Araştırma Makalesi
BibTex RIS Kaynak Göster

Gallik Asit Kardiyomiyositlerde Sisplatin ile İndüklenen Apoptoz, Oksidatif Stres ve İnflamasyonu Azaltıyor

Yıl 2024, Cilt: 9 Sayı: 4, 335 - 341
https://doi.org/10.26453/otjhs.1531493

Öz

Amaç: Sisplatin (CIS), çeşitli kanserlerin tedavisinde uzun süredir tek başına veya kombinasyon halinde kullanılan güçlü bir kemoterapötik ajandır. Bununla birlikte, CIS'in çeşitli dokulardaki toksisitesi kullanımını sınırlamaktadır. Gallik asit (GAL) anti-enflamatuar, anti-mikrobiyal ve anti-tümör gibi özelliklere sahiptir. GAL'in geniş biyolojik özelliklere sahip olması ve antioksidan aktivite sergilemesi sebebiyle bu çalışmada GAL'in H9c2 kardiyomiyosit hücre hatlarında CIS kaynaklı kardiyotoksite üzerindeki etkisinin araştırılması amaçlanmıştır.
Materyal ve Metot: Kontrol (CON) olarak H9c2 kardiyomiyosit hücreleri, CIS ve CIS ile birlikte GAL25, GAL50 kombinasyonları kullanılmıştır. Çalışmada yapılan analizlerde kardiyomiyosit hücrelerinde Total Antioksidan/Oksidan (TAS ve TOS) durumu, inflamasyon belirteçleri TNF α, IL 1β ve IL 6, lipid peroksidasyon düzeyleri, glutatyon (GSH) ve glutatyon peroksidaz (GSH-Px) enzim aktivitesi, reaktif oksijen türleri (ROS) ve kaspaz aktivitesi (Casp 3-9) belirlenmiştir.
Bulgular: Sonuçlar, CIS tedavisinin kardiyomiyosit hücresinde toksisiteye neden olduğunu ve Casp 3-9, ROS, IL 1β, TNF α, IL 6, MDA ve TOS seviyelerini artırırken GSH-Px, GSH ve TAS seviyelerini azalttığını gösterdi. CIS tedavisi sonrasında kardiyomiyosit hücrelerinde artan inflamasyon ve bozulan oksidan/antioksidan dengesi GAL tedavisi ile düzenlenmiştir.
Sonuç: GAL tedavisinin kardiyomiyosit hücrelerinde CIS kaynaklı kardiyotoksisite üzerinde koruyucu bir etkiye sahip olduğu bulunmuştur.

Etik Beyan

This research was carried out using cells propagated through commercially available cell culture. Ethics committee approval is not required in this study. The study was conducted following the international declaration, guidelines, etc.

Kaynakça

  • Domingo IK, Latif A, Bhavsar AP. Pro-inflammatory signalling PRRopels cisplatin-induced toxicity. Int J Mol Sci. 2022;29(13):7227. doi:10.3390/ijms23137227
  • Wang SH, Tsai KL, Chou WC, et al. Quercetin mitigates cisplatin-induced oxidative damage and apoptosis in cardiomyocytes through Nrf2/HO-1 signaling pathway. Am J Chin Med. 2022;50(5):1281-1298. doi:10.1142/S0192415X22500537
  • Ayazoglu DE, Mentese A, Livaoglu A, Turkmen AN, Demir S. Ameliorative effect of gallic acid on cisplatin-induced ovarian toxicity in rats. Drug Chem Toxicol. 2023;46(1):97-103. doi:10.1080/01480545.2021.2011312
  • Li S, Lin Q, Shao X, et al. NLRP3 inflammasome inhibition attenuates cisplatin-induced renal fibrosis by decreasing oxidative stress and inflammation. Exp. Cell Res. 2019;383:111488. doi:10.1016/j.yexcr.2019.07.001
  • Altındağ F, Meydan I. Evaluation of protective effects of gallic acid on cisplatin-induced testicular and epididymal damage. Andrologia. 2021;53(10):e14189. doi:10.1111/and.14189
  • Gentilin E, Simoni E, Candito M, Cazzador D, Astolfi L. Cisplatin-induced ototoxicity: updates on molecular targets. Trends Mol. Med. 2019;25:1123–1132. doi:10.1016/j.molmed.2019.08.002
  • Tang C, Livingston MJ, Safirstein R, Dong Z. Cisplatin nephrotoxicity: new insights and therapeutic implications. Nat Rev Nephrol. 2023;19(1):53-72. doi:10.1038/s41581-022-00631-7
  • Xu J, Zhang B, Chu Z, Jiang F, Han J. Wogonin alleviates cisplatin-induced cardiotoxicity in mice via inhibiting gasdermin D-mediated pyroptosis. J Cardiovasc Pharmacol. 2021;78(4):597-603. doi:10.1097/FJC.0000000000001085
  • Xia J, Hu JN, Zhang RB, et al. Icariin exhibits protective effects on cisplatin-induced cardiotoxicity via ROS-mediated oxidative stress injury in vivo and in vitro. Phytomedicine. 2022;104:154331. doi:10.1016/j.phymed.2022.154331
  • Kahkeshani N, Farzaei F, Fotouhi M, et al. Pharmacological effects of gallic acid in health and diseases: A mechanistic review. Iranian journal of basic medical sciences. 2019;22(3):225–237. doi:10.22038/ijbms.2019.32806.7897
  • Doğan D, Meydan İ, Kömüroğlu AU. Protective effect of silymarin and gallic acid against cisplatin-induced nephrotoxicity and hepatotoxicity. Int J Clin Pract. 2022;16:6541026. doi:10.1155/2022/6541026
  • Dehghani MA, Shakiba MN, Moghimipour E, Khorsandi L, Atefi KM, Mahdavinia M. Protective effect of gallic acid and gallic acid-loaded Eudragit-RS 100 nanoparticles on cisplatin-induced mitochondrial dysfunction and inflammation in rat kidney. Biochim Biophys Acta Mol Basis Dis. 2020;1866(12):165911. doi:10.1016/j.bbadis.2020.165911
  • Han S, Bao L, Li W, et al. Gallic acid inhibits mesaconitine-activated TRPV1-channel-induced cardiotoxicity. Evid Based Complement Alternat Med. 2022;13:5731372. doi:10.1155/2022/5731372
  • Yazğan Y. Effect of gallic acid on PTZ-induced neurotoxıcıty, oxidative stress and inflammation in SH-SY5Y neuroblastoma cells. Acta Med. Alanya. 2024;8(1):10-17. doi:10.30565/medalanya.1415132
  • Yazğan B, Yazğan Y. Potent antioxidant alpha lipoic acid reduces STZ-induced oxidative stress and apoptosis levels in the erythrocytes and brain cells of diabetic rats. Journal of Cellular Neuroscience and Oxidative Stress. 2022;14(2):1085-1094. doi:10.37212/jcnos.1245152
  • Jia Y, Guo H, Cheng X, et al. Hesperidin protects against cisplatin-induced cardiotoxicity in mice by regulating the p62-Keap1-Nrf2 pathway. Food Funct. 2022;13(7):4205-4215. doi:10.1039/d2fo00298a
  • Qi L, Luo Q, Zhang Y, Jia F, Zhao Y, Wang F. Advances in toxicological research of the anticancer drug cisplatin. Chem Res Toxicol. 2019;32(8):1469-1486. doi:10.1021/acs.chemrestox.9b00204
  • Kohsaka T, Minagawa I, Morimoto M, et al. Efficacy of relaxin for cisplatininduced testicular dysfunction and epididymal spermatotoxicity. Basic and Clinical Andrology. 2020;30(1):3. doi: 101186/s12610-020-0101-y
  • Xia J, Hu JN, Zhang RB, et al. Icariin exhibits protective effects on cisplatin-induced cardiotoxicity via ROS-mediated oxidative stress injury in vivo and in vitro. Phytomedicine. 2022;104:154331. doi:10.1016/j.phymed.2022.154331
  • Abbasalipour H, Hajizadeh MA, Ranjbar M. Sumac and gallic acid-loaded nanophytosomes ameliorate hippocampal oxidative stress via regulation of Nrf2/Keap1 pathway in autistic rats. J Biochem Mol Toxicol. 2022;36(6):e23035. doi:10.1002/jbt.23035
  • Ibrahim MA, Albahlol IA, Wani FA, et al. Resveratrol protects against cisplatin-induced ovarian and uterine toxicity in female rats by attenuating oxidative stress, inflammation and apoptosis. Chem Biol Interact. 2021;338:109402. doi:10.1016/j.cbi.2021.109402
  • So H, Kim H, Lee JH, et al. Cisplatin cytotoxicity of auditory cells requires secretions of proinflammatory cytokines via activation of ERK and NF-κB. JARO-J. Assoc. Res. Otolaryngol. 2007;8:338–355. doi:10.1007/s10162-007-0084-9
  • Kim HJ, Oh GS, Lee JH, et al. Cisplatin ototoxicity involves cy-tokines and STAT6 signaling network. Cell Res. 2011;21:944–956. doi:10.1038/cr.2011.27
  • Bai J, Zhang Y, Tang C, et al. Gallic acid: Pharmacological activities and molecular mechanisms involved in inflammation-related diseases. Biomed Pharmacother. 2021;133:110985. doi:10.1016/j.biopha.2020.110985
  • Ramezani AF, Badavi M, Dianat M, Mard SA, Ahangarpour A. Effects of gallic acid on hemodynamic parameters and infarct size after ischemia-reperfusion in isolated rat hearts with alloxan-induced diabetes. Biomed Pharmacother. 2017;96:612-618. doi:10.1016/j.biopha.2017.10.014
  • Qian P, Yan LJ, Li YQ, et al. Cyanidin ameliorates cisplatin-induced cardiotoxicity via inhibition of ROS-mediated apoptosis. Exp Ther Med. 2018;15(2):1959-1965. doi:10.3892/etm.2017.5617
  • Momeni Z, Danesh S, Ahmadpour M, et al. Protective roles and therapeutic effects of gallic acid in the treatment of cardiovascular diseases: current trends and future directions. Curr Med Chem, 2024;31(24):3733-3751. doi:10.2174/0109298673259299230921150030
  • Tanaka M, Sato A, Kishimoto Y, Mabashi AH, Kondo K, Iida K. Gallic acid inhibits lipid accumulation via AMPK pathway and suppresses apoptosis and macrophage-mediated inflammation in hepatocytes. Nutrients. 2020;12(5):1479. doi:10.3390/nu12051479
  • Ahlatci A. Investıgatıon of the amelıoratıve effects of gallic acid agaınst neurotoxicity caused by glutamate in C6 cells. Neuro-Cell Mol Res. 2024;1(1):7-13. doi:10.5281/zenodo.11471554

Gallic Acid Attenuates Cisplatin-Induced Apoptosis, Oxidative Stress, and Inflammation in Cardiomyocytes

Yıl 2024, Cilt: 9 Sayı: 4, 335 - 341
https://doi.org/10.26453/otjhs.1531493

Öz

Objective: Cisplatin (CIS) is a powerful chemotherapeutic agent that has long been used alone or in combination in the treatment of various cancers. However, the toxicity of CIS in various tissues limits its use. Gallic acid (GAL) has anti-microbial, anti-inflammatory, and anti-tumor properties. Since GAL has broad biological properties and exhibits antioxidant activity, this study aimed to investigate the effect of GAL on CIS-induced cardiotoxicity in H9c2 cardiomyocyte cell lines.
Materials and Methods: H9c2 cardiomyocyte cells as control (CON), CIS, and GAL25, GAL50 in combination along with CIS were used. In the analyses made, glutathione (GSH) and glutathione peroxidase (GSH-Px) enzyme activity, lipid peroxidation levels, inflammation markers IL1β, IL 6, and TNF α, Total Oxidant/ Antioxidant (TOS and TAS) status, reactive oxygen species (ROS) and caspase (Casp 3-9) activity in the cells were determined.
Results: CIS treatment caused cardiomyocyte cell toxicity and increased Casp 3-9, ROS, IL 1β, TNF α, IL 6, TOS, and MDA levels while decreasing GSH-Px, GSH, and TAS levels. Increased inflammation and impaired oxidant/antioxidant balance in cardiomyocyte cells after CIS treatment were regulated by GAL treatment.
Conclusions: GAL treatment was found to have a protective effect on CIS-induced cardiotoxicity in cardiomyocyte cells.

Etik Beyan

This research was carried out using cells propagated through commercially available cell culture. Ethics committee approval is not required in this study. The study was conducted following the international declaration, guidelines, etc.

Kaynakça

  • Domingo IK, Latif A, Bhavsar AP. Pro-inflammatory signalling PRRopels cisplatin-induced toxicity. Int J Mol Sci. 2022;29(13):7227. doi:10.3390/ijms23137227
  • Wang SH, Tsai KL, Chou WC, et al. Quercetin mitigates cisplatin-induced oxidative damage and apoptosis in cardiomyocytes through Nrf2/HO-1 signaling pathway. Am J Chin Med. 2022;50(5):1281-1298. doi:10.1142/S0192415X22500537
  • Ayazoglu DE, Mentese A, Livaoglu A, Turkmen AN, Demir S. Ameliorative effect of gallic acid on cisplatin-induced ovarian toxicity in rats. Drug Chem Toxicol. 2023;46(1):97-103. doi:10.1080/01480545.2021.2011312
  • Li S, Lin Q, Shao X, et al. NLRP3 inflammasome inhibition attenuates cisplatin-induced renal fibrosis by decreasing oxidative stress and inflammation. Exp. Cell Res. 2019;383:111488. doi:10.1016/j.yexcr.2019.07.001
  • Altındağ F, Meydan I. Evaluation of protective effects of gallic acid on cisplatin-induced testicular and epididymal damage. Andrologia. 2021;53(10):e14189. doi:10.1111/and.14189
  • Gentilin E, Simoni E, Candito M, Cazzador D, Astolfi L. Cisplatin-induced ototoxicity: updates on molecular targets. Trends Mol. Med. 2019;25:1123–1132. doi:10.1016/j.molmed.2019.08.002
  • Tang C, Livingston MJ, Safirstein R, Dong Z. Cisplatin nephrotoxicity: new insights and therapeutic implications. Nat Rev Nephrol. 2023;19(1):53-72. doi:10.1038/s41581-022-00631-7
  • Xu J, Zhang B, Chu Z, Jiang F, Han J. Wogonin alleviates cisplatin-induced cardiotoxicity in mice via inhibiting gasdermin D-mediated pyroptosis. J Cardiovasc Pharmacol. 2021;78(4):597-603. doi:10.1097/FJC.0000000000001085
  • Xia J, Hu JN, Zhang RB, et al. Icariin exhibits protective effects on cisplatin-induced cardiotoxicity via ROS-mediated oxidative stress injury in vivo and in vitro. Phytomedicine. 2022;104:154331. doi:10.1016/j.phymed.2022.154331
  • Kahkeshani N, Farzaei F, Fotouhi M, et al. Pharmacological effects of gallic acid in health and diseases: A mechanistic review. Iranian journal of basic medical sciences. 2019;22(3):225–237. doi:10.22038/ijbms.2019.32806.7897
  • Doğan D, Meydan İ, Kömüroğlu AU. Protective effect of silymarin and gallic acid against cisplatin-induced nephrotoxicity and hepatotoxicity. Int J Clin Pract. 2022;16:6541026. doi:10.1155/2022/6541026
  • Dehghani MA, Shakiba MN, Moghimipour E, Khorsandi L, Atefi KM, Mahdavinia M. Protective effect of gallic acid and gallic acid-loaded Eudragit-RS 100 nanoparticles on cisplatin-induced mitochondrial dysfunction and inflammation in rat kidney. Biochim Biophys Acta Mol Basis Dis. 2020;1866(12):165911. doi:10.1016/j.bbadis.2020.165911
  • Han S, Bao L, Li W, et al. Gallic acid inhibits mesaconitine-activated TRPV1-channel-induced cardiotoxicity. Evid Based Complement Alternat Med. 2022;13:5731372. doi:10.1155/2022/5731372
  • Yazğan Y. Effect of gallic acid on PTZ-induced neurotoxıcıty, oxidative stress and inflammation in SH-SY5Y neuroblastoma cells. Acta Med. Alanya. 2024;8(1):10-17. doi:10.30565/medalanya.1415132
  • Yazğan B, Yazğan Y. Potent antioxidant alpha lipoic acid reduces STZ-induced oxidative stress and apoptosis levels in the erythrocytes and brain cells of diabetic rats. Journal of Cellular Neuroscience and Oxidative Stress. 2022;14(2):1085-1094. doi:10.37212/jcnos.1245152
  • Jia Y, Guo H, Cheng X, et al. Hesperidin protects against cisplatin-induced cardiotoxicity in mice by regulating the p62-Keap1-Nrf2 pathway. Food Funct. 2022;13(7):4205-4215. doi:10.1039/d2fo00298a
  • Qi L, Luo Q, Zhang Y, Jia F, Zhao Y, Wang F. Advances in toxicological research of the anticancer drug cisplatin. Chem Res Toxicol. 2019;32(8):1469-1486. doi:10.1021/acs.chemrestox.9b00204
  • Kohsaka T, Minagawa I, Morimoto M, et al. Efficacy of relaxin for cisplatininduced testicular dysfunction and epididymal spermatotoxicity. Basic and Clinical Andrology. 2020;30(1):3. doi: 101186/s12610-020-0101-y
  • Xia J, Hu JN, Zhang RB, et al. Icariin exhibits protective effects on cisplatin-induced cardiotoxicity via ROS-mediated oxidative stress injury in vivo and in vitro. Phytomedicine. 2022;104:154331. doi:10.1016/j.phymed.2022.154331
  • Abbasalipour H, Hajizadeh MA, Ranjbar M. Sumac and gallic acid-loaded nanophytosomes ameliorate hippocampal oxidative stress via regulation of Nrf2/Keap1 pathway in autistic rats. J Biochem Mol Toxicol. 2022;36(6):e23035. doi:10.1002/jbt.23035
  • Ibrahim MA, Albahlol IA, Wani FA, et al. Resveratrol protects against cisplatin-induced ovarian and uterine toxicity in female rats by attenuating oxidative stress, inflammation and apoptosis. Chem Biol Interact. 2021;338:109402. doi:10.1016/j.cbi.2021.109402
  • So H, Kim H, Lee JH, et al. Cisplatin cytotoxicity of auditory cells requires secretions of proinflammatory cytokines via activation of ERK and NF-κB. JARO-J. Assoc. Res. Otolaryngol. 2007;8:338–355. doi:10.1007/s10162-007-0084-9
  • Kim HJ, Oh GS, Lee JH, et al. Cisplatin ototoxicity involves cy-tokines and STAT6 signaling network. Cell Res. 2011;21:944–956. doi:10.1038/cr.2011.27
  • Bai J, Zhang Y, Tang C, et al. Gallic acid: Pharmacological activities and molecular mechanisms involved in inflammation-related diseases. Biomed Pharmacother. 2021;133:110985. doi:10.1016/j.biopha.2020.110985
  • Ramezani AF, Badavi M, Dianat M, Mard SA, Ahangarpour A. Effects of gallic acid on hemodynamic parameters and infarct size after ischemia-reperfusion in isolated rat hearts with alloxan-induced diabetes. Biomed Pharmacother. 2017;96:612-618. doi:10.1016/j.biopha.2017.10.014
  • Qian P, Yan LJ, Li YQ, et al. Cyanidin ameliorates cisplatin-induced cardiotoxicity via inhibition of ROS-mediated apoptosis. Exp Ther Med. 2018;15(2):1959-1965. doi:10.3892/etm.2017.5617
  • Momeni Z, Danesh S, Ahmadpour M, et al. Protective roles and therapeutic effects of gallic acid in the treatment of cardiovascular diseases: current trends and future directions. Curr Med Chem, 2024;31(24):3733-3751. doi:10.2174/0109298673259299230921150030
  • Tanaka M, Sato A, Kishimoto Y, Mabashi AH, Kondo K, Iida K. Gallic acid inhibits lipid accumulation via AMPK pathway and suppresses apoptosis and macrophage-mediated inflammation in hepatocytes. Nutrients. 2020;12(5):1479. doi:10.3390/nu12051479
  • Ahlatci A. Investıgatıon of the amelıoratıve effects of gallic acid agaınst neurotoxicity caused by glutamate in C6 cells. Neuro-Cell Mol Res. 2024;1(1):7-13. doi:10.5281/zenodo.11471554
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Hücre Fizyolojisi
Bölüm Araştırma Makalesi
Yazarlar

Betül Yazğan 0000-0002-4029-2007

Yener Yazğan 0000-0002-5613-6906

Erken Görünüm Tarihi 21 Aralık 2024
Yayımlanma Tarihi
Gönderilme Tarihi 10 Ağustos 2024
Kabul Tarihi 12 Eylül 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 9 Sayı: 4

Kaynak Göster

AMA Yazğan B, Yazğan Y. Gallic Acid Attenuates Cisplatin-Induced Apoptosis, Oxidative Stress, and Inflammation in Cardiomyocytes. OTSBD. Aralık 2024;9(4):335-341. doi:10.26453/otjhs.1531493

Creative Commons Lisansı

Online Türk Sağlık Bilimleri Dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.

Bu, Creative Commons Atıf Lisansı (CC BY-NC 4.0) şartları altında dağıtılan açık erişimli bir dergidir. Orijinal yazar(lar) veya lisans verenin adı ve bu dergideki orijinal yayının kabul görmüş akademik uygulamaya uygun olarak atıfta bulunulması koşuluyla, diğer forumlarda kullanılması, dağıtılması veya çoğaltılmasına izin verilir. Bu şartlara uymayan hiçbir kullanım, dağıtım veya çoğaltmaya izin verilmez.

Makale gönderme süreçleri ve "Telif Hakkı Devir Formu" hakkında yardım almak için tıklayınız.