Derleme
BibTex RIS Kaynak Göster

Meme Kanseri Tedavisinde Potansiyel Bir Antineoplastik Ajan: Gallik Asit

Yıl 2023, Cilt: 45 Sayı: 5, 834 - 843, 27.09.2023
https://doi.org/10.20515/otd.1255349

Öz

Meme kanseri, dünya çapında kadınlarda kansere bağlı ölümlerin önde gelen nedenidir. Meme kanserinin görülme sıklığı gün geçtikçe daha da artmaktadır. Kanser tedavisinde kullanılan kemoterapotik ilaçlar ve diğerleri hedef hücrelerde ve sağlıklı hücrelerde etkin olduğundan, araştırmacılar meme kanseri tedavisi için yeni ajanlar geliştirmeye çalışmaktadır. Bu ajanlardan biri de oldukça umut vadeden birçok meyve ve sebzede bulunan doğal polifenolik bir molekül olan gallik asittir. Gallik asit üzerine yapılan çalışmalarda, gallik asitin A549 (akciğer kanseri hücre hattı) EBC-1, HTB 35(rahim ağzı kanseri hücre hattı) K-562 (miyeloid lösemi hücre hattı) MCF-7, MDA-MB-231 (meme kanseri hücre hattı) gibi birçok kanser hücre hattında apoptoz indükleyici, hücre döngüsü durdurucu, kanser oluşumunda rol oynayan çeşitli sinyal yolaklarını inhibe edici, anjiyogenezi ya da metastazı önleyici etkilerinin olduğu gözlemlenmiştir. Yapılan çalışmalarda gallik asidin evrensel kanser tedavisi ajanı olma potansiyeli taşıdığı ve kanser başta olmak üzere birçok hastalık üzerine etkilerinin araştırılmaya devam ettiği görülmektedir. Yaptığımız bu derlemede gallik asidin meme kanseri üzerindeki etkilerinin ve anti-kanser mekanizmasının gözden geçirilmesi amaçlanmıştır.

Kaynakça

  • 1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022 ;72:7-33.
  • 2. Barrios C, Reinert T, Werutsky G. Global Breast Cancer Research: Moving Forward. American Society of Clinical Oncology educational book. American Society of Clinical Oncology. Annual Meeting. 2018; 38:441–450.
  • 3. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71:209-249.
  • 4. Hättenschwiler S, Vitousek PM. The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends in ecology & evolution, 2000;15:238–243.
  • 5. Fernandes FH, Salgado HR. Gallic Acid: Review of the Methods of Determination and Quantification. Crit Rev Anal Chem. 2016; 46:257-265.
  • 6. Kroes BH, van den Berg AJ, Quarles van Ufford HC, van Dijk H, Labadie RP. Anti-inflammatory activity of gallic acid. Planta Med. 1992; 58:499-504.
  • 7. Yen GC, Duh PD, Tsai HL. Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid. Food Chemistry. 2002; 79:307-313.
  • 8. Ohno Y, Fukuda K, Takemura G. Induction of apoptosis by gallic acid in lung cancer cells. Anti-cancer drugs. 1999; 10: 845–851.
  • 9. Zhang T, Ma L, Wu P. Gallic acid has anticancer activity and enhances the anticancer effects of cisplatin in non small cell lung cancer A549 cells via the JAK/STAT3 signaling pathway. Oncology reports. 2019;41; 1779–1788.
  • 10. Jang A, Srinivasan P, Lee N. Comparison of hypolipidemic activity of synthetic gallic acid-linoleic acid ester with mixture of gallic acid and linoleic acid, gallic acid, and linoleic acid on high-fat diet induced obesity in C57BL/6 Cr Slc mice. Chemico-biological interactions. 2008; 174;109–117.
  • 11. Lee BH, Lee CC, Cheng YH. Graptopetalum paraguayense and resveratrol ameliorates carboxymethyllysine (CML)-induced pancreas dysfunction and hyperglycemia. Food and chemical toxicology. 2013;62:492–498.
  • 12. Umadevi S, Gopi V, Elangovan V. Regulatory mechanism of gallic acid against advanced glycation end products induced cardiac remodeling in experimental rats. Chemico-biological interactions. 2014;208: 28–36.
  • 13. Hussein RM, Anwar MM, Farghaly HS. Gallic acid and ferulic acid protect the liver from thioacetamide-induced fibrosis in rats via differential expression of miR-21, miR-30 and miR-200 and impact on TGF-β1/Smad3 signaling. Chemico-biological interactions. 2020;324:109098.
  • 14. Zhao B, Hu M. Gallic acid reduces cell viability, proliferation, invasion and angiogenesis in human cervical cancer cells. Oncology letters. 2013;6: 1749–1755.
  • 15. Locatelli C, Leal PC, Yunes RA, Nunes RJ, Creczynski-Pasa TB. Gallic acid ester derivatives induce apoptosis and cell adhesion inhibition in melanoma cells: The relationship between free radical generation, glutathione depletion and cell death. Chemico-biological interactions. 2009;181:175–184.
  • 16. Liu KC, Huang AC, Wu PP, Lin HY, Chueh FS, Yang JS et al. Gallic acid suppresses the migration and invasion of PC-3 human prostate cancer cells via inhibition of matrix metalloproteinase-2 and -9 signaling pathways. Oncology reports. 2011;26: 177–184.
  • 17. Liao CL, Lai KC, Huang AC, Yang JS, Lin JJ, Wu SH et al. Gallic acid inhibits migration and invasion in human osteosarcoma U-2 OS cells through suppressing the matrix metalloproteinase-2/-9, protein kinase B (PKB) and PKC signaling pathways. Food and chemical toxicology. 2012;50: 1734–1740.
  • 18. Chandramohan Reddy T, Bharat Reddy D, Aparna A, Arunasree KM, Gupta G, Achari C et al. Anti-leukemic effects of gallic acid on human leukemia K562 cells: downregulation of COX-2, inhibition of BCR/ABL kinase and NF-κB inactivation. Toxicology in vitro:an international journal published in association with BIBRA. 2012;26: 396–405.
  • 19. Kayl AE, Meyers CA. Side-effects of chemotherapy and quality of life in ovarian and breast cancer patients. Current opinion in obstetrics & gynecology. 2006;18:24–28.
  • 20. Devi YP, Uma A, Narasu ML, Kalyanı C. Anticancer activity of gallic acid on cancer cell Lines, HCT15 and MDA MB 231. Int. J. Res. Appl. Nat. Soc. Sci. 2014; 2:269–272.
  • 21. Locatelli C, Flippin-Monterio FB, Creczynski-Pasa TB. Alkyl esters of gallic acid as anticancer agents: A review. European Journal of Medicinal Chemistry. 2013;60:233-239.
  • 22. You BR, Kim SZ, Kim SH, Park WH. Gallic acid-induced lung cancer cell death is accompained by ROS increase and glutathione depletion. Molecular and Cellular Biochemistry. 2011;357:295-303.
  • 23. Pistritto G, Trisciuoglio D, Ceci C, Garufi A, D'Orazi G. Apoptosis as anticancer mechanism: Function and dysfunction of its modulators and targeted therapeutic strategies. Aging. Impact Journals LLC. 2016;8: 603– 619.
  • 24. Saraste A, Pulkki K. Morphologic and biochemical hallmarks of apoptosis. Cardiovascular Research. 2000:45(3): 528–537.
  • 25. Lin S, Qin HZ, Li ZY, Zhu H, Long L, Xu LB. Gallic acid suppresses the progression of triple-negative breast cancer HCC1806 cells via modulating PI3K/AKT/EGFR and MAPK signaling pathways. Front Pharmacol. 2022;29:1049117.
  • 26. Rezaei-Seresht H, Cheshomi H, Falanji F, Movahedi-Motlagh F, Hashemian M, Mireskandari E. Cytotoxic activity of caffeic acid and gallic acid against MCF-7 human breast cancer cells: An in silico and in vitro study. Avicenna J Phytomed. 2019;9:574-586.
  • 27. Cathcart J, Pulkoski-Gross A, Cao J. Targeting matrix metalloproteinases in cancer: bringing new life to old ideas. Genes Dis. 2015; 2: 26-34.
  • 28. Yousef EM, Tahir MR, St-Pierre Y, Gaboury LA. MMP-9 expression varies according to molecular subtypes of breast cancer. BMC Cancer. 2014; 14:609.
  • 29. Liu KC, Huang AC, Wu PP, Lin HY, Chueh FS, Yang JS. Gallic acid suppresses the migration and invasion of PC-3 human prostate cancer cells via inhibition of matrix metalloproteinase-2 and -9 signaling pathways. Oncol Rep. 2011; 26:177-184.
  • 30. Shuvojit M, Sen T, Dutta A, Banerji A, Chinmoy G, Das S et al. Phosphatidylinositol 3-kinase and NF-κB involved in epidermal growth factor-induced matrix metalloproteinase-9 expression. J Cancer Mol. 2008;4: 55-60. 31. Chen YJ, Lin KN, Jhang LM, Huang CH, Lee YC, Chang LS. Gallic acid abolishes the EGFR/Src/Akt/Erk-mediated expression of matrix metalloproteinase-9 in MCF-7 breast cancer cells. Chem Biol Interact. 2016; 252:131-140.
  • 32. Reichmann E. The biological role of the Fas/FasL system during tumor formation and progression. Semin Cancer Biol. 2002;12:309–315.
  • 33. Nakshatri H, Bhat-Nakshatri P, Martin DA et al. Constitutive activation of NF-kappaB during progression of breast cancer to hormone-independent growth. Mol Cell Biol. 1997;17(7):3629-3639.
  • 34. A. Richmond. Nf-kappa B, Chemokine gene transcription and tumour growth, Nat. Rev. Immunol. 2002;2:664-74.
  • 35. Propper DJ, Balkwill FR. Harnessing cytokines and chemokines for cancer therapy. Nat Rev Clin Oncol. 2022;19:237-253.
  • 36. Chen YJ, Lee YC, Huang CH, Chang LS. Gallic acid-capped gold nanoparticles inhibit EGF-induced MMP-9 expression through suppression of p300 stabilization and NFκB/c-Jun activation in breast cancer MDA-MB-231 cells. Toxicol Appl Pharmacol. 2016;1;3:98-107.
  • 37. Nam W, Tak J, Ryu JK et al. Effects of artemisinin and its derivatives on growth inhibition and apoptosis of oral cancer cells. Head Neck. 2007; 29(4): 335-340.
  • 38. Nam W, Tak J, Ryu JK, Jung M, Yook JI, Kim HJ et al.Flavonoids uptake and their effect on cell cycle of human colon adenocarcinoma cells (Caco2). Br J Cancer. 2002; 86: 1645-1651.
  • 39. Rezaei-Seresht H, Cheshomi H, Falanji F, Movahedi-Motlagh F, Hashemian M, Mireskandari E. Cytotoxic activity of caffeic acid and gallic acid against MCF-7 human breast cancer cells: An in silico and in vitro study. Avicenna J Phytomed. 2019;9:574-586.
  • 40. Seifaddinipour M, Farghadani R, Namvar F, Bin Mohamad J, Muhamad NA. In vitro and in vivo anticancer activity of the most cytotoxic fraction of pistachio hull extract in breast cancer. Molecules. 2020;25:1776.
  • 41. Dorniani D, Kura AU, Hussein-Al-Ali SH, Bin Hussein MZ, Fakurazi S, Shaari AH. In vitro sustained release study of gallic acid coated with magnetite-PEG and magnetite-PVA for drug delivery system. ScientificWorldJournal.2014;2014:416354.
  • 42. Rosman R, Saifullah B, Maniam S, Dorniani D, Hussein MZ, Fakurazi S. Improved anticancer effect of magnetite nanocomposite formulation of gallıc acid (Fe₃O₄-PEG-GA) against lung, breast and colon cancer cells. Nanomaterials (Basel). 2018;8:83.
  • 43. Kubatka P, Kello M, Kajo K, Samec M, Liskova A, Jasek K. Rhus coriaria L. (Sumac) demonstrates oncostatic activity in the therapeutic and preventive model of breast carcinoma. Int J Mol Sci. 2020;22:183.
  • 44. Khorsandi K, Kianmehr Z, Hosseinmardi Z, Hosseinzadeh R. Anti-cancer effect of gallic acid in presence of low level laser irradiation: ROS production and induction of apoptosis and ferroptosis. Cancer Cell Int. 2020;13;20:18.
  • 45. El-Ghareb WI, Swidan MM, Ibrahim IT, Abd El-Bary A, Tadros MI, Sakr TM. 99mTc-doxorubicin-loaded gallic acid-gold nanoparticles (99mTc-DOX-loaded GA-Au NPs) as a multifunctional theranostic agent. Int J Pharm. 2020; 30;119514.
  • 46. Park EJ, Lee D, Baek SE, Kim KH, Kang KS, Jang TS. Cytotoxic effect of sanguiin H-6 on MCF-7 and MDA-MB-231 human breast carcinoma cells. Bioorg Med Chem Lett. 2017;15;27:4389-4392.
  • 47. Banerjee N, Kim H, Krenek K, Talcott ST, Mertens-Talcott SU. Mango polyphenolics suppressed tumor growth in breast cancer xenografts in mice: Role of the PI3K/AKT pathway and associated microRNAs. Nutrition research. 2015:35,744-751.
  • 48. Moga MA, Dimienescu OG, Bălan A, Dima L, Toma SI, Bîgiu NF et al. Pharmacological and Therapeutic Properties of Punica granatum Phytochemicals: Possible Roles in Breast Cancer. Molecules. 2021;26:1054.
  • 49. Hanieh H, Ibrahim HM, Mohammed M, Alwassil OI, Abukhalil MH, Farhan M. Activation of aryl hydrocarbon receptor signaling by gallic acid suppresses progression of human breast cancer in vitro and in vivo. Phytomedicine. 2021;19:153817.
  • 50. Kim H, Banerjee N, Barnes RC, Pfent CM, Talcott ST, Dashwood RH et al. Mango polyphenolics reduce inflammation in intestinal colitis-involvement of the miR-126/PI3K/AKT/mTOR axis in vitro and in vivo. Mol Carcinog. 2017 ;56:197-207.
  • 51. Wang B, Guo C, Liu Y, Han G, Li Y, Zhang Y et al. Novel nano-pomegranates based on astragalus polysaccharides for targeting ERα-positive breast cancer and multidrug resistance. Drug Deliv. 2020;27:607-621.
  • 52. Mukherjee S, Gupta P, Ghosh S, Choudhury S, Das A, Ahir M et al. Chattopadhyay S. Targeted tumor killing by pomegranate polyphenols: Pro-oxidant role of a classical antioxidant. J Nutr Biochem. 2023;115:109283.
  • 53. Khorsandi K, Kianmehr Z, Hosseinmardi Z, Hosseinzadeh R. Anti-cancer effect of gallic acid in presence of low level laser irradiation: ROS production and induction of apoptosis and ferroptosis. Cancer Cell Int. 2020;20(13):18.
  • 54. Arbuck SG, Dorr A, Friedman MA. Paclitaxel (Taxol) in breast cancer. Hematol Oncol Clin North Am. 1994;8:121-40.
  • 55. Aborehab NM, Elnagar MR, Waly NE. Gallic acid potentiates the apoptotic effect of paclitaxel and carboplatin via overexpression of Bax and P53 on the MCF-7 human breast cancer cell line. J Biochem Mol Toxicol. 2021;35:22638.
  • 56. Moghtaderi H, Sepehri H, Delphi L, Attari F. Gallic acid and curcumin induce cytotoxicity and apoptosis in human breast cancer cell MDA-MB-231. Bioimpacts. 2018;8:185-194.
  • 57. Hanieh H, Ibrahim HM, Mohammed M, Alwassil OI, Abukhalil MH, Farhan M. Activation of aryl hydrocarbon receptor signaling by gallic acid suppresses progression of human breast cancer in vitro and in vivo. Phytomedicine. 2021;19:153817.
  • 58. Armutcu F, Akyol S, Ustunsoy S, Turan FF. Therapeutic potential of caffeic acid phenethyl ester and its anti-inflammatory and immunomodulatory effects (Review). Exp Ther Med. 2015 May;9:1582-1588.
  • 59. Rezaei-Seresht H, Cheshomi H, Falanji F, Movahedi-Motlagh F, Hashemian M, Mireskandari E.Cytotoxic activity of caffeic acid and gallic acid against MCF-7 human breast cancer cells: An in silico and in vitro study. Avicenna J Phytomed. 2019;9:574-586.
  • 60. Sales MS, Roy A, Antony L, Banu SK, Jeyaraman S, Manikkam R. Octyl gallate and gallic acid isolated from Terminalia bellarica regulates normal cell cycle in human breast cancer cell lines. Biomed Pharmacother. 2018 ;103:1577-1584.
  • 61. Samani K, Farrokhi E, Tabatabaee A, Jalilian N, Cafer M. Synergistic Effects of Lauryl Gallate and Tamoxifen on Human Breast Cancer Cell. Iran J Public Health. 2020;49: 1324–1329

A Potential Antineoplastic Agent in Breast Cancer Treatment: Gallic Acid

Yıl 2023, Cilt: 45 Sayı: 5, 834 - 843, 27.09.2023
https://doi.org/10.20515/otd.1255349

Öz

Breast cancer is the leading cause of cancer-related deaths in women worldwide. The incidence of breast cancer is increasing day by day. Since chemotherapeutic drugs and others used in cancer treatment are active in target cells and healthy cells, researchers are trying to develop new agents for breast cancer treatment. One of these agents is gallic acid, a natural polyphenolic molecule found in many promising fruits and vegetables. In studies on gallic acid, it has been observed that gallic acid has apoptosis-inducing, cell cycle arresting, inhibitory effects on various signaling pathways involved in cancer formation, inhibitory effects on angiogenesis or metastasis in many cancer cell lines such as A549 (lung cancer cell line) EBC-1, HTB 35 (cervical cancer cell line) K-562 (myeloid leukemia cell line) MCF-7, MDA-MB-231 (breast cancer cell line). Studies show that gallic acid has the potential to be a universal cancer treatment agent and its effects on many diseases, especially cancer, continue to be investigated. In this review, we aimed to review the effects of gallic acid on breast cancer and its anti-cancer mechanism.

Kaynakça

  • 1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022 ;72:7-33.
  • 2. Barrios C, Reinert T, Werutsky G. Global Breast Cancer Research: Moving Forward. American Society of Clinical Oncology educational book. American Society of Clinical Oncology. Annual Meeting. 2018; 38:441–450.
  • 3. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71:209-249.
  • 4. Hättenschwiler S, Vitousek PM. The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends in ecology & evolution, 2000;15:238–243.
  • 5. Fernandes FH, Salgado HR. Gallic Acid: Review of the Methods of Determination and Quantification. Crit Rev Anal Chem. 2016; 46:257-265.
  • 6. Kroes BH, van den Berg AJ, Quarles van Ufford HC, van Dijk H, Labadie RP. Anti-inflammatory activity of gallic acid. Planta Med. 1992; 58:499-504.
  • 7. Yen GC, Duh PD, Tsai HL. Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid. Food Chemistry. 2002; 79:307-313.
  • 8. Ohno Y, Fukuda K, Takemura G. Induction of apoptosis by gallic acid in lung cancer cells. Anti-cancer drugs. 1999; 10: 845–851.
  • 9. Zhang T, Ma L, Wu P. Gallic acid has anticancer activity and enhances the anticancer effects of cisplatin in non small cell lung cancer A549 cells via the JAK/STAT3 signaling pathway. Oncology reports. 2019;41; 1779–1788.
  • 10. Jang A, Srinivasan P, Lee N. Comparison of hypolipidemic activity of synthetic gallic acid-linoleic acid ester with mixture of gallic acid and linoleic acid, gallic acid, and linoleic acid on high-fat diet induced obesity in C57BL/6 Cr Slc mice. Chemico-biological interactions. 2008; 174;109–117.
  • 11. Lee BH, Lee CC, Cheng YH. Graptopetalum paraguayense and resveratrol ameliorates carboxymethyllysine (CML)-induced pancreas dysfunction and hyperglycemia. Food and chemical toxicology. 2013;62:492–498.
  • 12. Umadevi S, Gopi V, Elangovan V. Regulatory mechanism of gallic acid against advanced glycation end products induced cardiac remodeling in experimental rats. Chemico-biological interactions. 2014;208: 28–36.
  • 13. Hussein RM, Anwar MM, Farghaly HS. Gallic acid and ferulic acid protect the liver from thioacetamide-induced fibrosis in rats via differential expression of miR-21, miR-30 and miR-200 and impact on TGF-β1/Smad3 signaling. Chemico-biological interactions. 2020;324:109098.
  • 14. Zhao B, Hu M. Gallic acid reduces cell viability, proliferation, invasion and angiogenesis in human cervical cancer cells. Oncology letters. 2013;6: 1749–1755.
  • 15. Locatelli C, Leal PC, Yunes RA, Nunes RJ, Creczynski-Pasa TB. Gallic acid ester derivatives induce apoptosis and cell adhesion inhibition in melanoma cells: The relationship between free radical generation, glutathione depletion and cell death. Chemico-biological interactions. 2009;181:175–184.
  • 16. Liu KC, Huang AC, Wu PP, Lin HY, Chueh FS, Yang JS et al. Gallic acid suppresses the migration and invasion of PC-3 human prostate cancer cells via inhibition of matrix metalloproteinase-2 and -9 signaling pathways. Oncology reports. 2011;26: 177–184.
  • 17. Liao CL, Lai KC, Huang AC, Yang JS, Lin JJ, Wu SH et al. Gallic acid inhibits migration and invasion in human osteosarcoma U-2 OS cells through suppressing the matrix metalloproteinase-2/-9, protein kinase B (PKB) and PKC signaling pathways. Food and chemical toxicology. 2012;50: 1734–1740.
  • 18. Chandramohan Reddy T, Bharat Reddy D, Aparna A, Arunasree KM, Gupta G, Achari C et al. Anti-leukemic effects of gallic acid on human leukemia K562 cells: downregulation of COX-2, inhibition of BCR/ABL kinase and NF-κB inactivation. Toxicology in vitro:an international journal published in association with BIBRA. 2012;26: 396–405.
  • 19. Kayl AE, Meyers CA. Side-effects of chemotherapy and quality of life in ovarian and breast cancer patients. Current opinion in obstetrics & gynecology. 2006;18:24–28.
  • 20. Devi YP, Uma A, Narasu ML, Kalyanı C. Anticancer activity of gallic acid on cancer cell Lines, HCT15 and MDA MB 231. Int. J. Res. Appl. Nat. Soc. Sci. 2014; 2:269–272.
  • 21. Locatelli C, Flippin-Monterio FB, Creczynski-Pasa TB. Alkyl esters of gallic acid as anticancer agents: A review. European Journal of Medicinal Chemistry. 2013;60:233-239.
  • 22. You BR, Kim SZ, Kim SH, Park WH. Gallic acid-induced lung cancer cell death is accompained by ROS increase and glutathione depletion. Molecular and Cellular Biochemistry. 2011;357:295-303.
  • 23. Pistritto G, Trisciuoglio D, Ceci C, Garufi A, D'Orazi G. Apoptosis as anticancer mechanism: Function and dysfunction of its modulators and targeted therapeutic strategies. Aging. Impact Journals LLC. 2016;8: 603– 619.
  • 24. Saraste A, Pulkki K. Morphologic and biochemical hallmarks of apoptosis. Cardiovascular Research. 2000:45(3): 528–537.
  • 25. Lin S, Qin HZ, Li ZY, Zhu H, Long L, Xu LB. Gallic acid suppresses the progression of triple-negative breast cancer HCC1806 cells via modulating PI3K/AKT/EGFR and MAPK signaling pathways. Front Pharmacol. 2022;29:1049117.
  • 26. Rezaei-Seresht H, Cheshomi H, Falanji F, Movahedi-Motlagh F, Hashemian M, Mireskandari E. Cytotoxic activity of caffeic acid and gallic acid against MCF-7 human breast cancer cells: An in silico and in vitro study. Avicenna J Phytomed. 2019;9:574-586.
  • 27. Cathcart J, Pulkoski-Gross A, Cao J. Targeting matrix metalloproteinases in cancer: bringing new life to old ideas. Genes Dis. 2015; 2: 26-34.
  • 28. Yousef EM, Tahir MR, St-Pierre Y, Gaboury LA. MMP-9 expression varies according to molecular subtypes of breast cancer. BMC Cancer. 2014; 14:609.
  • 29. Liu KC, Huang AC, Wu PP, Lin HY, Chueh FS, Yang JS. Gallic acid suppresses the migration and invasion of PC-3 human prostate cancer cells via inhibition of matrix metalloproteinase-2 and -9 signaling pathways. Oncol Rep. 2011; 26:177-184.
  • 30. Shuvojit M, Sen T, Dutta A, Banerji A, Chinmoy G, Das S et al. Phosphatidylinositol 3-kinase and NF-κB involved in epidermal growth factor-induced matrix metalloproteinase-9 expression. J Cancer Mol. 2008;4: 55-60. 31. Chen YJ, Lin KN, Jhang LM, Huang CH, Lee YC, Chang LS. Gallic acid abolishes the EGFR/Src/Akt/Erk-mediated expression of matrix metalloproteinase-9 in MCF-7 breast cancer cells. Chem Biol Interact. 2016; 252:131-140.
  • 32. Reichmann E. The biological role of the Fas/FasL system during tumor formation and progression. Semin Cancer Biol. 2002;12:309–315.
  • 33. Nakshatri H, Bhat-Nakshatri P, Martin DA et al. Constitutive activation of NF-kappaB during progression of breast cancer to hormone-independent growth. Mol Cell Biol. 1997;17(7):3629-3639.
  • 34. A. Richmond. Nf-kappa B, Chemokine gene transcription and tumour growth, Nat. Rev. Immunol. 2002;2:664-74.
  • 35. Propper DJ, Balkwill FR. Harnessing cytokines and chemokines for cancer therapy. Nat Rev Clin Oncol. 2022;19:237-253.
  • 36. Chen YJ, Lee YC, Huang CH, Chang LS. Gallic acid-capped gold nanoparticles inhibit EGF-induced MMP-9 expression through suppression of p300 stabilization and NFκB/c-Jun activation in breast cancer MDA-MB-231 cells. Toxicol Appl Pharmacol. 2016;1;3:98-107.
  • 37. Nam W, Tak J, Ryu JK et al. Effects of artemisinin and its derivatives on growth inhibition and apoptosis of oral cancer cells. Head Neck. 2007; 29(4): 335-340.
  • 38. Nam W, Tak J, Ryu JK, Jung M, Yook JI, Kim HJ et al.Flavonoids uptake and their effect on cell cycle of human colon adenocarcinoma cells (Caco2). Br J Cancer. 2002; 86: 1645-1651.
  • 39. Rezaei-Seresht H, Cheshomi H, Falanji F, Movahedi-Motlagh F, Hashemian M, Mireskandari E. Cytotoxic activity of caffeic acid and gallic acid against MCF-7 human breast cancer cells: An in silico and in vitro study. Avicenna J Phytomed. 2019;9:574-586.
  • 40. Seifaddinipour M, Farghadani R, Namvar F, Bin Mohamad J, Muhamad NA. In vitro and in vivo anticancer activity of the most cytotoxic fraction of pistachio hull extract in breast cancer. Molecules. 2020;25:1776.
  • 41. Dorniani D, Kura AU, Hussein-Al-Ali SH, Bin Hussein MZ, Fakurazi S, Shaari AH. In vitro sustained release study of gallic acid coated with magnetite-PEG and magnetite-PVA for drug delivery system. ScientificWorldJournal.2014;2014:416354.
  • 42. Rosman R, Saifullah B, Maniam S, Dorniani D, Hussein MZ, Fakurazi S. Improved anticancer effect of magnetite nanocomposite formulation of gallıc acid (Fe₃O₄-PEG-GA) against lung, breast and colon cancer cells. Nanomaterials (Basel). 2018;8:83.
  • 43. Kubatka P, Kello M, Kajo K, Samec M, Liskova A, Jasek K. Rhus coriaria L. (Sumac) demonstrates oncostatic activity in the therapeutic and preventive model of breast carcinoma. Int J Mol Sci. 2020;22:183.
  • 44. Khorsandi K, Kianmehr Z, Hosseinmardi Z, Hosseinzadeh R. Anti-cancer effect of gallic acid in presence of low level laser irradiation: ROS production and induction of apoptosis and ferroptosis. Cancer Cell Int. 2020;13;20:18.
  • 45. El-Ghareb WI, Swidan MM, Ibrahim IT, Abd El-Bary A, Tadros MI, Sakr TM. 99mTc-doxorubicin-loaded gallic acid-gold nanoparticles (99mTc-DOX-loaded GA-Au NPs) as a multifunctional theranostic agent. Int J Pharm. 2020; 30;119514.
  • 46. Park EJ, Lee D, Baek SE, Kim KH, Kang KS, Jang TS. Cytotoxic effect of sanguiin H-6 on MCF-7 and MDA-MB-231 human breast carcinoma cells. Bioorg Med Chem Lett. 2017;15;27:4389-4392.
  • 47. Banerjee N, Kim H, Krenek K, Talcott ST, Mertens-Talcott SU. Mango polyphenolics suppressed tumor growth in breast cancer xenografts in mice: Role of the PI3K/AKT pathway and associated microRNAs. Nutrition research. 2015:35,744-751.
  • 48. Moga MA, Dimienescu OG, Bălan A, Dima L, Toma SI, Bîgiu NF et al. Pharmacological and Therapeutic Properties of Punica granatum Phytochemicals: Possible Roles in Breast Cancer. Molecules. 2021;26:1054.
  • 49. Hanieh H, Ibrahim HM, Mohammed M, Alwassil OI, Abukhalil MH, Farhan M. Activation of aryl hydrocarbon receptor signaling by gallic acid suppresses progression of human breast cancer in vitro and in vivo. Phytomedicine. 2021;19:153817.
  • 50. Kim H, Banerjee N, Barnes RC, Pfent CM, Talcott ST, Dashwood RH et al. Mango polyphenolics reduce inflammation in intestinal colitis-involvement of the miR-126/PI3K/AKT/mTOR axis in vitro and in vivo. Mol Carcinog. 2017 ;56:197-207.
  • 51. Wang B, Guo C, Liu Y, Han G, Li Y, Zhang Y et al. Novel nano-pomegranates based on astragalus polysaccharides for targeting ERα-positive breast cancer and multidrug resistance. Drug Deliv. 2020;27:607-621.
  • 52. Mukherjee S, Gupta P, Ghosh S, Choudhury S, Das A, Ahir M et al. Chattopadhyay S. Targeted tumor killing by pomegranate polyphenols: Pro-oxidant role of a classical antioxidant. J Nutr Biochem. 2023;115:109283.
  • 53. Khorsandi K, Kianmehr Z, Hosseinmardi Z, Hosseinzadeh R. Anti-cancer effect of gallic acid in presence of low level laser irradiation: ROS production and induction of apoptosis and ferroptosis. Cancer Cell Int. 2020;20(13):18.
  • 54. Arbuck SG, Dorr A, Friedman MA. Paclitaxel (Taxol) in breast cancer. Hematol Oncol Clin North Am. 1994;8:121-40.
  • 55. Aborehab NM, Elnagar MR, Waly NE. Gallic acid potentiates the apoptotic effect of paclitaxel and carboplatin via overexpression of Bax and P53 on the MCF-7 human breast cancer cell line. J Biochem Mol Toxicol. 2021;35:22638.
  • 56. Moghtaderi H, Sepehri H, Delphi L, Attari F. Gallic acid and curcumin induce cytotoxicity and apoptosis in human breast cancer cell MDA-MB-231. Bioimpacts. 2018;8:185-194.
  • 57. Hanieh H, Ibrahim HM, Mohammed M, Alwassil OI, Abukhalil MH, Farhan M. Activation of aryl hydrocarbon receptor signaling by gallic acid suppresses progression of human breast cancer in vitro and in vivo. Phytomedicine. 2021;19:153817.
  • 58. Armutcu F, Akyol S, Ustunsoy S, Turan FF. Therapeutic potential of caffeic acid phenethyl ester and its anti-inflammatory and immunomodulatory effects (Review). Exp Ther Med. 2015 May;9:1582-1588.
  • 59. Rezaei-Seresht H, Cheshomi H, Falanji F, Movahedi-Motlagh F, Hashemian M, Mireskandari E.Cytotoxic activity of caffeic acid and gallic acid against MCF-7 human breast cancer cells: An in silico and in vitro study. Avicenna J Phytomed. 2019;9:574-586.
  • 60. Sales MS, Roy A, Antony L, Banu SK, Jeyaraman S, Manikkam R. Octyl gallate and gallic acid isolated from Terminalia bellarica regulates normal cell cycle in human breast cancer cell lines. Biomed Pharmacother. 2018 ;103:1577-1584.
  • 61. Samani K, Farrokhi E, Tabatabaee A, Jalilian N, Cafer M. Synergistic Effects of Lauryl Gallate and Tamoxifen on Human Breast Cancer Cell. Iran J Public Health. 2020;49: 1324–1329
Toplam 60 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Klinik Tıp Bilimleri (Diğer), Sağlık Kurumları Yönetimi
Bölüm DERLEMELER / REVIEWS
Yazarlar

Hacer Kaya Çakır 0000-0003-2490-9473

Ali Nail Bayrakdar 0009-0008-6199-1289

Enver Sarıoğlu 0009-0005-8489-667X

Safiye Öztürk 0009-0007-8451-9828

Şeyda Güngördü 0000-0003-3977-6327

Kezban Sevde Kocabaş 0009-0003-8380-1005

Onur Eroğlu 0000-0002-3451-8540

Yayımlanma Tarihi 27 Eylül 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 45 Sayı: 5

Kaynak Göster

Vancouver Kaya Çakır H, Bayrakdar AN, Sarıoğlu E, Öztürk S, Güngördü Ş, Kocabaş KS, Eroğlu O. Meme Kanseri Tedavisinde Potansiyel Bir Antineoplastik Ajan: Gallik Asit. Osmangazi Tıp Dergisi. 2023;45(5):834-43.


13299        13308       13306       13305    13307  1330126978