Araştırma Makalesi
BibTex RIS Kaynak Göster

Geometrik optimizasyon ile uydu birincil yapısal parçalarının eklemeli imalat teknolojisine uygun tasarımı ile kütle azaltımı

Yıl 2025, Cilt: 31 Sayı: 5, 712 - 720, 19.10.2025

Öz

Bu çalışmada, uydu birincil yapılarında kullanılan kütle azaltma yöntemleri ve optimizasyon teknikleri incelenmiş ve bu doğrultuda eklemeli imalat teknolojisine uygun yeni bir tasarım yöntemi geliştirilmiştir. Geliştirilen yöntem, uydu mekanik altyapısında kütle azaltmayı hedeflemektedir. Çalışmanın verimliliğini karşılaştırabilmek için öncelikle alüminyum sandviç panel kullanılarak bir uydu tasarlanmış, ardından iç hacim sabit tutularak optimizasyon çalışmaları gerçekleştirilmiştir. Panelin modal sertliğini artırmak için tasarıma federler eklenmiş, federlerin şekli şekil optimizasyonu, dağılımı ise gerinim enerjisi dağılımına bağlı boyut optimizasyonu ile belirlenmiştir. Sonuçlar, uydu panellerinin toplam ağırlığında %20’lik bir azalma sağlandığını göstermiştir. Ayrıca, tasarımda kullanılan basit geometriler sayesinde izotropik bir yapı korunmuş ve karmaşık analitik yöntemlere ihtiyaç duyulmadan analizler gerçekleştirilmiştir. Eklemeli imalat yöntemiyle uyumlu paneller, üretim süresini önemli ölçüde kısaltırken, sandviç panellerde görülen öngörülemeyen üretim hatalarını ortadan kaldırmıştır. Tasarımın temiz ve basit geometrisi, üretim sonrası özel temizlik süreçlerini gereksiz kılmıştır. Bu çalışma, uydu birincil yapıları için düşük ağırlıklı ve üretimi kolay alternatif bir çözüm sunmaktadır.

Kaynakça

  • [1] SpaceX Rideshare mission search: Orbit Classification, Launch Date, and Payload Mass. https://rideshare.spacex.com/search. (01.02.2024).
  • [2] SpaceX Rideshare Payload User’s Guide, Version 9, California, USA, 2023.
  • [3] Sedighi M, Mohammadi M. “On the static and dynamic analysis of a small satellite (MESBAH)”. Acta Astronautica, 52(9-12), 1007-1012, 2003.
  • [4] Baiomy AM, Kassab M, Mohamed R, El-Sehily BM, El-Kady RM. “Effect of perforation patterns on the fundamental natural frequency of microsatellite structure”. Advances in Aircraft and Spacecraft Science, 10(3), 223-243, 2023.
  • [5] Ravanbakhsh A, Franchini S. “Preliminary structural sizing of a modular microsatellite based on system engineering considerations”. Third International Conference on Multidisciplinary Design Optimization and Applications, Paris, France, 21-23 June 2010.
  • [6] Anklesaria YH, Structural analysis of microsatellites. MSc Thesis. Missouri University of Science and Technology. Colombia, USA, 2012.
  • [7] Zhou Y, Wu S, Trisovic N, Fei Q, Tan Z. “Modal strain based method for dynamic design of plate-like structures”. Shock and Vibration, 10(2), 10-16, 2016.
  • [8] Stanford B, Beran P, Bhatia M. “Aeroelastic topology optimization of blade-stiffened panels”. 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Boston, USA. 8-11 April 2013.
  • [9] Hardee E, Chang KH, Tu J, Choi KK, Grindeanu I, Yu X. “A CAD-based design parameterization for shape optimization of elastic solids”. Advances in Engineering Software, 30(3), 185-199, 1999.
  • [10] Chen S, Dai Z, Shi W, Liu Y, Li J. “Local modal frequency improvement with optimal stiffener by constraints transformation method”. Applied Sciences, 11(22), 11072, 2021.
  • [11] Feng S, Zhang W, Meng L, Xu Z, Chen L. “Stiffener layout optimization of shell structures with B-spline parameterization method”. Structural and Multidisciplinary Optimization, 63, 987-1003. 2021.
  • [12] Li L, Liu C, Zhang W, Du Z, Guo X. “Combined model-based topology optimization of stiffened plate structures via MMC approach”. International Journal of Mechanical Sciences, 208, 106682, 2021.
  • [13] Ma X, Wang F, Aage N, Tian K, Hao P, Wang B. “Generative design of stiffened plates based on homogenization method”. Structural and Multidisciplinary Optimization, 64, 3951-3969, 2021.
  • [14] Liu J, Zhao Q, Chen H. “A two-stage size optimization method for stiffened panels in marine structures”. Ocean Engineering, 181, 102-115, 2019.
  • [15] He T, Xu W, Li J. “Topology optimization for stiffened steel plate shear walls to enhance load-bearing capacity”. Structural Optimization Journal, 25(3), 456-472, 2023.
  • [16] Bakker F, Smit R, Heijden A. “Stiffener arrangement optimization for improved panel stiffness and structural performance”. Engineering Structures, 233, 111921, 2021.
  • [17] Zhang X, Zhou H, Shi W, Zeng F, Zeng H, Chen G. “Vibration tests of 3D printed satellite structure made of lattice sandwich panels”. AIAA Journal, 10(3), 1-5, 2018.
  • [18] Rodríguez-Ramírez JD, Castanié B, Bouvet C. “On the potting failure of inserts for sandwich panels: Review of defects and experimental analysis”. Mechanics of Advanced Materials and Structures, 12(4), 28, 2021.
  • [19] Gaudenzi P, Atek S, Cardini V, Eugeni M, Graterol Nisi G, Lampani L, Pasquali M, Pollice L. “Revisiting the configuration of small satellites structures in the framework of 3D additive manufacturing”. Acta Astronautica, 145, 196-203, 2018.
  • [20] Zhang Y, Zhang G, Qiao J, Li L. “Design and ın situ additive manufacturing of multifunctional structures”. Engineering, 28, 58-68, 2023.
  • [21] Hurtado-Pérez AB, Pablo-Sotelo AJ, Ramírez-López F, Hernández-Gómez JJ, Mata-Rivera MF. “On topology optimisation methods and additive manufacture for satellite structures”. Aerospace, 10(12), 1025, 2023.
  • [22] Kief CJ, Aarestad J, MacDonald E, Shemely C, Roberson D, Wicker R, Kwas AM, Zemba M, Avery K, Netzer R, Kemp W. Printing Multi-Functionality: Additive Manufacturing for CubeSats. AIAA SPACE 2014 Conference and Exposition. San Diago, USA. 4-7 August 2014.
  • [23] Ferrari M, Structurally Optimized and Additively Manufactured Inserts for Sandwich Panels of Spacecraft Structures. MSc Thesis. ETH Zurich-Swiss Federal Institute of Technology Zurich. Switzerland. 2015.
  • [24] EWI. “Advancing Additive Manufacturing in Aerospace. Retrieved from EWI”. https://ewi.org/. (01.02.2024).
  • [25] Kellett S. “Lightweight Stiffened Panels Made Using Additive Manufacturing Techniques”. United States Patent Application Publication, Cambridge, USA, US20220048109A1, 2022.
  • [26] Aston RW, Joe CD, Hastings NM, Schoenborn ND, Zilz RE, Sharma A. “Additively Manufactured Satellite”. United States Patent Application Publication, California, USA, US20210354859A1, 2021.
  • [27] Orii T, Ono T, Aoyama JI, Todome K, Shibayama Y. “Development of versatile small satellite”. Acta Astronautica, 50(9), 557-567, 2002.
  • [28] Dawood SDS, Harithuddin ASM, Harmin MY. “Modal analysis of conceptual microsatellite design employing perforated structural components for mass reduction”. Aerospace, 9(1), 23-29, 2022.
  • [29] Kayacan MY, Alshihabi M. “Adaptive topology optimization for additive manufacturing in aerospace applications”. Pamukkale University Journal of Engineering Sciences, 30(2), 145-154, 2024.
  • [30] Alfayez JA, Mejjaouli S. “3 Unit Cube-Sat mass reduction using topology optimization”. International Journal of Engineering and Technology, 13(2), 123-131, 2021.

Mass reduction through the design of satellite primary structural components suitable for additive manufacturing technology using geometric optimization

Yıl 2025, Cilt: 31 Sayı: 5, 712 - 720, 19.10.2025

Öz

This study examines mass reduction methods and optimization techniques used in primary satellite structures and develops a new design method compatible with additive manufacturing technology. The proposed method aims to reduce mass in the mechanical infrastructure of satellites. To evaluate the efficiency of the developed approach, a satellite was initially designed using aluminum sandwich panels, and optimization studies were conducted while keeping the internal volume constant. Ribs were added to the panel design to enhance its modal stiffness. The shape of the ribs was determined through shape optimization, and their distribution was defined using size optimization based on strain energy distribution. The results demonstrated a 20% reduction in the total weight of satellite panels. Additionally, the use of simple geometries preserved isotropic structural properties, allowing for analyses without the need for complex analytical methods. Panels compatible with additive manufacturing significantly reduced production time and eliminated unforeseen manufacturing defects commonly encountered in sandwich panels. The clean and simple geometry of the design also eliminated the need for special post-production cleaning processes. This study provides a lightweight and easy-to-fabricatealternative solution for primary satellite structures

Kaynakça

  • [1] SpaceX Rideshare mission search: Orbit Classification, Launch Date, and Payload Mass. https://rideshare.spacex.com/search. (01.02.2024).
  • [2] SpaceX Rideshare Payload User’s Guide, Version 9, California, USA, 2023.
  • [3] Sedighi M, Mohammadi M. “On the static and dynamic analysis of a small satellite (MESBAH)”. Acta Astronautica, 52(9-12), 1007-1012, 2003.
  • [4] Baiomy AM, Kassab M, Mohamed R, El-Sehily BM, El-Kady RM. “Effect of perforation patterns on the fundamental natural frequency of microsatellite structure”. Advances in Aircraft and Spacecraft Science, 10(3), 223-243, 2023.
  • [5] Ravanbakhsh A, Franchini S. “Preliminary structural sizing of a modular microsatellite based on system engineering considerations”. Third International Conference on Multidisciplinary Design Optimization and Applications, Paris, France, 21-23 June 2010.
  • [6] Anklesaria YH, Structural analysis of microsatellites. MSc Thesis. Missouri University of Science and Technology. Colombia, USA, 2012.
  • [7] Zhou Y, Wu S, Trisovic N, Fei Q, Tan Z. “Modal strain based method for dynamic design of plate-like structures”. Shock and Vibration, 10(2), 10-16, 2016.
  • [8] Stanford B, Beran P, Bhatia M. “Aeroelastic topology optimization of blade-stiffened panels”. 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Boston, USA. 8-11 April 2013.
  • [9] Hardee E, Chang KH, Tu J, Choi KK, Grindeanu I, Yu X. “A CAD-based design parameterization for shape optimization of elastic solids”. Advances in Engineering Software, 30(3), 185-199, 1999.
  • [10] Chen S, Dai Z, Shi W, Liu Y, Li J. “Local modal frequency improvement with optimal stiffener by constraints transformation method”. Applied Sciences, 11(22), 11072, 2021.
  • [11] Feng S, Zhang W, Meng L, Xu Z, Chen L. “Stiffener layout optimization of shell structures with B-spline parameterization method”. Structural and Multidisciplinary Optimization, 63, 987-1003. 2021.
  • [12] Li L, Liu C, Zhang W, Du Z, Guo X. “Combined model-based topology optimization of stiffened plate structures via MMC approach”. International Journal of Mechanical Sciences, 208, 106682, 2021.
  • [13] Ma X, Wang F, Aage N, Tian K, Hao P, Wang B. “Generative design of stiffened plates based on homogenization method”. Structural and Multidisciplinary Optimization, 64, 3951-3969, 2021.
  • [14] Liu J, Zhao Q, Chen H. “A two-stage size optimization method for stiffened panels in marine structures”. Ocean Engineering, 181, 102-115, 2019.
  • [15] He T, Xu W, Li J. “Topology optimization for stiffened steel plate shear walls to enhance load-bearing capacity”. Structural Optimization Journal, 25(3), 456-472, 2023.
  • [16] Bakker F, Smit R, Heijden A. “Stiffener arrangement optimization for improved panel stiffness and structural performance”. Engineering Structures, 233, 111921, 2021.
  • [17] Zhang X, Zhou H, Shi W, Zeng F, Zeng H, Chen G. “Vibration tests of 3D printed satellite structure made of lattice sandwich panels”. AIAA Journal, 10(3), 1-5, 2018.
  • [18] Rodríguez-Ramírez JD, Castanié B, Bouvet C. “On the potting failure of inserts for sandwich panels: Review of defects and experimental analysis”. Mechanics of Advanced Materials and Structures, 12(4), 28, 2021.
  • [19] Gaudenzi P, Atek S, Cardini V, Eugeni M, Graterol Nisi G, Lampani L, Pasquali M, Pollice L. “Revisiting the configuration of small satellites structures in the framework of 3D additive manufacturing”. Acta Astronautica, 145, 196-203, 2018.
  • [20] Zhang Y, Zhang G, Qiao J, Li L. “Design and ın situ additive manufacturing of multifunctional structures”. Engineering, 28, 58-68, 2023.
  • [21] Hurtado-Pérez AB, Pablo-Sotelo AJ, Ramírez-López F, Hernández-Gómez JJ, Mata-Rivera MF. “On topology optimisation methods and additive manufacture for satellite structures”. Aerospace, 10(12), 1025, 2023.
  • [22] Kief CJ, Aarestad J, MacDonald E, Shemely C, Roberson D, Wicker R, Kwas AM, Zemba M, Avery K, Netzer R, Kemp W. Printing Multi-Functionality: Additive Manufacturing for CubeSats. AIAA SPACE 2014 Conference and Exposition. San Diago, USA. 4-7 August 2014.
  • [23] Ferrari M, Structurally Optimized and Additively Manufactured Inserts for Sandwich Panels of Spacecraft Structures. MSc Thesis. ETH Zurich-Swiss Federal Institute of Technology Zurich. Switzerland. 2015.
  • [24] EWI. “Advancing Additive Manufacturing in Aerospace. Retrieved from EWI”. https://ewi.org/. (01.02.2024).
  • [25] Kellett S. “Lightweight Stiffened Panels Made Using Additive Manufacturing Techniques”. United States Patent Application Publication, Cambridge, USA, US20220048109A1, 2022.
  • [26] Aston RW, Joe CD, Hastings NM, Schoenborn ND, Zilz RE, Sharma A. “Additively Manufactured Satellite”. United States Patent Application Publication, California, USA, US20210354859A1, 2021.
  • [27] Orii T, Ono T, Aoyama JI, Todome K, Shibayama Y. “Development of versatile small satellite”. Acta Astronautica, 50(9), 557-567, 2002.
  • [28] Dawood SDS, Harithuddin ASM, Harmin MY. “Modal analysis of conceptual microsatellite design employing perforated structural components for mass reduction”. Aerospace, 9(1), 23-29, 2022.
  • [29] Kayacan MY, Alshihabi M. “Adaptive topology optimization for additive manufacturing in aerospace applications”. Pamukkale University Journal of Engineering Sciences, 30(2), 145-154, 2024.
  • [30] Alfayez JA, Mejjaouli S. “3 Unit Cube-Sat mass reduction using topology optimization”. International Journal of Engineering and Technology, 13(2), 123-131, 2021.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Buket Çam

Olcay Ersel Canyurt

Gönderilme Tarihi 5 Aralık 2024
Kabul Tarihi 31 Aralık 2024
Yayımlanma Tarihi 19 Ekim 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 31 Sayı: 5

Kaynak Göster

APA Çam, B., & Canyurt, O. E. (2025). Geometrik optimizasyon ile uydu birincil yapısal parçalarının eklemeli imalat teknolojisine uygun tasarımı ile kütle azaltımı. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 31(5), 712-720.
AMA Çam B, Canyurt OE. Geometrik optimizasyon ile uydu birincil yapısal parçalarının eklemeli imalat teknolojisine uygun tasarımı ile kütle azaltımı. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Ekim 2025;31(5):712-720.
Chicago Çam, Buket, ve Olcay Ersel Canyurt. “Geometrik optimizasyon ile uydu birincil yapısal parçalarının eklemeli imalat teknolojisine uygun tasarımı ile kütle azaltımı”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31, sy. 5 (Ekim 2025): 712-20.
EndNote Çam B, Canyurt OE (01 Ekim 2025) Geometrik optimizasyon ile uydu birincil yapısal parçalarının eklemeli imalat teknolojisine uygun tasarımı ile kütle azaltımı. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31 5 712–720.
IEEE B. Çam ve O. E. Canyurt, “Geometrik optimizasyon ile uydu birincil yapısal parçalarının eklemeli imalat teknolojisine uygun tasarımı ile kütle azaltımı”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 31, sy. 5, ss. 712–720, 2025.
ISNAD Çam, Buket - Canyurt, Olcay Ersel. “Geometrik optimizasyon ile uydu birincil yapısal parçalarının eklemeli imalat teknolojisine uygun tasarımı ile kütle azaltımı”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31/5 (Ekim2025), 712-720.
JAMA Çam B, Canyurt OE. Geometrik optimizasyon ile uydu birincil yapısal parçalarının eklemeli imalat teknolojisine uygun tasarımı ile kütle azaltımı. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31:712–720.
MLA Çam, Buket ve Olcay Ersel Canyurt. “Geometrik optimizasyon ile uydu birincil yapısal parçalarının eklemeli imalat teknolojisine uygun tasarımı ile kütle azaltımı”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 31, sy. 5, 2025, ss. 712-20.
Vancouver Çam B, Canyurt OE. Geometrik optimizasyon ile uydu birincil yapısal parçalarının eklemeli imalat teknolojisine uygun tasarımı ile kütle azaltımı. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31(5):712-20.