Araştırma Makalesi
BibTex RIS Kaynak Göster

The Role of Machine Learning Algorithms in Sepsis Diagnosis: A Retrospective Overview using Bibliometric Analysis

Yıl 2024, Cilt: 46 Sayı: 6, 878 - 888, 07.11.2024
https://doi.org/10.20515/otd.1532158

Öz

Machine learning has great potential to extract meaningful information from large data sets and build powerful predictive models for disease diagnosis. The aim of this study is to conduct a comprehensive review of the role of machine learning algorithms in sepsis diagnosis. The research was conducted using the bibliometric analysis method. Within the scope of the research, an advanced search query was created in the Web of Science (WoS) Core Collection database and WoS index Science Citation Index Expanded (SCI-Exp), publication type article, publication language English, open access publications published between 2000 and 2024 were included. In the WoS database, 277 publications were accessed using an advanced search query created with the relevant keywords on 05.07.2024. After excluding 87 non-English publications that did not include sepsis and machine learning, 190 publications were analyzed. In the treemap obtained in bibliometric analysis, the first five keywords include sepsis, machine learning, intensive care units, mortality, and artificial intelligence, respectively. China led in publication count, whereas the USA boasted the most cited publications. "Frontiers in Medicine" featured the highest number of articles, while "Critical Care Medicine" contained the most cited ones. According to the analysis of articles published, the use of artificial intelligence and machine learning in sepsis diagnosis has significant potential, especially in intensive care units. These technologies show promise in early diagnosis, disease classification, and prognosis prediction. Expanding research collaborations and a growing publication focus on key themes suggest continued growth in this research area.

Etik Beyan

Since this study was conducted on electronic bibliometric data obtained from the WoS database and did not include any patient data, an ethics committee or institutional review approval was not required

Destekleyen Kurum

Izmir Katip Celebi University Scientific Research Projects Coordination Unit

Proje Numarası

2024-TYL-SABE-0011

Teşekkür

This study has been supported by the grant of Izmir Katip Celebi University Scientific Research Projects Coordination Unit, Project No: 2024-TYL-SABE-0011. A brief excerpt from this study was presented as an oral presentation at the 1st International Data Analytics Congress on July 30, 2024, in Izmir, Turkey.

Kaynakça

  • 1. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). Jama, 2016;315(8), 801-81.
  • 2. Seymour CW, Liu V, Iwashyna TJ, Brunkhorst FM, Rea TD, Scherag A, et al. Assessment of clinical criteria for sepsis. Jama. 2016;315(8), 762-74.
  • 3. Rajkomar A, Hardt M, Howell MD, Corrado G, Chin MH. Ensuring fairness in machine learning to advance health equity. Annals of internal medicine, 2018;169(12), 866-872.
  • 4. Nemati S, Holder A, Razmi F, Stanley MD, Clifford GD, Buchman TG. An Interpretable Machine Learning Model for Accurate Prediction of Sepsis in the ICU. Crit Care Med. 2018;46(4):547–53.
  • 5. Scicluna BP, van Vught LA, Zwinderman AH, Wiewel MA, Davenport EE, Burnham KL, et al. Classification of patients with sepsis according to blood genomic endotype: a prospective cohort study. Lancet Respir Med. 2017;5(10):816–26.
  • 6. Desautels T, Calvert J, Hoffman J, Jay M, Kerem Y, Shieh L, et al. Prediction of sepsis in the intensive care unit with minimal electronic health record data: a machine learning approach. JMIR medical informatics, 2016;4(3), e5909.
  • 7. Aria, M. & Cuccurullo, C. (2017) bibliometrix: An R-tool for comprehensive science mapping analysis, Journal of Informetrics, Elsevier, 11(4), pp 959-975.
  • 8. Van Eck, N.J., & Waltman, L. (2023). VOSviewer Manual (Version 1.6.20). Available: https://www.vosviewer.com.
  • 9. Mao Q, Jay M, Hoffman JL, Calvert J, Barton C, Shimabukuro D, et al. Multicentre validation of a sepsis prediction algorithm using only vital sign data in the emergency department, general ward and ICU. BMJ Open. 2018 Jan 1;8(1).
  • 10. Bihorac A, Ozrazgat-Baslanti T, Ebadi A, Motaei A, Madkour M, Pardalos PM, et al. MySurgeryRisk: Development and Validation of a Machine-learning Risk Algorithm for Major Complications and Death After Surgery. Ann Surg. 2019 Apr 1;269(4):652–62.
  • 11. Hou N, Li M, He L, Xie B, Wang L, Zhang R, et al. Predicting 30-days mortality for MIMIC-III patients with sepsis-3: a machine learning approach using XGboost. J Transl Med. 2020 Dec 1;18(1).
  • 12. Giannini HM, Ginestra JC, Chivers C, Draugelis M, Hanish A, Schweickert WD, et al. A Machine Learning Algorithm to Predict Severe Sepsis and Septic Shock: Development, Implementation, and Impact on Clinical Practice. Crit Care Med. 2019 Nov 1;47(11):1485–92.
  • 13. Sutherland A, Thomas M, Brandon RA, Brandon RB, Lipman J, Tang B, et al. Development and validation of a novel molecular biomarker diagnostic test for the early detection of sepsis. Crit Care. 2011 Jun 20;15(3).
  • 14. Mani S, Ozdas A, Aliferis C, Varol HA, Chen Q, Carnevale R, et al. Medical decision support using machine learning for early detection of late-onset neonatal sepsis. Journal of the American Medical Informatics Association. 2014;21(2):326–36.
  • 15. Kaji DA, Zech JR, Kim JS, Cho SK, Dangayach NS, Costa AB, et al. An attention based deep learning model of clinical events in the intensive care unit. PLoS One. 2019 Feb 1;14(2).
  • 16. Wang X, Wang Z, Weng J, Wen C, Chen H, Wang X. A new effective machine learning framework for sepsis diagnosis. IEEE access, 2018; 6, 48300-310.
  • 17. Cheng YW, Kuo PC, Chen SH, Kuo YT, Liu TL, Chan WS, et al. Early prediction of mortality at sepsis diagnosis time in critically ill patients by using interpretable machine learning. Journal of Clinical Monitoring and Computing, 2024;38(2), 271-279.
  • 18. Giacobbe DR, Signori A, Del Puente F, Mora S, Carmisciano L, Briano F, et al. Early detection of sepsis with machine learning techniques: a brief clinical perspective. Frontiers in medicine, 2021;8, 617486.
  • 19. Arriaga-Pizano LA, Gonzalez-Olvera MA, Ferat-Osorio EA, Escobar J, Hernandez-Perez AL, Revilla-Monsalve C,et al. Accurate diagnosis of sepsis using a neural network: Pilot study using routine clinical variables. Computer Methods and Programs in Biomedicine, 2021; 210, 106366.
  • 20. Singer, M., Deutschman, C.S., Seymour, C.W., et al. (2016). The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA, 315(8), 801-810.
  • 21. Seymour, C.W., Liu, V., Iwashyna, T.J., et al. (2016). Assessment of clinical criteria for sepsis. JAMA, 315(8), 762-774.
  • 22. Wacker, C., Prkno, A., Brunkhorst, F.M., & Schlattmann, P. (2013). Procalcitonin as a diagnostic marker for sepsis: a systematic review and meta-analysis. Lancet Infectious Diseases, 13(5), 426-435.
  • 23. Shapiro, N.I., Howell, M.D., Talmor, D., et al. (2005). Serum lactate as a predictor of mortality in emergency department patients with infection. Annals of Emergency Medicine, 45(5), 524-528.
  • 24. Tang CH, Middleton PM, Savkin AV, Chan GS, Bishop S, Lovell NH. Non-invasive classification of severe sepsis and systemic inflammatory response syndrome using a nonlinear support vector machine: a preliminary study. Physiological measurement, 2010; 31(6), 775.
  • 25. Zhang L, Huang T, Xu F, Li S, Zheng S, Lyu J, Yin, H. Prediction of prognosis in elderly patients with sepsis based on machine learning (random survival forest). BMC emergency medicine, 2022;22(1), 26.
  • 26. Zhuang J, Huang H, Jiang S, Liang J, Liu Y, Yu, X. A generalizable and interpretable model for mortality risk stratification of sepsis patients in intensive care unit. BMC Medical Informatics and Decision Making, 2023; 23(1), 185.

Sepsis Teşhisinde Makine Öğrenmesi Algoritmalarının Rolü: Bibliyometrik Analiz Kullanarak Retrospektif Genel Bakış

Yıl 2024, Cilt: 46 Sayı: 6, 878 - 888, 07.11.2024
https://doi.org/10.20515/otd.1532158

Öz

Makine öğrenmesi, büyük veri setlerinden anlamlı bilgiler çıkarma ve hastalık teşhisi için güçlü tahmin modelleri oluşturma konusunda büyük bir potansiyele sahiptir. Bu çalışmanın amacı, makine öğrenmesi algoritmalarının sepsis teşhisindeki rolüne ilişkin kapsamlı bir incelemesini gerçekleştirmektir. Araştırma bibliyometrik analiz yöntemi ile gerçekleştirilmiştir. Araştırma kapsamında Web of Science (WoS) Core Collection veri tabanında gelişmiş arama sorgusu oluşturularak 2000-2024 yılları arasında yayınlanan WoS dizini Science Citation Index Expanded (SCI-Exp), yayın türü makale, yayın dili ingilizce, açık erişimli yayınlar dahil edildi. WoS veri tabanında 05.07.2024 tarihinde ilgili anahtar kelimelerle oluşturulan gelişmiş arama sorgusu kullanılarak 277 yayına ulaşıldı. Sepsis ve makine öğrenmesini içermeyen, ingilizce olmayan 87 yayın dışlanarak 190 yayının analizi yapılmıştır. Bibliyometrik analiz sonucunda elde edilen kelime haritasında ilk beş anahtar kelime sırasıyla sepsis, makine öğrenmesi, yoğun bakım üniteleri, mortalite ve yapay zekâ yer almaktadır. En çok yayına sahip olan ülke Çin, en çok atıf alan ülke Amerika iken, dergiler arasında en çok makaleye sahip olan “Frontiers in Medicine”, en çok atıf alan yayının olduğu dergi “Critical Care Medicine” oldu. 2000-2024 yılları arasında yayınlanan makalelerin analizine göre, sepsis teşhisinde yapay zekâ ve makine öğrenmesi kullanımı, özellikle yoğun bakım ünitelerinde önemli bir potansiyele sahiptir. Bu teknolojilerin erken teşhis, hastalık sınıflandırması ve prognoz tahmininde etkili bir şekilde kullanılabileceğini ortaya koymaktadır. Araştırma iş birliği ağlarının yoğunlaşması ve belirlenen anahtar kelimeler etrafında yoğunlaşan yayınların artması, bu alandaki araştırma eğilimlerinin gelecekte daha da büyüyeceğini işaret etmektedir.

Etik Beyan

Bu çalışma WoS veritabanından elde edilen elektronik bibliyometrik veriler üzerinde yürütüldüğünden ve herhangi bir hasta verisi içermediğinden etik komite veya kurumsal inceleme onayı gerektirmemektedir.

Destekleyen Kurum

İzmir Kâtip Çelebi Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Proje Numarası

2024-TYL-SABE-0011

Teşekkür

Bu çalışma, İzmir Katip Çelebi Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü Birimi'nin 2024-TYL-SABE-0011 numaralı proje hibe desteğiyle desteklenmiştir. Bu çalışmadan kısa bir kesit, 30 Temmuz 2024'te Türkiye, İzmir'de düzenlenen 1. Uluslararası Veri Analitiği Kongresi'nde sözlü sunum olarak sunulmuştur.

Kaynakça

  • 1. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). Jama, 2016;315(8), 801-81.
  • 2. Seymour CW, Liu V, Iwashyna TJ, Brunkhorst FM, Rea TD, Scherag A, et al. Assessment of clinical criteria for sepsis. Jama. 2016;315(8), 762-74.
  • 3. Rajkomar A, Hardt M, Howell MD, Corrado G, Chin MH. Ensuring fairness in machine learning to advance health equity. Annals of internal medicine, 2018;169(12), 866-872.
  • 4. Nemati S, Holder A, Razmi F, Stanley MD, Clifford GD, Buchman TG. An Interpretable Machine Learning Model for Accurate Prediction of Sepsis in the ICU. Crit Care Med. 2018;46(4):547–53.
  • 5. Scicluna BP, van Vught LA, Zwinderman AH, Wiewel MA, Davenport EE, Burnham KL, et al. Classification of patients with sepsis according to blood genomic endotype: a prospective cohort study. Lancet Respir Med. 2017;5(10):816–26.
  • 6. Desautels T, Calvert J, Hoffman J, Jay M, Kerem Y, Shieh L, et al. Prediction of sepsis in the intensive care unit with minimal electronic health record data: a machine learning approach. JMIR medical informatics, 2016;4(3), e5909.
  • 7. Aria, M. & Cuccurullo, C. (2017) bibliometrix: An R-tool for comprehensive science mapping analysis, Journal of Informetrics, Elsevier, 11(4), pp 959-975.
  • 8. Van Eck, N.J., & Waltman, L. (2023). VOSviewer Manual (Version 1.6.20). Available: https://www.vosviewer.com.
  • 9. Mao Q, Jay M, Hoffman JL, Calvert J, Barton C, Shimabukuro D, et al. Multicentre validation of a sepsis prediction algorithm using only vital sign data in the emergency department, general ward and ICU. BMJ Open. 2018 Jan 1;8(1).
  • 10. Bihorac A, Ozrazgat-Baslanti T, Ebadi A, Motaei A, Madkour M, Pardalos PM, et al. MySurgeryRisk: Development and Validation of a Machine-learning Risk Algorithm for Major Complications and Death After Surgery. Ann Surg. 2019 Apr 1;269(4):652–62.
  • 11. Hou N, Li M, He L, Xie B, Wang L, Zhang R, et al. Predicting 30-days mortality for MIMIC-III patients with sepsis-3: a machine learning approach using XGboost. J Transl Med. 2020 Dec 1;18(1).
  • 12. Giannini HM, Ginestra JC, Chivers C, Draugelis M, Hanish A, Schweickert WD, et al. A Machine Learning Algorithm to Predict Severe Sepsis and Septic Shock: Development, Implementation, and Impact on Clinical Practice. Crit Care Med. 2019 Nov 1;47(11):1485–92.
  • 13. Sutherland A, Thomas M, Brandon RA, Brandon RB, Lipman J, Tang B, et al. Development and validation of a novel molecular biomarker diagnostic test for the early detection of sepsis. Crit Care. 2011 Jun 20;15(3).
  • 14. Mani S, Ozdas A, Aliferis C, Varol HA, Chen Q, Carnevale R, et al. Medical decision support using machine learning for early detection of late-onset neonatal sepsis. Journal of the American Medical Informatics Association. 2014;21(2):326–36.
  • 15. Kaji DA, Zech JR, Kim JS, Cho SK, Dangayach NS, Costa AB, et al. An attention based deep learning model of clinical events in the intensive care unit. PLoS One. 2019 Feb 1;14(2).
  • 16. Wang X, Wang Z, Weng J, Wen C, Chen H, Wang X. A new effective machine learning framework for sepsis diagnosis. IEEE access, 2018; 6, 48300-310.
  • 17. Cheng YW, Kuo PC, Chen SH, Kuo YT, Liu TL, Chan WS, et al. Early prediction of mortality at sepsis diagnosis time in critically ill patients by using interpretable machine learning. Journal of Clinical Monitoring and Computing, 2024;38(2), 271-279.
  • 18. Giacobbe DR, Signori A, Del Puente F, Mora S, Carmisciano L, Briano F, et al. Early detection of sepsis with machine learning techniques: a brief clinical perspective. Frontiers in medicine, 2021;8, 617486.
  • 19. Arriaga-Pizano LA, Gonzalez-Olvera MA, Ferat-Osorio EA, Escobar J, Hernandez-Perez AL, Revilla-Monsalve C,et al. Accurate diagnosis of sepsis using a neural network: Pilot study using routine clinical variables. Computer Methods and Programs in Biomedicine, 2021; 210, 106366.
  • 20. Singer, M., Deutschman, C.S., Seymour, C.W., et al. (2016). The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA, 315(8), 801-810.
  • 21. Seymour, C.W., Liu, V., Iwashyna, T.J., et al. (2016). Assessment of clinical criteria for sepsis. JAMA, 315(8), 762-774.
  • 22. Wacker, C., Prkno, A., Brunkhorst, F.M., & Schlattmann, P. (2013). Procalcitonin as a diagnostic marker for sepsis: a systematic review and meta-analysis. Lancet Infectious Diseases, 13(5), 426-435.
  • 23. Shapiro, N.I., Howell, M.D., Talmor, D., et al. (2005). Serum lactate as a predictor of mortality in emergency department patients with infection. Annals of Emergency Medicine, 45(5), 524-528.
  • 24. Tang CH, Middleton PM, Savkin AV, Chan GS, Bishop S, Lovell NH. Non-invasive classification of severe sepsis and systemic inflammatory response syndrome using a nonlinear support vector machine: a preliminary study. Physiological measurement, 2010; 31(6), 775.
  • 25. Zhang L, Huang T, Xu F, Li S, Zheng S, Lyu J, Yin, H. Prediction of prognosis in elderly patients with sepsis based on machine learning (random survival forest). BMC emergency medicine, 2022;22(1), 26.
  • 26. Zhuang J, Huang H, Jiang S, Liang J, Liu Y, Yu, X. A generalizable and interpretable model for mortality risk stratification of sepsis patients in intensive care unit. BMC Medical Informatics and Decision Making, 2023; 23(1), 185.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Epidemiyoloji (Diğer)
Bölüm ORİJİNAL MAKALELER / ORIGINAL ARTICLES
Yazarlar

Evrim Özmen 0009-0007-7570-743X

Büşra Emir 0000-0003-4694-1319

Proje Numarası 2024-TYL-SABE-0011
Yayımlanma Tarihi 7 Kasım 2024
Gönderilme Tarihi 12 Ağustos 2024
Kabul Tarihi 16 Eylül 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 46 Sayı: 6

Kaynak Göster

Vancouver Özmen E, Emir B. The Role of Machine Learning Algorithms in Sepsis Diagnosis: A Retrospective Overview using Bibliometric Analysis. Osmangazi Tıp Dergisi. 2024;46(6):878-8.


13299        13308       13306       13305    13307  1330126978