Derleme
BibTex RIS Kaynak Göster

Otoimmün Hastalıklarda Epigenetiğin Rolü

Yıl 2023, Cilt: 45 Sayı: 3, 449 - 454, 23.05.2023

Öz

Otoimmün hastalıkların sınıflandırılması, teşhisi ve yeni terapi yöntemlerinin bulunmasında birçok önemli gelişme olmuştur. Mevcut teoriler, otoimmün hastalıkların gelişiminin genetik yatkınlığı ve çevresel faktörlerden kaynaklanan epigenetik modifikasyonları içerdiğini ve özellikle doku hasarına neden olan kazanılmış bağışıklık sistemini tetiklediğini öne sürmektedir. Epigenetik modifikasyonlar ile genomik dizide bir değişiklik olmamasına rağmen gen ekspresyonu değişmektedir. Son yıllarda, tek gen hastalıkların patofizyolojisinde genetik yatkınlığın yanı sıra epigenetik modifikasyonların rol oynadığı tespit edilmiştir. Buradan yola çıkarak, otoimmün hastalıklara katkıda bulunan epigenetik faktörlerin anlaşılması, hedefe yönelik yeni terapilerin araştırılması ve uygulanmasına olanak sağlayabilecektir. Bu derlemede, otoimmün hastalıklarda patogenezinde epigenetik modifikasyonların önemi ve epigenetik değişikliklerin hastalığın ortaya çıkışı üzerindeki etkisi özetlenmiştir.

Kaynakça

  • 1. Hedrich CM. Shaping the spectrum - From autoinflammation to autoimmunity. Clin Immunol. 2016;165:21-8.
  • 2. Angum F, Khan T, Kaler J, Siddiqui L, Hussain A. The Prevalence of Autoimmune Disorders in Women: A Narrative Review. Cureus. 2020;12:e8094.
  • 3. Gonsette RE. Self-tolerance in multiple sclerosis. Acta neurol Belg. 2012;112:133-40.
  • 4. Zhang P, Lu Q. Genetic and epigenetic influences on the loss of tolerance in autoimmunity. Cell Mol Immunol. 2018;15:575-85.
  • 5. Dolcino M, Friso S, Selmi C, Lunardi C. Editorial: Role of Epigenetics in Autoimmune Diseases. Front immunol. 2020;11:1284.
  • 6. Wu H, Liao J, Li Q, Yang M, Zhao M, Lu Q. Epigenetics as biomarkers in autoimmune diseases. Clin Immunol. 2018;196:34-9.
  • 7. Moroni L, Bianchi I, Lleo A. Geoepidemiology, gender and autoimmune disease. Autoimmun Rev. 2012;11:A386-92.
  • 8. Muniz Caldas CA, Freire de Carvalho J. The role of environmental factors in the pathogenesis of non-organ-specific autoimmune diseases. Best Pract Res Clin Rheumatol. 2012;26:5-11.
  • 9. Lakshmi Narendra B, Eshvendar Reddy K, Shantikumar S, Ramakrishna S. Immune system: a double-edged sword in cancer. Inflamm Res. 2013;62:823-34.
  • 10. Brady J, Horie S, Laffey JG. Role of the adaptive immune response in sepsis. Intensive care Med Exp. 2020;8(Suppl 1):20.
  • 11. Toubi E, Vadasz Z. Innate immune-responses and their role in driving autoimmunity. Autoimmun Rev. 2019;18(3):306-11.
  • 12. Wang L, Wang FS, Gershwin ME. Human autoimmune diseases: a comprehensive update. J Internal Med. 2015;278(4):369-95.
  • 13. Nicholson LB. The immune system. Essays Biochem. 2016;60:275-301.
  • 14. Salinas GF, Braza F, Brouard S, Tak PP, Baeten D. The role of B lymphocytes in the progression from autoimmunity to autoimmune disease. Clin Immunol. 2013;146:34-45.
  • 15. Meda F, Folci M, Baccarelli A, Selmi C. The epigenetics of autoimmunity. Cell Mol Immunol. 2011;8:226-36.
  • 16. Kiefer JC. Epigenetics in development. Dev Dyn. 2007;236:1144-56.
  • 17. Dang MN, Buzzetti R, Pozzilli P. Epigenetics in autoimmune diseases with focus on type 1 diabetes. Diabetes Metab Res Rev. 2013;29:8-18.
  • 18. Aslani S, Mahmoudi M, Karami J, Jamshidi AR, Malekshahi Z, Nicknam MH. Epigenetic alterations underlying autoimmune diseases. Autoimmunity. 2016;49:69-83.
  • 19. Lu Q. The critical importance of epigenetics in autoimmunity. J Autoimmun. 2013;41:1-5.
  • 20. Balada E, Ordi-Ros J, Vilardell-Tarrés M. DNA methylation and systemic lupus erythematosus. Annals of the New York Academy of Sciences. 2007;1108:127-36.
  • 21. Lu Q, Kaplan M, Ray D, Ray D, Zacharek S, Gutsch D, et al. Demethylation of ITGAL (CD11a) regulatory sequences in systemic lupus erythematosus. Arthritis Rheum. 2002;46:1282-91.
  • 22. Xiao G, Zuo X. Epigenetics in systemic lupus erythematosus. Biomed Rep. 2016;4:135-9.
  • 23. Ballestar E, Esteller M, Richardson BC. The epigenetic face of systemic lupus erythematosus. J mmunol. 2006;176:7143-7.
  • 24. Jeffries MA, Dozmorov M, Tang Y, Merrill JT, Wren JD, Sawalha AH. Genome-wide DNA methylation patterns in CD4+ T cells from patients with systemic lupus erythematosus. Epigenetics. 2011;6:593-601.
  • 25. Javierre BM, Fernandez AF, Richter J, Al-Shahrour F, Martin-Subero JI, Rodriguez-Ubreva J, et al. Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus. Genome Res. 2010;20:170-9.
  • 26. Hedrich CM, Rauen T, Kis-Toth K, Kyttaris VC, Tsokos GC. cAMP-responsive element modulator α (CREMα) suppresses IL-17F protein expression in T lymphocytes from patients with systemic lupus erythematosus (SLE). J Biol Chem. 2012;287:4715-25.
  • 27. Mei Y, Xin Y, Li X, Yin H, Xiong F, Yang M, et al. Aberrant expression of JMJD3 in SLE promotes B-cell differentiation. Immunobiology. 2023;228:152347.
  • 28. Forouhi NG, Wareham NJ. Epidemiology of diabetes. Medicine (Abingdon, England : UK ed). 2014;42:698-702.
  • 29. Wang Z, Xie Z, Lu Q, Chang C, Zhou Z. Beyond Genetics: What Causes Type 1 Diabetes. Clin Rev Allergy Immunol. 2017;52:273-86.
  • 30. Mazzone R, Zwergel C, Artico M, Taurone S, Ralli M, Greco A, et al. The emerging role of epigenetics in human autoimmune disorders. Clin Epigenetics. 2019;11:34.
  • 31. Quintero-Ronderos P, Montoya-Ortiz G. Epigenetics and autoimmune diseases. Autoimmune Dis. 2012;2012:593720.
  • 32. Zhang H, Pollin TI. Epigenetics Variation and Pathogenesis in Diabetes. Curr Diab Rep. 2018;18:121.
  • 33. Zullo A, Sommese L, Nicoletti G, Donatelli F, Mancini FP, Napoli C. Epigenetics and type 1 diabetes: mechanisms and translational applications. Transl Res. 2017;185:85-93.
  • 34. Zheng Y, Zhao J, Shan Y, Guo S, Schrodi SJ, He D. Role of the granzyme family in rheumatoid arthritis: Current Insights and future perspectives. Front Immunol. 2023;14:1137918.
  • 35. Git A, Dvinge H, Salmon-Divon M, Osborne M, Kutter C, Hadfield J, et al. Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. Rna. 2010;16:991-1006.
  • 36. Stanczyk J, Pedrioli DM, Brentano F, Sanchez-Pernaute O, Kolling C, Gay RE, et al. Altered expression of MicroRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis. Arthritis Rheum. 2008;58:1001-9.
  • 37. Huang Z, Xing S, Liu M, Deng W, Wang Y, Huang Z, et al. MiR-26a-5p enhances cells proliferation, invasion, and apoptosis resistance of fibroblast-like synoviocytes in rheumatoid arthritis by regulating PTEN/PI3K/AKT pathway. Biosci Rep. 2019;39.
  • 38. Roszkowski L, Jaszczyk B, Plebańczyk M, Ciechomska M. S100A8 and S100A12 Proteins as Biomarkers of High Disease Activity in Patients with Rheumatoid Arthritis That Can Be Regulated by Epigenetic Drugs. Int J Mol Sci. 2022;24.

The Interaction of Epigenetics In Autoimmune Diseases

Yıl 2023, Cilt: 45 Sayı: 3, 449 - 454, 23.05.2023

Öz

There have been many important developments in the classification, diagnosis, and finding of new therapies for autoimmune diseases. Current theories suggest that the development of autoimmune diseases involves genetic predisposition, and epigenetic modifications arising from environmental factors, that trigger mainly the adaptive immune pathways that eventually result in tissue destruction. Gene expression can be modified by epigenetic modifications without changing the sequence of the genome. In recent years, it has been identified that epigenetic modifications play role in the pathophysiology of single-gene disease in addition to genetic predisposition. Therefore, understanding the epigenetic factors that contribute to autoimmune diseases may lead to new target-directed therapies. Here, the importance of epigenetic modifications in the pathogenesis of autoimmune diseases and the effect of epigenetic changes on the onset of the disease are summarized.

Kaynakça

  • 1. Hedrich CM. Shaping the spectrum - From autoinflammation to autoimmunity. Clin Immunol. 2016;165:21-8.
  • 2. Angum F, Khan T, Kaler J, Siddiqui L, Hussain A. The Prevalence of Autoimmune Disorders in Women: A Narrative Review. Cureus. 2020;12:e8094.
  • 3. Gonsette RE. Self-tolerance in multiple sclerosis. Acta neurol Belg. 2012;112:133-40.
  • 4. Zhang P, Lu Q. Genetic and epigenetic influences on the loss of tolerance in autoimmunity. Cell Mol Immunol. 2018;15:575-85.
  • 5. Dolcino M, Friso S, Selmi C, Lunardi C. Editorial: Role of Epigenetics in Autoimmune Diseases. Front immunol. 2020;11:1284.
  • 6. Wu H, Liao J, Li Q, Yang M, Zhao M, Lu Q. Epigenetics as biomarkers in autoimmune diseases. Clin Immunol. 2018;196:34-9.
  • 7. Moroni L, Bianchi I, Lleo A. Geoepidemiology, gender and autoimmune disease. Autoimmun Rev. 2012;11:A386-92.
  • 8. Muniz Caldas CA, Freire de Carvalho J. The role of environmental factors in the pathogenesis of non-organ-specific autoimmune diseases. Best Pract Res Clin Rheumatol. 2012;26:5-11.
  • 9. Lakshmi Narendra B, Eshvendar Reddy K, Shantikumar S, Ramakrishna S. Immune system: a double-edged sword in cancer. Inflamm Res. 2013;62:823-34.
  • 10. Brady J, Horie S, Laffey JG. Role of the adaptive immune response in sepsis. Intensive care Med Exp. 2020;8(Suppl 1):20.
  • 11. Toubi E, Vadasz Z. Innate immune-responses and their role in driving autoimmunity. Autoimmun Rev. 2019;18(3):306-11.
  • 12. Wang L, Wang FS, Gershwin ME. Human autoimmune diseases: a comprehensive update. J Internal Med. 2015;278(4):369-95.
  • 13. Nicholson LB. The immune system. Essays Biochem. 2016;60:275-301.
  • 14. Salinas GF, Braza F, Brouard S, Tak PP, Baeten D. The role of B lymphocytes in the progression from autoimmunity to autoimmune disease. Clin Immunol. 2013;146:34-45.
  • 15. Meda F, Folci M, Baccarelli A, Selmi C. The epigenetics of autoimmunity. Cell Mol Immunol. 2011;8:226-36.
  • 16. Kiefer JC. Epigenetics in development. Dev Dyn. 2007;236:1144-56.
  • 17. Dang MN, Buzzetti R, Pozzilli P. Epigenetics in autoimmune diseases with focus on type 1 diabetes. Diabetes Metab Res Rev. 2013;29:8-18.
  • 18. Aslani S, Mahmoudi M, Karami J, Jamshidi AR, Malekshahi Z, Nicknam MH. Epigenetic alterations underlying autoimmune diseases. Autoimmunity. 2016;49:69-83.
  • 19. Lu Q. The critical importance of epigenetics in autoimmunity. J Autoimmun. 2013;41:1-5.
  • 20. Balada E, Ordi-Ros J, Vilardell-Tarrés M. DNA methylation and systemic lupus erythematosus. Annals of the New York Academy of Sciences. 2007;1108:127-36.
  • 21. Lu Q, Kaplan M, Ray D, Ray D, Zacharek S, Gutsch D, et al. Demethylation of ITGAL (CD11a) regulatory sequences in systemic lupus erythematosus. Arthritis Rheum. 2002;46:1282-91.
  • 22. Xiao G, Zuo X. Epigenetics in systemic lupus erythematosus. Biomed Rep. 2016;4:135-9.
  • 23. Ballestar E, Esteller M, Richardson BC. The epigenetic face of systemic lupus erythematosus. J mmunol. 2006;176:7143-7.
  • 24. Jeffries MA, Dozmorov M, Tang Y, Merrill JT, Wren JD, Sawalha AH. Genome-wide DNA methylation patterns in CD4+ T cells from patients with systemic lupus erythematosus. Epigenetics. 2011;6:593-601.
  • 25. Javierre BM, Fernandez AF, Richter J, Al-Shahrour F, Martin-Subero JI, Rodriguez-Ubreva J, et al. Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus. Genome Res. 2010;20:170-9.
  • 26. Hedrich CM, Rauen T, Kis-Toth K, Kyttaris VC, Tsokos GC. cAMP-responsive element modulator α (CREMα) suppresses IL-17F protein expression in T lymphocytes from patients with systemic lupus erythematosus (SLE). J Biol Chem. 2012;287:4715-25.
  • 27. Mei Y, Xin Y, Li X, Yin H, Xiong F, Yang M, et al. Aberrant expression of JMJD3 in SLE promotes B-cell differentiation. Immunobiology. 2023;228:152347.
  • 28. Forouhi NG, Wareham NJ. Epidemiology of diabetes. Medicine (Abingdon, England : UK ed). 2014;42:698-702.
  • 29. Wang Z, Xie Z, Lu Q, Chang C, Zhou Z. Beyond Genetics: What Causes Type 1 Diabetes. Clin Rev Allergy Immunol. 2017;52:273-86.
  • 30. Mazzone R, Zwergel C, Artico M, Taurone S, Ralli M, Greco A, et al. The emerging role of epigenetics in human autoimmune disorders. Clin Epigenetics. 2019;11:34.
  • 31. Quintero-Ronderos P, Montoya-Ortiz G. Epigenetics and autoimmune diseases. Autoimmune Dis. 2012;2012:593720.
  • 32. Zhang H, Pollin TI. Epigenetics Variation and Pathogenesis in Diabetes. Curr Diab Rep. 2018;18:121.
  • 33. Zullo A, Sommese L, Nicoletti G, Donatelli F, Mancini FP, Napoli C. Epigenetics and type 1 diabetes: mechanisms and translational applications. Transl Res. 2017;185:85-93.
  • 34. Zheng Y, Zhao J, Shan Y, Guo S, Schrodi SJ, He D. Role of the granzyme family in rheumatoid arthritis: Current Insights and future perspectives. Front Immunol. 2023;14:1137918.
  • 35. Git A, Dvinge H, Salmon-Divon M, Osborne M, Kutter C, Hadfield J, et al. Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. Rna. 2010;16:991-1006.
  • 36. Stanczyk J, Pedrioli DM, Brentano F, Sanchez-Pernaute O, Kolling C, Gay RE, et al. Altered expression of MicroRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis. Arthritis Rheum. 2008;58:1001-9.
  • 37. Huang Z, Xing S, Liu M, Deng W, Wang Y, Huang Z, et al. MiR-26a-5p enhances cells proliferation, invasion, and apoptosis resistance of fibroblast-like synoviocytes in rheumatoid arthritis by regulating PTEN/PI3K/AKT pathway. Biosci Rep. 2019;39.
  • 38. Roszkowski L, Jaszczyk B, Plebańczyk M, Ciechomska M. S100A8 and S100A12 Proteins as Biomarkers of High Disease Activity in Patients with Rheumatoid Arthritis That Can Be Regulated by Epigenetic Drugs. Int J Mol Sci. 2022;24.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sağlık Kurumları Yönetimi
Bölüm DERLEMELER / REVIEWS
Yazarlar

Ozel Yuruker 0000-0002-9770-0761

Meis Ceren Durak 0000-0002-7935-966X

Rasime Kalkan 0000-0002-6095-7352

Yayımlanma Tarihi 23 Mayıs 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 45 Sayı: 3

Kaynak Göster

Vancouver Yuruker O, Durak MC, Kalkan R. The Interaction of Epigenetics In Autoimmune Diseases. Osmangazi Tıp Dergisi. 2023;45(3):449-54.


13299        13308       13306       13305    13307  1330126978