Araştırma Makalesi
BibTex RIS Kaynak Göster

Altıgen Bor Nitrür Nanopartiküllerinin Lösemi Hücreleri ve Lösemi Kök Hücreleri Üzerindeki Proliferatif Etkilerinin Değerlendirilmesi

Yıl 2025, Cilt: 47 Sayı: 1, 22 - 31, 17.01.2025
https://doi.org/10.20515/otd.1550401

Öz

Lösemi, kemik iliğini, lenf sistemini, dalağı ve kan oluşturan organları etkileyen ve beyaz kan hücrelerinin aşırı çoğalmasına yol açan kötü huylu bir hastalıktır. Mevcut kanser tedavileri genellikle ilaç direnciyle sınırlıdır ve bu da yeni tedavi stratejilerine olan ihtiyacı vurgulamaktadır. Bor nitrür (BN) nanomalzemeleri de dahil olmak üzere nanopartiküller, mükemmel fiziksel ve kimyasal özellikleri nedeniyle ilaç iletimini ve tedavi edici etkinliği artırmada umut vadetmektedir. Bu çalışma, lösemi tedavisinde potansiyel kullanımlarını araştırmak için hekzagonal bor nitrür nanopartiküllerinin (hBN NP'leri) lösemi hücreleri ve lösemi kök hücreleri üzerindeki sitotoksik etkilerini değerlendirmeyi amaçlamaktadır. hBN NP'leri, X-ışını toz kırınımı (XRD), Taramalı Elektron Mikroskobu (SEM) ve Transmisyon Elektron Mikroskobu (TEM) kullanılarak sentezlendi ve karakterize edildi. Lösemi hücre hatları (HL-60 ve CCRF-CEM) ve CD34+ lösemi kök hücreleri çeşitli hBN NP konsantrasyonlarıyla tedavi edildi. Hücre canlılığı MTS analizleri kullanılarak değerlendirildi ve lösemi yüzey belirteçlerinin ekspresyonunu analiz etmek için akış sitometrisi kullanıldı. Çalışma, hBN NP'lerinin önemli antikanser özellikleri göstermediğini; bunun yerine lösemi hücrelerinde ve kök hücrelerinde hücre çoğalmasını teşvik ettiğini buldu. CCRF-CEM CD34+ hücreleri hBN NP tedavisine direnç gösterdi ve bu da tedavinin terapötik etkinliğini azalttı. Sağlıklı hücrelere karşı sitotoksisitenin olmaması potansiyel seçiciliği düşündürmektedir, ancak lösemi hücreleri üzerindeki çoğaltıcı etkiler hBN NP'lerinin lösemi tedavisi için uygun olmayabileceğini göstermektedir. hBN NP'leri lösemi hücreleri üzerindeki çoğaltıcı etkileri nedeniyle lösemi için terapötik potansiyele sahip değildir. Gelecekteki çalışmalar, lösemi ve diğer kanserlerde direnç mekanizmalarının üstesinden gelebilecek potansiyel sinerjistik stratejileri belirlemek için kombinasyon tedavileri geliştirmeye ve hBN NP'lerinin diğer hücre hatları üzerindeki etkisini araştırmaya odaklanmalıdır.

Kaynakça

  • 1. Shroff GS, Truong MT, Carter BW, Benveniste MF, Kanagal-Shamanna R, Rauch G, et al. Leukemic Involvement in the Thorax. Radiogr Rev Publ Radiol Soc N Am Inc. 2019;39(1):44–61.
  • 2. Saraswati E. Leukemia: AML, CML, ALL and CLL. [cited 2024 Sep 14]; Available from: https://www.academia.edu/23210507/Leukemia_AML_CML_ALL_and_CLL
  • 3. Dadwal A, Baldi A, Kumar Narang R. Nanoparticles as carriers for drug delivery in cancer. Artif Cells Nanomedicine Biotechnol. 2018;46(sup2):295–305.
  • 4. Lacouture M, Sibaud V. Toxic Side Effects of Targeted Therapies and Immunotherapies Affecting the Skin, Oral Mucosa, Hair, and Nails. Am J Clin Dermatol. 2018 Nov;19(Suppl 1):31–9.
  • 5. Khademi R, Mohammadi Z, Khademi R, Saghazadeh A, Rezaei N. Nanotechnology-based diagnostics and therapeutics in acute lymphoblastic leukemia: a systematic review of preclinical studies. Nanoscale Adv. 2023;5(3):571–95.
  • 6. Krishnan V, Rajasekaran AK. Clinical nanomedicine: a solution to the chemotherapy conundrum in pediatric leukemia therapy. Clin Pharmacol Ther. 2014 Feb;95(2):168–78.
  • 7. Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021 Feb;20(2):101–24.
  • 8. Ihsanullah I. Boron nitride-based materials for water purification: Progress and outlook. Chemosphere. 2021 Jan 1;263:127970.
  • 9. Pan D, Su F, Liu H, Ma Y, Das R, Hu Q, et al. The Properties and Preparation Methods of Different Boron Nitride Nanostructures and Applications of Related Nanocomposites. Chem Rec N Y N. 2020 Sep 22;20.
  • 10. Türkez H, Arslan ME, Sönmez E, Açikyildiz M, Tatar A, Geyikoğlu F. Synthesis, characterization and cytotoxicity of boron nitride nanoparticles: emphasis on toxicogenomics. Cytotechnology. 2019 Feb;71(1):351–61.
  • 11. Li X, Zhi C, Hanagata N, Yamaguchi M, Bando Y, Golberg D. Boron nitride nanotubes functionalized with mesoporous silica for intracellular delivery of chemotherapy drugs. Chem Commun. 2013 Jul 23;49(66):7337–9.
  • 12. Sharker SM. Hexagonal Boron Nitrides (White Graphene): A Promising Method for Cancer Drug Delivery. Int J Nanomedicine. 2019 Dec 19;14:9983–93.
  • 13. Ailuno G, Balboni A, Caviglioli G, Lai F, Barbieri F, Dellacasagrande I, et al. Boron Vehiculating Nanosystems for Neutron Capture Therapy in Cancer Treatment. Cells. 2022 Dec 13;11(24):4029.
  • 14. Barth RF, Mi P, Yang W. Boron delivery agents for neutron capture therapy of cancer. Cancer Commun Lond Engl. 2018 Jun 19;38(1):35.
  • 15. Nakamura H, Koganei H, Miyoshi T, Sakurai Y, Ono K, Suzuki M. Antitumor effect of boron nitride nanotubes in combination with thermal neutron irradiation on BNCT. Bioorg Med Chem Lett. 2015 Jan 15;25(2):172–4.
  • 16. Wang W, Lin J, Xing C, Chai R, Abbas S, Song T, et al. Fe3O4 nanoparticle-coated boron nitride nanospheres: Synthesis, magnetic property and biocompatibility study. Ceram Int. 2017 Jun 1;43(8):6371–6.
  • 17. Niskanen J, Zhang I, Xue Y, Golberg D, Maysinger D, Winnik FM. Boron nitride nanotubes as vehicles for intracellular delivery of fluorescent drugs and probes. Nanomed. 2016;11(5):447–63.
  • 18. Weng Q, Wang B, Wang X, Hanagata N, Li X, Liu D, et al. Highly water-soluble, porous, and biocompatible boron nitrides for anticancer drug delivery. ACS Nano. 2014 Jun 24;8(6):6123–30.
  • 19. Zhang H, Feng S, Yan T, Zhi C, Gao XD, Hanagata N. Polyethyleneimine-functionalized boron nitride nanospheres as efficient carriers for enhancing the immunostimulatory effect of CpG oligodeoxynucleotides. Int J Nanomedicine. 2015 Aug 24;10:5343–53.
  • 20. Galanzha EI, Shashkov EV, Spring PM, Suen JY, Zharov VP. In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser. Cancer Res. 2009 Oct 15;69(20):7926–34.
  • 21. Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L, et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature. 2007 Dec;450(7173):1235–9.
  • 22. Kar F, Söğüt I, Hacıoğlu C, Göncü Y, Şenturk H, Şenat A, et al. Hexagonal boron nitride nanoparticles trigger oxidative stress by modulating thiol/disulfide homeostasis. Hum Exp Toxicol. 2021 Sep;40(9):1572–83.
  • 23. Meriç N, Albayrak E, Gülbaş Z, Kocabaş F. MEIS inhibitors reduce the viability of primary leukemia cells and Stem cells by inducing apoptosis. Leuk Lymphoma. 2024 Feb;65(2):187–98.
  • 24. Turan RD, Albayrak E, Uslu M, Siyah P, Alyazici LY, Kalkan BM, et al. Development of Small Molecule MEIS Inhibitors that modulate HSC activity. Sci Rep. 2020 May 14;10(1):7994.
  • 25. Housman G, Byler S, Heerboth S, Lapinska K, Longacre M, Snyder N, et al. Drug Resistance in Cancer: An Overview. Cancers. 2014 Sep 5;6(3):1769–92.
  • 26. Park NH, Cheng W, Lai F, Yang C, Florez de Sessions P, Periaswamy B, et al. Addressing Drug Resistance in Cancer with Macromolecular Chemotherapeutic Agents. J Am Chem Soc. 2018 Mar 28;140(12):4244–52.
  • 27. Chen S, Huang J, Liu T, Zhang F, Zhao C, Jin E, et al. PI3K/Akt signaling pathway mediates the effect of low-dose boron on barrier function, proliferation, and apoptosis in rat intestinal epithelial cells. Sci Rep. 2024 Jan 3;14(1):393.
  • 28. Jin E, Pei Y, Liu T, Ren M, Hu Q, Gu Y, et al. Effects of boron on the proliferation, apoptosis, and immune function of splenic lymphocytes through ERα and ERβ. Food Agric Immunol. 2019 Jan 1;30(1):743–61.
  • 29. Ciftci E, Köse S, Korkusuz P, Timuçin M, Korkusuz F. Boron containing nano hydroxy apatites (B-N-HAp) Stimulate mesenchymal stem cell adhesion, proliferation and differentiation. [cited 2024 Oct 26];631. Available from: https://avesis.akdeniz.edu.tr/yayin/967192dd-d6e4-4fff-a4a9-0676830de93a/boron-containing-nano-hydroxy-apatites-b-n-hap-stimulate-mesenchymal-stem-cell-adhesion-proliferation-and-differentiation
  • 30. Uysal İ, Yılmaz B, Evis Z. Boron doped hydroxapatites in biomedical applications. J Boron. 2020 Dec 29;5(4):199–208.
  • 31. Hakki SS, Bozkurt BS, Hakki EE. Boron regulates mineralized tissue-associated proteins in osteoblasts (MC3T3-E1). J Trace Elem Med Biol Organ Soc Miner Trace Elem GMS. 2010 Oct;24(4):243–50.
  • 32. Capati MLF, Nakazono A, Igawa K, Ookubo K, Yamamoto Y, Yanagiguchi K, et al. Boron Accelerates Cultured Osteoblastic Cell Activity through Calcium Flux. Biol Trace Elem Res. 2016 Dec;174(2):300–8.
  • 33. Chen J, Yang Q, Liu M, Lin M, Wang T, Zhang Z, et al. Remarkable Boron Delivery Of iRGD-Modified Polymeric Nanoparticles For Boron Neutron Capture Therapy. Int J Nanomedicine. 2019 Oct 8;14:8161.
  • 34. Kumar B, Cole WC, Prasad KN. Alpha tocopheryl succinate, retinoic acid and polar carotenoids enhanced the growth-inhibitory effect of a cholesterol-lowering drug on immortalized and transformed nerve cells in culture. J Am Coll Nutr. 2001 Dec;20(6):628–36.
  • 35. Lee YH, Kim M, Park HJ, Park JY, Song ES, Lee H, et al. Chemical screening identifies the anticancer properties of Polyporous parvovarius. J Cancer. 2023;14(1):50–60.
  • 36. Trédan O, Galmarini CM, Patel K, Tannock IF. Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst. 2007 Oct 3;99(19):1441–54.
  • 37. Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC, Welch JS, et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature. 2012 Jan;481(7382):506–10.
  • 38. Genetic and epigenetic heterogeneity in cancer: a genome-centric perspective - PubMed [Internet]. [cited 2024 Sep 14]. Available from: https://pubmed.ncbi.nlm.nih.gov/19441078/
  • 39. Lambert G, Estévez-Salmeron L, Oh S, Liao D, Emerson BM, Tlsty TD, et al. An analogy between the evolution of drug resistance in bacterial communities and malignant tissues. Nat Rev Cancer. 2011 May;11(5):375–82.
  • 40. Khazir J, Mir BA, Pilcher L, Riley DL. Role of plants in anticancer drug discovery. Phytochem Lett. 2014 Feb 1;7:173–81.
  • 41. Bouchareb R, Katz M, Saadallah N, Sassi Y, Ali S, Lebeche D. Boron improves cardiac contractility and fibrotic remodeling following myocardial infarction injury. Sci Rep. 2020 Oct 13;10(1):17138.
  • 42. Demirci S, Doğan A, Aydın S, Dülger EÇ, Şahin F. Boron promotes streptozotocin-induced diabetic wound healing: roles in cell proliferation and migration, growth factor expression, and inflammation. Mol Cell Biochem. 2016 Jun 1;417(1):119–33.
  • 43. Routray I, Ali S. Boron Induces Lymphocyte Proliferation and Modulates the Priming Effects of Lipopolysaccharide on Macrophages. PloS One. 2016;11(3):e0150607.
  • 44. Mansoori B, Mohammadi A, Davudian S, Shirjang S, Baradaran B. The Different Mechanisms of Cancer Drug Resistance: A Brief Review. Adv Pharm Bull. 2017 Sep;7(3):339–48.
  • 45. Qiao H, Zhang L, Fang D, Zhu Z, He W, Hu L, et al. Surmounting tumor resistance to metallodrugs by co-loading a metal complex and siRNA in nanoparticles. Chem Sci. 2021 Apr 1;12(12):4547–56.

Evaluation of the Proliferative Effects of Hexagonal Boron Nitride Nanoparticles on Leukemia Cells and Leukemia Stem Cells

Yıl 2025, Cilt: 47 Sayı: 1, 22 - 31, 17.01.2025
https://doi.org/10.20515/otd.1550401

Öz

Leukemia is a malignant disease that affects the bone marrow, lymphatic system, spleen, and blood-forming organs, leading to an excessive proliferation of white blood cells. Current cancer treatments are often limited by drug resistance, highlighting the need for novel therapeutic strategies. Nanoparticles, including boron nitride (BN) nanomaterials, have shown promise in enhancing drug delivery and therapeutic efficacy due to their excellent physical and chemical properties. This study aimed to evaluate the cytotoxic effects of hexagonal boron nitride nanoparticles (hBN NPs) on leukemia cells and leukemia stem cells to explore their potential use in leukemia treatment.: hBN NPs were synthesized and characterized using X-ray powder diffraction (XRD), Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM). Leukemia cell lines (HL-60 and CCRF-CEM) and CD34+ leukemia stem cells were treated with various hBN NPs. Cell viability was assessed using MTS assays, and flow cytometry was employed to analyze the expression of leukemia surface markers. The study found that hBN NPs did not exhibit significant anticancer properties; instead, they promoted cell proliferation in leukemia cells and stem cells. The CCRF-CEM CD34+ cells showed resistance to hBN NPs treatment, which reduced the treatment's therapeutic efficacy. The lack of cytotoxicity toward healthy cells suggests potential selectivity, yet the proliferative effects on leukemia cells indicate that hBN NPs may not be suitable for leukemia treatment. hBN NPs lack therapeutic potential for leukemia due to their proliferative effects on leukemia cells. Future studies should focus on developing combination therapies and exploring hBN NPs' impact on other cell lines to identify potential synergistic strategies that could overcome resistance mechanisms in leukemia and other cancers.

Kaynakça

  • 1. Shroff GS, Truong MT, Carter BW, Benveniste MF, Kanagal-Shamanna R, Rauch G, et al. Leukemic Involvement in the Thorax. Radiogr Rev Publ Radiol Soc N Am Inc. 2019;39(1):44–61.
  • 2. Saraswati E. Leukemia: AML, CML, ALL and CLL. [cited 2024 Sep 14]; Available from: https://www.academia.edu/23210507/Leukemia_AML_CML_ALL_and_CLL
  • 3. Dadwal A, Baldi A, Kumar Narang R. Nanoparticles as carriers for drug delivery in cancer. Artif Cells Nanomedicine Biotechnol. 2018;46(sup2):295–305.
  • 4. Lacouture M, Sibaud V. Toxic Side Effects of Targeted Therapies and Immunotherapies Affecting the Skin, Oral Mucosa, Hair, and Nails. Am J Clin Dermatol. 2018 Nov;19(Suppl 1):31–9.
  • 5. Khademi R, Mohammadi Z, Khademi R, Saghazadeh A, Rezaei N. Nanotechnology-based diagnostics and therapeutics in acute lymphoblastic leukemia: a systematic review of preclinical studies. Nanoscale Adv. 2023;5(3):571–95.
  • 6. Krishnan V, Rajasekaran AK. Clinical nanomedicine: a solution to the chemotherapy conundrum in pediatric leukemia therapy. Clin Pharmacol Ther. 2014 Feb;95(2):168–78.
  • 7. Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021 Feb;20(2):101–24.
  • 8. Ihsanullah I. Boron nitride-based materials for water purification: Progress and outlook. Chemosphere. 2021 Jan 1;263:127970.
  • 9. Pan D, Su F, Liu H, Ma Y, Das R, Hu Q, et al. The Properties and Preparation Methods of Different Boron Nitride Nanostructures and Applications of Related Nanocomposites. Chem Rec N Y N. 2020 Sep 22;20.
  • 10. Türkez H, Arslan ME, Sönmez E, Açikyildiz M, Tatar A, Geyikoğlu F. Synthesis, characterization and cytotoxicity of boron nitride nanoparticles: emphasis on toxicogenomics. Cytotechnology. 2019 Feb;71(1):351–61.
  • 11. Li X, Zhi C, Hanagata N, Yamaguchi M, Bando Y, Golberg D. Boron nitride nanotubes functionalized with mesoporous silica for intracellular delivery of chemotherapy drugs. Chem Commun. 2013 Jul 23;49(66):7337–9.
  • 12. Sharker SM. Hexagonal Boron Nitrides (White Graphene): A Promising Method for Cancer Drug Delivery. Int J Nanomedicine. 2019 Dec 19;14:9983–93.
  • 13. Ailuno G, Balboni A, Caviglioli G, Lai F, Barbieri F, Dellacasagrande I, et al. Boron Vehiculating Nanosystems for Neutron Capture Therapy in Cancer Treatment. Cells. 2022 Dec 13;11(24):4029.
  • 14. Barth RF, Mi P, Yang W. Boron delivery agents for neutron capture therapy of cancer. Cancer Commun Lond Engl. 2018 Jun 19;38(1):35.
  • 15. Nakamura H, Koganei H, Miyoshi T, Sakurai Y, Ono K, Suzuki M. Antitumor effect of boron nitride nanotubes in combination with thermal neutron irradiation on BNCT. Bioorg Med Chem Lett. 2015 Jan 15;25(2):172–4.
  • 16. Wang W, Lin J, Xing C, Chai R, Abbas S, Song T, et al. Fe3O4 nanoparticle-coated boron nitride nanospheres: Synthesis, magnetic property and biocompatibility study. Ceram Int. 2017 Jun 1;43(8):6371–6.
  • 17. Niskanen J, Zhang I, Xue Y, Golberg D, Maysinger D, Winnik FM. Boron nitride nanotubes as vehicles for intracellular delivery of fluorescent drugs and probes. Nanomed. 2016;11(5):447–63.
  • 18. Weng Q, Wang B, Wang X, Hanagata N, Li X, Liu D, et al. Highly water-soluble, porous, and biocompatible boron nitrides for anticancer drug delivery. ACS Nano. 2014 Jun 24;8(6):6123–30.
  • 19. Zhang H, Feng S, Yan T, Zhi C, Gao XD, Hanagata N. Polyethyleneimine-functionalized boron nitride nanospheres as efficient carriers for enhancing the immunostimulatory effect of CpG oligodeoxynucleotides. Int J Nanomedicine. 2015 Aug 24;10:5343–53.
  • 20. Galanzha EI, Shashkov EV, Spring PM, Suen JY, Zharov VP. In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser. Cancer Res. 2009 Oct 15;69(20):7926–34.
  • 21. Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L, et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature. 2007 Dec;450(7173):1235–9.
  • 22. Kar F, Söğüt I, Hacıoğlu C, Göncü Y, Şenturk H, Şenat A, et al. Hexagonal boron nitride nanoparticles trigger oxidative stress by modulating thiol/disulfide homeostasis. Hum Exp Toxicol. 2021 Sep;40(9):1572–83.
  • 23. Meriç N, Albayrak E, Gülbaş Z, Kocabaş F. MEIS inhibitors reduce the viability of primary leukemia cells and Stem cells by inducing apoptosis. Leuk Lymphoma. 2024 Feb;65(2):187–98.
  • 24. Turan RD, Albayrak E, Uslu M, Siyah P, Alyazici LY, Kalkan BM, et al. Development of Small Molecule MEIS Inhibitors that modulate HSC activity. Sci Rep. 2020 May 14;10(1):7994.
  • 25. Housman G, Byler S, Heerboth S, Lapinska K, Longacre M, Snyder N, et al. Drug Resistance in Cancer: An Overview. Cancers. 2014 Sep 5;6(3):1769–92.
  • 26. Park NH, Cheng W, Lai F, Yang C, Florez de Sessions P, Periaswamy B, et al. Addressing Drug Resistance in Cancer with Macromolecular Chemotherapeutic Agents. J Am Chem Soc. 2018 Mar 28;140(12):4244–52.
  • 27. Chen S, Huang J, Liu T, Zhang F, Zhao C, Jin E, et al. PI3K/Akt signaling pathway mediates the effect of low-dose boron on barrier function, proliferation, and apoptosis in rat intestinal epithelial cells. Sci Rep. 2024 Jan 3;14(1):393.
  • 28. Jin E, Pei Y, Liu T, Ren M, Hu Q, Gu Y, et al. Effects of boron on the proliferation, apoptosis, and immune function of splenic lymphocytes through ERα and ERβ. Food Agric Immunol. 2019 Jan 1;30(1):743–61.
  • 29. Ciftci E, Köse S, Korkusuz P, Timuçin M, Korkusuz F. Boron containing nano hydroxy apatites (B-N-HAp) Stimulate mesenchymal stem cell adhesion, proliferation and differentiation. [cited 2024 Oct 26];631. Available from: https://avesis.akdeniz.edu.tr/yayin/967192dd-d6e4-4fff-a4a9-0676830de93a/boron-containing-nano-hydroxy-apatites-b-n-hap-stimulate-mesenchymal-stem-cell-adhesion-proliferation-and-differentiation
  • 30. Uysal İ, Yılmaz B, Evis Z. Boron doped hydroxapatites in biomedical applications. J Boron. 2020 Dec 29;5(4):199–208.
  • 31. Hakki SS, Bozkurt BS, Hakki EE. Boron regulates mineralized tissue-associated proteins in osteoblasts (MC3T3-E1). J Trace Elem Med Biol Organ Soc Miner Trace Elem GMS. 2010 Oct;24(4):243–50.
  • 32. Capati MLF, Nakazono A, Igawa K, Ookubo K, Yamamoto Y, Yanagiguchi K, et al. Boron Accelerates Cultured Osteoblastic Cell Activity through Calcium Flux. Biol Trace Elem Res. 2016 Dec;174(2):300–8.
  • 33. Chen J, Yang Q, Liu M, Lin M, Wang T, Zhang Z, et al. Remarkable Boron Delivery Of iRGD-Modified Polymeric Nanoparticles For Boron Neutron Capture Therapy. Int J Nanomedicine. 2019 Oct 8;14:8161.
  • 34. Kumar B, Cole WC, Prasad KN. Alpha tocopheryl succinate, retinoic acid and polar carotenoids enhanced the growth-inhibitory effect of a cholesterol-lowering drug on immortalized and transformed nerve cells in culture. J Am Coll Nutr. 2001 Dec;20(6):628–36.
  • 35. Lee YH, Kim M, Park HJ, Park JY, Song ES, Lee H, et al. Chemical screening identifies the anticancer properties of Polyporous parvovarius. J Cancer. 2023;14(1):50–60.
  • 36. Trédan O, Galmarini CM, Patel K, Tannock IF. Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst. 2007 Oct 3;99(19):1441–54.
  • 37. Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC, Welch JS, et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature. 2012 Jan;481(7382):506–10.
  • 38. Genetic and epigenetic heterogeneity in cancer: a genome-centric perspective - PubMed [Internet]. [cited 2024 Sep 14]. Available from: https://pubmed.ncbi.nlm.nih.gov/19441078/
  • 39. Lambert G, Estévez-Salmeron L, Oh S, Liao D, Emerson BM, Tlsty TD, et al. An analogy between the evolution of drug resistance in bacterial communities and malignant tissues. Nat Rev Cancer. 2011 May;11(5):375–82.
  • 40. Khazir J, Mir BA, Pilcher L, Riley DL. Role of plants in anticancer drug discovery. Phytochem Lett. 2014 Feb 1;7:173–81.
  • 41. Bouchareb R, Katz M, Saadallah N, Sassi Y, Ali S, Lebeche D. Boron improves cardiac contractility and fibrotic remodeling following myocardial infarction injury. Sci Rep. 2020 Oct 13;10(1):17138.
  • 42. Demirci S, Doğan A, Aydın S, Dülger EÇ, Şahin F. Boron promotes streptozotocin-induced diabetic wound healing: roles in cell proliferation and migration, growth factor expression, and inflammation. Mol Cell Biochem. 2016 Jun 1;417(1):119–33.
  • 43. Routray I, Ali S. Boron Induces Lymphocyte Proliferation and Modulates the Priming Effects of Lipopolysaccharide on Macrophages. PloS One. 2016;11(3):e0150607.
  • 44. Mansoori B, Mohammadi A, Davudian S, Shirjang S, Baradaran B. The Different Mechanisms of Cancer Drug Resistance: A Brief Review. Adv Pharm Bull. 2017 Sep;7(3):339–48.
  • 45. Qiao H, Zhang L, Fang D, Zhu Z, He W, Hu L, et al. Surmounting tumor resistance to metallodrugs by co-loading a metal complex and siRNA in nanoparticles. Chem Sci. 2021 Apr 1;12(12):4547–56.
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Eczacılık Biyokimyası
Bölüm ORİJİNAL MAKALELER / ORIGINAL ARTICLES
Yazarlar

Neslihan Meriç 0000-0002-2878-5052

Fatih Kar 0000-0001-8356-9806

Ezgi Kar 0000-0003-2134-4067

Yayımlanma Tarihi 17 Ocak 2025
Gönderilme Tarihi 15 Eylül 2024
Kabul Tarihi 18 Kasım 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 47 Sayı: 1

Kaynak Göster

Vancouver Meriç N, Kar F, Kar E. Evaluation of the Proliferative Effects of Hexagonal Boron Nitride Nanoparticles on Leukemia Cells and Leukemia Stem Cells. Osmangazi Tıp Dergisi. 2025;47(1):22-31.


13299        13308       13306       13305    13307  1330126978