men. Int. J. Obes. 2010;34(11):1634-43.
  • 49. Azegami T, Yuki Y, Sawada S, et al. Nanogel-based nasal ghrelin vaccine prevents obesity. Mucosal Immunol. 2017;10(5):1351-60.
  • 50. Fulurija A, Lutz TA, Sladko K, et al. Vaccination against GIP for the treatment of obesity. PLoS One. 2008;3(9):e3163.
  • 51. Azegami T, Itoh H. Immunotherapy for Obesity. In: Nakagami H, editor. Therapeutic Vaccines as Novel Immunotherapy: Biological and Clinical Concepts. Singapore: Springer Singapore; 2019. p. 33-44.
  • 52. Bourinbaiar AS, Jirathitikal V. Effect of oral immunization with pooled antigens derived from adipose tissue on atherosclerosis and obesity indices. Vaccine. 2010;28(15):2763-8.
  • 53. Dhurandhar NV, Whigham LD, Abbott DH, et al. Human adenovirus Ad-36 promotes weight gain in male Rhesus and Marmoset monkeys. J Nutr. 2002;132(10):3155-60.
  • 54. Na HN, Nam JH. Adenovirus 36 as an obesity agent maintains the obesity state by increasing MCP-1 and inducing inflammation. J Infect Dis. 2012;205(6):914-22.
  • 55. Na HN, Nam JH. Proof-of-concept for a virus-induced obesity vaccine; vaccination against the obesity agent adenovirus 36. Int. J. Obes. 2014;38(11):1470-4.
Toplam 55 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm DERLEMELER / REVIEWS
Yazarlar

Elif Erdoğan Erden 0000-0002-8269-1516

Zeynep Gül Yazıcı 0000-0002-7631-1839

Cansu Kılıç 0000-0003-1100-9417

Sule Aydın 0000-0003-2498-8378

Fatma Sultan Kılıç 0000-0002-5356-696X

Yayımlanma Tarihi 23 Ocak 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 45 Sayı: 1

Kaynak Göster

Vancouver Erdoğan Erden E, Yazıcı ZG, Kılıç C, Aydın S, Kılıç FS. Obezite Tedavisinde Farmakolojik Yaklaşımlar. Osmangazi Tıp Dergisi. 2023;45(1):142-50.


13299        13308       13306       13305    13307  1330126978