Araştırma Makalesi
BibTex RIS Kaynak Göster

An enhanced version of honey badger algorithm for data clustering problems

Yıl 2026, Sayı: Advanced Online Publication
https://doi.org/10.5505/pajes.2025.99402

Öz

This study proposes an improved version of the Honey Badger Algorithm (HBA) for solving clustering problems, called the Clustering Honey Badger Algorithm (CHBA). The main enhancement involves modeling the smell intensity using an exponential decay function instead of the inverse square law. This modification reduces the likelihood of getting trapped in local optima and improves the algorithm’s exploratory behavior. CHBA was compared against six state-of-the-art metaheuristic algorithms, including the original HBA, on seven benchmark clustering datasets. The evaluation was based on five common external performance metrics: accuracy, F-score, precision, sensitivity, and intracluster distance. According to the results, CHBA achieved the highest performance on datasets such as Cancer (94.86% accuracy), Iris (93.94% accuracy), and Ecoli (84.52% accuracy). Furthermore, Friedman test results showed that CHBA consistently ranked first in all performance metrics, with p-values less than 0.005, indicating statistically significant superiority. These findings demonstrate that CHBA is a competitive and reliable clustering algorithm, especially in complex and imbalanced data scenarios.

Kaynakça

  • [1] Kaur A, Kumar Y. “A new metaheuristic algorithm based on water wave optimization for data clustering”. Evolutionary Intelligence, 15(1), 759-785, 2022.
  • [2] Tarkhaneh O, Moser I. “An improved differential evolution algorithm using Archimedean spiral and neighborhood search-based mutation approach for cluster analysis”. Future Generation Computer Systems, 101, 921-939, 2019.
  • [3] Gong S, Hu W, Li H, Qu Y. “Property Clustering in Linked Data: An Empirical Study and Its Application to Entity Browsing”. International Journal on Semantic Web and Information Systems, 14(1), 31-70, 2018.
  • [4] Chou CH, Hsieh SC, Qiu CJ. “Hybrid genetic algorithm and fuzzy clustering for bankruptcy prediction”. Applied Soft Computing, 56, 298-316, 2017.
  • [5] Hyde R, Angelov P, MacKenzie AR. “Fully online clustering of evolving data streams into arbitrarily shaped clusters”. Information Sciences, 382-383, 96-114, 2017.
  • [6] Wang L, Zhou X, Xing Y, Yang M, Zhang C. “Clustering ECG heartbeat using improved semi-supervised affinity propagation”. IET Software, 11(5), 207-213, 2017.
  • [7] Yao H, Duan Q, Li D, Wang J. “An improved K-means clustering algorithm for fish image segmentation”. Mathematical and Computer Modelling, 58(3-4), 790-798, 2013.
  • [8] Zhu J, Lung CH, Srivastava V. “A hybrid clustering technique using quantitative and qualitative data for wireless sensor networks”. Ad Hoc Networks, 25, 38-53, 2015.
  • [9] Marinakis Y, Marinaki M, Doumpos M, Zopounidis C. “Ant colony and particle swarm optimization for financial classification problems”. Expert Systems with Applications, 36(7), (10604-10611), 2009.
  • [10] Mishra RK, Saini K, Bagri S. “Text document clustering on the basis of inter passage approach by using K-means”. International Conference on Computing, Communication and Automation (ICCCA), Greater Noida, India,15-16 May 2015
  • [11] Jain AK. “Data clustering: 50 years beyond K-means”. Pattern Recognition Letters, 31(8), 651-666, 2010.
  • [12] Celebi ME, Kingravi HA, Vela PA. “A comparative study of efficient initialization methods for the k-means clustering algorithm”. Expert Systems with Applications, 40(1), (200-210), 2013.
  • [13] Jothi R, Mohanty SK, Ojha A. “DK-means: a deterministic K-means clustering algorithm for gene expression analysis”. Pattern Analysis and Applications, 22(2), (649-667), 2019.
  • [14] Sahoo RC, Kumar T, Tanwar P, Pruthi J, Singh S. “An efficient meta-heuristic algorithm based on water flow optimizer for data clustering”. Journal of Supercomputing, 80(8), (10301-10326), 2024.
  • [15] Jia H, Rao H, Wen C, Mirjalili S. “Crayfish optimization algorithm” Artificial Intelligence Review, 56, 1919-1979, 2023.
  • [16] Kumar Y, Sahoo G. “A two-step artificial bee colony algorithm for clustering”. Neural Computing and Applications, 28(3), 537-551, 2017.
  • [17] Kumar Y, Singh PK. “A chaotic teaching learning based optimization algorithm for clustering problems”. Applied Intelligence, 49(3), 1036-1062, 2019.
  • [18] Singh H, Kumar Y, Kumar S. “A new meta-heuristic algorithm based on chemical reactions for partitional clustering problems”. Evolutionary Intelligence, 12(2), 241-252, 2019.
  • [19] Bouyer A, Hatamlou A. “An efficient hybrid clustering method based on improved cuckoo optimization and modified particle swarm optimization algorithms”. Applied Soft Computing, 67, 172-182, 2018.
  • [20] Kumar Y, Singh PK. “Improved cat swarm optimization algorithm for solving global optimization problems and its application to clustering” Applied Intelligence, 48(9), (2681-2697), 2018.
  • [21] Premkumar M, Sinha G, Ramasamy MD, Sahu S, Subramanyam CB, Sowmya R, Abualigah L, Derebew B. “Augmented weighted K-means grey wolf optimizer: An enhanced metaheuristic algorithm for data clustering problems”. Scientific Reports, 14(1), 1-33, 2024.
  • [22] Abualigah LM, Khader AT, Hanandeh ES, Gandomi AH. “A novel hybridization strategy for krill herd algorithm applied to clustering techniques”. Applied Soft Computing, 60, 423-435, 2017.
  • [23] Boushaki SI, Kamel N, Bendjeghaba O. “A new quantum chaotic cuckoo search algorithm for data clustering”. Expert Systems with Applications, 96, 358-372, 2018.
  • [24] Sag T, Ihsan A. “Particle Swarm Optimization with a new intensification strategy based on K-Means”. Pamukkale University Journal of Engineering Sciences, 29(3), 264-273, 2023.
  • [25] Li Y, Li Y, Li G, Zhao D, Chen C. “Two-stage multi-objective OPF for AC/DC grids with VSC-HVDC: Incorporating decisions analysis into optimization process”. Energy, 147, 286-296, 2018.
  • [26] Mustafa HMJ, Ayob M, Nazri MZA, Kendall G. “An improved adaptive memetic differential evolution optimization algorithms for data clustering problems”. PLoS One, 14(5), e0216906, 2019.
  • [27] Toru E, Yılmaz G. “A multi-depot vehicle routing problem with time windows for daily planned maintenance and repair service planning”. Pamukkale University Journal of Engineering Sciences, 29(8), 913-919, 2023.
  • [28] Özkış A, Karakoyun M. “A binary enhanced moth flame optimization algorithm for uncapacitated facility location problems”. Pamukkale University Journal of Engineering Sciences, 29(7), 737-751, 2023.
  • [29] Verma H, Verma D, Tiwari PK, “A population based hybrid FCM-PSO algorithm for clustering analysis and segmentation of brain image”. Expert Systems with Applications, 167, 114121, 2021.
  • [30] Al-Behadili HNK. “Improved Firefly Algorithm with Variable Neighborhood Search for Data Clustering”. Baghdad Science Journal, 19(2), 409-421, 2022.
  • [31] Xia H, Liu L. “Basketball Big Data and Visual Management System under Metaheuristic Clustering”. Mobile Information Systems, 2022(1), 1-14 2022.
  • [32] Singh H, and Kumar Y. “An Enhanced Version of Cat Swarm Optimization Algorithm for Cluster Analysis”. International Journal of Applied Metaheuristic Computing, 13(1), 1-25, 2022.
  • [33] Kuo RJ, Zheng YR, Nguyen TPQ. “Metaheuristic-based possibilistic fuzzy k-modes algorithms for categorical data clustering”. Information Sciences, 557, 1-15, 2021.
  • [34] Kushwaha N, Pant M, Sharma S. “Electromagnetic optimization-based clustering algorithm”. Expert Systems, 39(7), e12491, 2022.
  • [35] Hashemi SE, Tavana M, Bakhshi M. “A New Particle Swarm Optimization Algorithm for Optimizing Big Data Clustering”. SN Computer Science, 3(4), 1-16, 2022.
  • [36] Mohammadi M, Mobarakeh MI. “An integrated clustering algorithm based on firefly algorithm and self-organized neural network”. Progress in Artificial Intelligence, 11(3), 207-217, 2022.
  • [37] Chaurasia S, Kumar K, Kumar N, “MOCRAW: A Meta-heuristic Optimized Cluster head selection based Routing Algorithm for WSNs” Ad Hoc Networks, 141, 103079, 2023.
  • [38] Zeng N, Wang Z, Liu W, Zhang H, Hone K, Liu X. “A Dynamic Neighborhood-Based Switching Particle Swarm Optimization Algorithm”. IEEE Transactions on Cybernetics, 52(9), 9290-9301, 2020.
  • [39] Singh T. “A chaotic sequence-guided Harris hawks optimizer for data clustering”. Neural Computing and Applications, 32(23), 17789-17803, 2020.
  • [40] Hashim FA, Houssein EH, Hussain K, Mabrouk MS, Al-Atabany W. “Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems” Mathematics and Computers in Simulation, 192, 84-110, 2022
  • [41] Mirjalili S, Mirjalili SM, Lewis A, “Grey Wolf Optimizer”. Advances in Engineering Software, 69, 46-61, 2014.
  • [42] Wang L, Cao Q, Zhang Z, Mirjalili S, and Zhao W. “Artificial rabbits optimization: A new bio-inspired meta-heuristic algorithm for solving engineering optimization problems”. Engineering Applications of Artificial Intelligence, 114, 105082, 2022.
  • [43] Abualigah L, Diabat A, Mirjalili S, Abd Elaziz M, Gandomi AH. “The Arithmetic Optimization Algorithm”. Computer Methods in Applied Mechanics and Engineering, 376, 113609, 2021.
  • [44] Faramarzi A, Heidarinejad M, Mirjalili S, A. H. Gandomi AH. “Marine Predators Algorithm: A nature-inspired metaheuristic”. Expert Systems with Applications, 152, 113377, 2020.
  • [45] Mirjalili S, Lewis A. “The Whale Optimization Algorithm”. Advances in Engineering Software, 95, 51-67, 2016.

Veri kümeleme problemleri için bal porsuğu algoritmasının geliştirilmiş bir sürümü

Yıl 2026, Sayı: Advanced Online Publication
https://doi.org/10.5505/pajes.2025.99402

Öz

Bu çalışma, kümeleme problemlerinin çözümüne yönelik olarak Bal Porsuğu Algoritmasının (HBA) geliştirilmiş bir versiyonu olan Kümeleme Bal Porsuğu Algoritması (CHBA)’yı önermektedir. Yapılan temel iyileştirme, avın koku yoğunluğunu modellemek için kullanılan ters kare yasası yerine eksponansiyel azalma fonksiyonunun uygulanmasıdır. Bu sayede algoritmanın yerel minimumlara takılma olasılığı azaltılmış ve keşif yeteneği artırılmıştır. CHBA, yedi farklı kümeleme veri kümesi üzerinde, orijinal HBA dahil altı güncel metasezgisel algoritma ile karşılaştırılmıştır. Karşılaştırmalar doğruluk, Fskor, keskinlik, duyarlılık ve küme içi mesafe olmak üzere beş yaygın dış performans metriğine göre yapılmıştır. Elde edilen sonuçlara göre, CHBA, özellikle Cancer (%94,86 doğruluk), Iris (%93,94 doğruluk) ve Ecoli (%84,52 doğruluk) veri kümelerinde en yüksek başarıyı göstermiştir. Ayrıca, tüm performans metrikleri için yapılan Friedman testinde CHBA’nın ortalama sıralama değeri en düşük algoritma olduğu ve p-değerlerinin tümünde <0.005 olduğu görülmüştür. Bu bulgular, CHBA’nın karmaşık ve dengesiz veri kümelerinde kullanılabilecek rekabetçi ve güvenilir bir kümeleme algoritması olduğunu göstermektedir.

Kaynakça

  • [1] Kaur A, Kumar Y. “A new metaheuristic algorithm based on water wave optimization for data clustering”. Evolutionary Intelligence, 15(1), 759-785, 2022.
  • [2] Tarkhaneh O, Moser I. “An improved differential evolution algorithm using Archimedean spiral and neighborhood search-based mutation approach for cluster analysis”. Future Generation Computer Systems, 101, 921-939, 2019.
  • [3] Gong S, Hu W, Li H, Qu Y. “Property Clustering in Linked Data: An Empirical Study and Its Application to Entity Browsing”. International Journal on Semantic Web and Information Systems, 14(1), 31-70, 2018.
  • [4] Chou CH, Hsieh SC, Qiu CJ. “Hybrid genetic algorithm and fuzzy clustering for bankruptcy prediction”. Applied Soft Computing, 56, 298-316, 2017.
  • [5] Hyde R, Angelov P, MacKenzie AR. “Fully online clustering of evolving data streams into arbitrarily shaped clusters”. Information Sciences, 382-383, 96-114, 2017.
  • [6] Wang L, Zhou X, Xing Y, Yang M, Zhang C. “Clustering ECG heartbeat using improved semi-supervised affinity propagation”. IET Software, 11(5), 207-213, 2017.
  • [7] Yao H, Duan Q, Li D, Wang J. “An improved K-means clustering algorithm for fish image segmentation”. Mathematical and Computer Modelling, 58(3-4), 790-798, 2013.
  • [8] Zhu J, Lung CH, Srivastava V. “A hybrid clustering technique using quantitative and qualitative data for wireless sensor networks”. Ad Hoc Networks, 25, 38-53, 2015.
  • [9] Marinakis Y, Marinaki M, Doumpos M, Zopounidis C. “Ant colony and particle swarm optimization for financial classification problems”. Expert Systems with Applications, 36(7), (10604-10611), 2009.
  • [10] Mishra RK, Saini K, Bagri S. “Text document clustering on the basis of inter passage approach by using K-means”. International Conference on Computing, Communication and Automation (ICCCA), Greater Noida, India,15-16 May 2015
  • [11] Jain AK. “Data clustering: 50 years beyond K-means”. Pattern Recognition Letters, 31(8), 651-666, 2010.
  • [12] Celebi ME, Kingravi HA, Vela PA. “A comparative study of efficient initialization methods for the k-means clustering algorithm”. Expert Systems with Applications, 40(1), (200-210), 2013.
  • [13] Jothi R, Mohanty SK, Ojha A. “DK-means: a deterministic K-means clustering algorithm for gene expression analysis”. Pattern Analysis and Applications, 22(2), (649-667), 2019.
  • [14] Sahoo RC, Kumar T, Tanwar P, Pruthi J, Singh S. “An efficient meta-heuristic algorithm based on water flow optimizer for data clustering”. Journal of Supercomputing, 80(8), (10301-10326), 2024.
  • [15] Jia H, Rao H, Wen C, Mirjalili S. “Crayfish optimization algorithm” Artificial Intelligence Review, 56, 1919-1979, 2023.
  • [16] Kumar Y, Sahoo G. “A two-step artificial bee colony algorithm for clustering”. Neural Computing and Applications, 28(3), 537-551, 2017.
  • [17] Kumar Y, Singh PK. “A chaotic teaching learning based optimization algorithm for clustering problems”. Applied Intelligence, 49(3), 1036-1062, 2019.
  • [18] Singh H, Kumar Y, Kumar S. “A new meta-heuristic algorithm based on chemical reactions for partitional clustering problems”. Evolutionary Intelligence, 12(2), 241-252, 2019.
  • [19] Bouyer A, Hatamlou A. “An efficient hybrid clustering method based on improved cuckoo optimization and modified particle swarm optimization algorithms”. Applied Soft Computing, 67, 172-182, 2018.
  • [20] Kumar Y, Singh PK. “Improved cat swarm optimization algorithm for solving global optimization problems and its application to clustering” Applied Intelligence, 48(9), (2681-2697), 2018.
  • [21] Premkumar M, Sinha G, Ramasamy MD, Sahu S, Subramanyam CB, Sowmya R, Abualigah L, Derebew B. “Augmented weighted K-means grey wolf optimizer: An enhanced metaheuristic algorithm for data clustering problems”. Scientific Reports, 14(1), 1-33, 2024.
  • [22] Abualigah LM, Khader AT, Hanandeh ES, Gandomi AH. “A novel hybridization strategy for krill herd algorithm applied to clustering techniques”. Applied Soft Computing, 60, 423-435, 2017.
  • [23] Boushaki SI, Kamel N, Bendjeghaba O. “A new quantum chaotic cuckoo search algorithm for data clustering”. Expert Systems with Applications, 96, 358-372, 2018.
  • [24] Sag T, Ihsan A. “Particle Swarm Optimization with a new intensification strategy based on K-Means”. Pamukkale University Journal of Engineering Sciences, 29(3), 264-273, 2023.
  • [25] Li Y, Li Y, Li G, Zhao D, Chen C. “Two-stage multi-objective OPF for AC/DC grids with VSC-HVDC: Incorporating decisions analysis into optimization process”. Energy, 147, 286-296, 2018.
  • [26] Mustafa HMJ, Ayob M, Nazri MZA, Kendall G. “An improved adaptive memetic differential evolution optimization algorithms for data clustering problems”. PLoS One, 14(5), e0216906, 2019.
  • [27] Toru E, Yılmaz G. “A multi-depot vehicle routing problem with time windows for daily planned maintenance and repair service planning”. Pamukkale University Journal of Engineering Sciences, 29(8), 913-919, 2023.
  • [28] Özkış A, Karakoyun M. “A binary enhanced moth flame optimization algorithm for uncapacitated facility location problems”. Pamukkale University Journal of Engineering Sciences, 29(7), 737-751, 2023.
  • [29] Verma H, Verma D, Tiwari PK, “A population based hybrid FCM-PSO algorithm for clustering analysis and segmentation of brain image”. Expert Systems with Applications, 167, 114121, 2021.
  • [30] Al-Behadili HNK. “Improved Firefly Algorithm with Variable Neighborhood Search for Data Clustering”. Baghdad Science Journal, 19(2), 409-421, 2022.
  • [31] Xia H, Liu L. “Basketball Big Data and Visual Management System under Metaheuristic Clustering”. Mobile Information Systems, 2022(1), 1-14 2022.
  • [32] Singh H, and Kumar Y. “An Enhanced Version of Cat Swarm Optimization Algorithm for Cluster Analysis”. International Journal of Applied Metaheuristic Computing, 13(1), 1-25, 2022.
  • [33] Kuo RJ, Zheng YR, Nguyen TPQ. “Metaheuristic-based possibilistic fuzzy k-modes algorithms for categorical data clustering”. Information Sciences, 557, 1-15, 2021.
  • [34] Kushwaha N, Pant M, Sharma S. “Electromagnetic optimization-based clustering algorithm”. Expert Systems, 39(7), e12491, 2022.
  • [35] Hashemi SE, Tavana M, Bakhshi M. “A New Particle Swarm Optimization Algorithm for Optimizing Big Data Clustering”. SN Computer Science, 3(4), 1-16, 2022.
  • [36] Mohammadi M, Mobarakeh MI. “An integrated clustering algorithm based on firefly algorithm and self-organized neural network”. Progress in Artificial Intelligence, 11(3), 207-217, 2022.
  • [37] Chaurasia S, Kumar K, Kumar N, “MOCRAW: A Meta-heuristic Optimized Cluster head selection based Routing Algorithm for WSNs” Ad Hoc Networks, 141, 103079, 2023.
  • [38] Zeng N, Wang Z, Liu W, Zhang H, Hone K, Liu X. “A Dynamic Neighborhood-Based Switching Particle Swarm Optimization Algorithm”. IEEE Transactions on Cybernetics, 52(9), 9290-9301, 2020.
  • [39] Singh T. “A chaotic sequence-guided Harris hawks optimizer for data clustering”. Neural Computing and Applications, 32(23), 17789-17803, 2020.
  • [40] Hashim FA, Houssein EH, Hussain K, Mabrouk MS, Al-Atabany W. “Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems” Mathematics and Computers in Simulation, 192, 84-110, 2022
  • [41] Mirjalili S, Mirjalili SM, Lewis A, “Grey Wolf Optimizer”. Advances in Engineering Software, 69, 46-61, 2014.
  • [42] Wang L, Cao Q, Zhang Z, Mirjalili S, and Zhao W. “Artificial rabbits optimization: A new bio-inspired meta-heuristic algorithm for solving engineering optimization problems”. Engineering Applications of Artificial Intelligence, 114, 105082, 2022.
  • [43] Abualigah L, Diabat A, Mirjalili S, Abd Elaziz M, Gandomi AH. “The Arithmetic Optimization Algorithm”. Computer Methods in Applied Mechanics and Engineering, 376, 113609, 2021.
  • [44] Faramarzi A, Heidarinejad M, Mirjalili S, A. H. Gandomi AH. “Marine Predators Algorithm: A nature-inspired metaheuristic”. Expert Systems with Applications, 152, 113377, 2020.
  • [45] Mirjalili S, Lewis A. “The Whale Optimization Algorithm”. Advances in Engineering Software, 95, 51-67, 2016.
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektronik Tasarım Otomosyonu
Bölüm Araştırma Makalesi
Yazarlar

Harun Gezici 0000-0003-1604-1416

Gönderilme Tarihi 7 Ocak 2025
Kabul Tarihi 20 Ağustos 2025
Erken Görünüm Tarihi 2 Kasım 2025
Yayımlandığı Sayı Yıl 2026 Sayı: Advanced Online Publication

Kaynak Göster

APA Gezici, H. (2025). An enhanced version of honey badger algorithm for data clustering problems. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, Advanced Online Publication. https://doi.org/10.5505/pajes.2025.99402
AMA 1.Gezici H. An enhanced version of honey badger algorithm for data clustering problems. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;(Advanced Online Publication). doi:10.5505/pajes.2025.99402
Chicago Gezici, Harun. 2025. “An enhanced version of honey badger algorithm for data clustering problems”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, sy Advanced Online Publication. https://doi.org/10.5505/pajes.2025.99402.
EndNote Gezici H (01 Kasım 2025) An enhanced version of honey badger algorithm for data clustering problems. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Advanced Online Publication
IEEE [1]H. Gezici, “An enhanced version of honey badger algorithm for data clustering problems”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, sy Advanced Online Publication, Kas. 2025, doi: 10.5505/pajes.2025.99402.
ISNAD Gezici, Harun. “An enhanced version of honey badger algorithm for data clustering problems”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Advanced Online Publication (01 Kasım 2025). https://doi.org/10.5505/pajes.2025.99402.
JAMA 1.Gezici H. An enhanced version of honey badger algorithm for data clustering problems. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025. doi:10.5505/pajes.2025.99402.
MLA Gezici, Harun. “An enhanced version of honey badger algorithm for data clustering problems”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, sy Advanced Online Publication, Kasım 2025, doi:10.5505/pajes.2025.99402.
Vancouver 1.Gezici H. An enhanced version of honey badger algorithm for data clustering problems. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi [Internet]. 01 Kasım 2025;(Advanced Online Publication). Erişim adresi: https://izlik.org/JA49XU27LF