Araştırma Makalesi
BibTex RIS Kaynak Göster

Detecting the borders of a pool-like environment by using scanning sonar data for AUVs

Yıl 2025, Cilt: 31 Sayı: 6, 984 - 992, 13.11.2025
https://doi.org/10.5505/pajes.2025.86344

Öz

This study presents a novel, cost-effective method for real-time underwater vehicle (AUV) localization in enclosed environments, pools or marinas. Traditional underwater localization techniques, often based on acoustic systems, prove costly and impractical for confined spaces. This study focuses on identifying environmental boundaries and, utilizing this information, solving the AUV's localization problem by leveraging data acquired from a 360-degree field-of-view sonar scanning sensor mounted on the AUV. Raw sonar data is processed and subsequently clustered using the K-means algorithm, enabling the identification of environmental features such as edges and corners. These identified features are then matched against a pre-existing environment map to determine the AUV's instantaneous position. Experimental results demonstrate the accuracy and reliability of the proposed approach, with small error values in corner point estimations. While the method's low computational complexity makes it suitable for real-time applications, the absence of complex and high-cost equipment requirements offers a significant advantage for daily applications. This study suggests that the proposed method has a broad application potential in AUV navigation through its iterative use.

Kaynakça

  • [1] Mazumdar A, Lozano M, Fittery A, Asada HH. “A compact, maneuverable, underwater robot for direct inspection of nuclear power piping systems”. 2012 IEEE International Conference on Robotics and Automation, St. Paul, Minnesota, USA, 14-18 May 2012.
  • [2] Ali A, Ahmed SF, Naqvi SYR, Joyo MK. “Efficient maneuvering and control of unmanned underwater vehicle (UUV)”. Sindh University Research Journal, 50(3D), 95-100, 2018.
  • [3] Xu Z, Wang Z. “Recent advances and future trends in foreign underwater navigation techniques”. Ship Science and Technology, 35(11), 154–157, 2013.
  • [4] Ali A, Ahmed SF, Kadir KA, Joyo MK. "Fuzzy PID controller for the upper limb rehabilitation robotic system." 2018 IEEE International Conference on Innovative Research and Development (ICIRD), Bangkok, Thailand, 11-12 May 2018.
  • [5] Sahoo A, Dwivedy SK, Robi PS. “Advancements in the field of autonomous underwater vehicle”. Ocean Engineering, 181, 145-160, 2019.
  • [6] Kırcı H, Yılmaz S, Yakut M. “İnsansız sualtı araçları”. Endüstri & Otomasyon Dergisi, 134, 24-29, 2008.
  • [7] Stutters L, Honghai L, Tiltman C, Brown DJ. “Navigation technologies for autonomous underwater vehicles”. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 38(4), 581–589, 2008.
  • [8] Zhou F, Han L. “A survey of multi - sensor information fusion technology”, Telemetry, Tracking and Command, 27, 1–7, 2006.
  • [9] Chang L, Li J, Chen S. “Initial alignment by attitude estimation for strapdown inertial navigation systems”. IEEE Transactions. Instrumentation and Measurements, 64(3), 784–794, 2015.
  • [10] Ribas D, Ridao P, Cufí X, El-Fakdi A, “Towards a DVL-based navigation system for an underwater robot”, 4th Workshop on European Scientific and Industrial Collaboration WESIC’03, Miscolc, Hungary, 2003.
  • [11] Shome SN, Nandy S, Pal D, Das, SK. “Development of modular shallow water AUV: issues & trial results”. Journal of Institution of Engineers Series C, 93, 217–228, 2012.
  • [12] Kang Y, Zhao L, Cheng J, Wu M, Fan XA. “Novel grid SINS/DVL integrated navigation algorithm for marine application”. Sensors, 18(2), 364, 2018.
  • [13] Liu J, Yu T, Wu C, Zhou C, Lu D, Zeng Q. “A Low-Cost and High-Precision Underwater Integrated Navigation System”. Journal of Marine Science Engineering. 12(200), 2024.
  • [14] Yang H, Gao X, Huang H, Li B, Jiang J. “A tightly integrated navigation method of SINS, DVL, and PS Based on RIMM in the complex underwater environment”. Sensors, 22(23), 94-109, 2022.
  • [15] Alcocer A, Oliveira P, Pascoal A. “Study and implementation of an EKF GIB-based underwater positioning system”. Control Engineering Practice, 15(6), 689–701, 2007.
  • [16] Li S, Bao G, Wu S, “A practical overview and prospect of acoustic positioning technology”. Ocean Technology, 24, 130–135, 2005.
  • [17] Yuan K, Wang H, Zhang H. “Robot position realization based on multi-sensor information fusion algorithm”, 2011 Fourth International Symposium on Computational Intelligence and Design, Hangzhou, China, 28-30 October 2011.
  • [18] Yang H, Xu Z, Jia B. “An Underwater Positioning System for UUVs Based on LiDAR Camera and Inertial Measurement Unit”. Sensors, 22, 5418, 2022.
  • [19] García CC, Rafael JB, Cufí i Solé X, Josep AIG. “Positioning an Underwater Vehicle Through Image Mosaicking”. IEEE International Conference on Robotics and Automation, Seoul, Korea, 21-26 May 2001.
  • [20] Chi W, Zhang W, Gu J, Ren H. “A vision-based mobile robot localization method”, IEEE International Conference on Robotics and Biomimetics (ROBIO), Shenzhen, China, 12-14 December 2013.
  • [21] Huang H, Sun D, Chen W, Mills JK. "A vision-based position control methodology to drive mobile robots towards target positions," 2005 IEEE International Conference on Robotics and Biomimetics - ROBIO, Hong Kong, China, 5-9 July 2005.
  • [22] Lu H, Li Y, Serikawa S. “Computer vision for ocean observing”, Artificial Intelligence and Computer Vision. Switzerland, Springer International Publishing, 2017.
  • [23] Wang Y, Wang Q, Jin S, Long w, Hu L.” A Literature Review of Underwater Image Detection”. Frontiers in Artificial Intelligence and Applications, 347, 42-51, 2022.
  • [24] Wang X, Sun Z, Chehri A, Jeon G, Song Y. “Deep learning and multi-modal fusion for real-time multi-object tracking: Algorithms, challenges, datasets, and comparative study”. Information Fusion, 105, 2024.
  • [25] Roberts P, Helmholz P, Parnum I, Krishna A. “Image feature extraction methods for structure detection from underwater imagery”. Remote Sensing and Spatial Information Sciences, XLVIII-1/W2, 1067–1074, 2023.
  • [26] Chen J, Zhu S, Luo W. Instance Segmentation of Underwater Images by Using Deep Learning. Electronics, 13, 274, 2024.
  • [27] Ferguson, J, “Under-ice seabed mapping with AUVs.” IEEE International Conference on OCEANS 2009-EUROPE, Bremen, Germany, 11-14 May 2009.
  • [28] Jalal F, Nasir F, "Underwater Navigation, Localization and Path Planning for Autonomous Vehicles: A Review”. 2021 International Bhurban Conference on Applied Sciences and Technologies (IBCAST), Islamabad, Pakistan, 12-16 January 2021.
  • [29] Westman E, Hinduja A, Kaess M. "Feature-Based SLAM for Imaging Sonar with Under-Constrained Landmarks”. 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 21-25 May 2018.
  • [30] Yan Z, Min X, Xu D, Geng D. “A novel method for underactuated UUV tracking unknown contour based on forward-looking sonar”. Ocean Engineering, 301, 117545, 2024.
  • [31] Wen X, Wang J, Cheng C, Zhang F, Pan G. “Underwater SideScan Sonar Target Detection: YOLOv7 Model Combined with Attention Mechanism and Scaling Factor”. Remote Sensing, 16, 2492, 2024.
  • [32] Morice C, Veres S, McPhail S. May 2009. “Terrain referencing for autonomous navigation of underwater vehicles IEEE International Conference on OCEANS 2009EUROPE, Bremen, Germany, 11-14 May 2009.
  • [33] Teixeira FC, Quintas, J, Pascoal, A. “AUV terrain-aided navigation using a Doppler velocity logger”. Annual Reviews in Control, 42, 166–176, 2016.
  • [34] Teixeira, FC, Quintas, J, Maurya, P, Pascoal, A. “Robust particle filter formulations with application to terrain-aided navigation”. International Journal of Adaptive Control and Signal Processing, 31(4), 608–651, 2017.
  • [35] Jian MW, Liu XY, Luo HJ, Lu XW, Yu H, Dong JY. “Underwater image processing and analysis: a review”. Signal Processing: Image Communication, 91:116088, 2021.
  • [36] Jian M, Yang N, Tao C, Zhi H, Luo H. “Underwater object detection and datasets: a survey”. Intelligent Marine Technology and Systems, 2(9), 2024.
  • [37] Yi Y, Sun S, Junxin S. “Research on Algorithms for Edge Detection and Contour Tracking of Marine Robots”. 2023 5th International Conference on Artificial Intelligence and Computer Applications (ICAICA), 758-761, Dalian, China, 28-30 November 2023.
  • [38] Hoff S, Haraldstad V, Hogstad BR, Varagnolo D. “Side-scan sonar based landmark detection for underwater vehicles”. 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Abu Dhabi, UAE, 14-18 October, 2024.
  • [39] Movafaghpour MA, Masehian E. “Poly line map extraction in sensor-based mobile robot navigation using a consecutive clustering algorithm”. Robotics and Autonomous Systems, 60, 1078-1092, 2012.
  • [40] Theodoridis S, Koutroumbas K. Pattern Recognition. 2nd ed. San Diego, USA, Elsevier Academic Press, 2003.
  • [41] Bishop CM. Pattern Recognition and Machine Learning. Singapore, Springer Science, 2006.
  • [42] Rousseeuw PJ. “Silhouettes: a graphical aid to the interpretation and validation of cluster analysis”. Computational & Applied Mathematics, 20(1), 53-65, 1987.
  • [43] Jain AK. “Data clustering: 50 years beyond k-means”. Pattern Recognition Letters, 31(8), 651-666. 2010.
  • [44] Blue Robotics Company. “Blue Robotics - Underwater ROVs, USVs, Thrusters and Sonars!”. https://bluerobotics.com/ (27.01.2025).

İnsansız su altı araçları için tarama sonarı verilerini kullanarak havuz benzeri ortamların kenarlarını tespit etme

Yıl 2025, Cilt: 31 Sayı: 6, 984 - 992, 13.11.2025
https://doi.org/10.5505/pajes.2025.86344

Öz

Bu çalışma, havuzlar veya marinalar gibi kapalı ortamlarda gerçek zamanlı insansız su altı aracı (İSAA) konumlandırması için yeni ve uygun maliyetli bir yöntem sunmaktadır. Genellikle akustik sistemlere dayanan geleneksel su altı konumlandırma teknikleri, sınırlı alanlar için maliyetli ve pratik olmadığı kanıtlanmıştır. Bu araştırma, İSAA üzerine monte edilmiş 360 derece görüş alanına sahip bir sonar tarama sensöründen elde edilen verileri kullanarak ortam sınırlarını tespit etmeyi ve bu bilgileri kullanarak İSAA konumlandırma problemini çözmeyi hedeflemektedir. Önerilen yöntem ile ham sonar verileri işlenerek kenarlar ve köşeler gibi çevresel özelliklerin belirlenmesini sağlamak üzere K-means algoritması kullanılarak gruplanır. Belirlenen bu özellikler daha sonra İSAA'nın anlık konumunu belirlemek için bilinen ortam haritasıyla eşleştirilir. Deneysel sonuçlar, köşe noktası kestirimlerindeki düşük hata değerleri ile önerilen yaklaşımın doğruluğunu ve güvenilirliğini göstermektedir. Yöntemin düşük hesaplama karmaşıklığı gerçek zamanlı uygulamalar için uygun olmasını sağlarken, karmaşık ve yüksek maliyetli ekipman gereksinimi olmaması günlük uygulamalar için önemli bir avantaj sunmaktadır. Bu çalışma, önerilen yöntemin yinelemeli kullanımı ile İSAA navigasyonunda geniş bir uygulama potansiyeline sahip olduğunu göstermektedir.

Kaynakça

  • [1] Mazumdar A, Lozano M, Fittery A, Asada HH. “A compact, maneuverable, underwater robot for direct inspection of nuclear power piping systems”. 2012 IEEE International Conference on Robotics and Automation, St. Paul, Minnesota, USA, 14-18 May 2012.
  • [2] Ali A, Ahmed SF, Naqvi SYR, Joyo MK. “Efficient maneuvering and control of unmanned underwater vehicle (UUV)”. Sindh University Research Journal, 50(3D), 95-100, 2018.
  • [3] Xu Z, Wang Z. “Recent advances and future trends in foreign underwater navigation techniques”. Ship Science and Technology, 35(11), 154–157, 2013.
  • [4] Ali A, Ahmed SF, Kadir KA, Joyo MK. "Fuzzy PID controller for the upper limb rehabilitation robotic system." 2018 IEEE International Conference on Innovative Research and Development (ICIRD), Bangkok, Thailand, 11-12 May 2018.
  • [5] Sahoo A, Dwivedy SK, Robi PS. “Advancements in the field of autonomous underwater vehicle”. Ocean Engineering, 181, 145-160, 2019.
  • [6] Kırcı H, Yılmaz S, Yakut M. “İnsansız sualtı araçları”. Endüstri & Otomasyon Dergisi, 134, 24-29, 2008.
  • [7] Stutters L, Honghai L, Tiltman C, Brown DJ. “Navigation technologies for autonomous underwater vehicles”. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 38(4), 581–589, 2008.
  • [8] Zhou F, Han L. “A survey of multi - sensor information fusion technology”, Telemetry, Tracking and Command, 27, 1–7, 2006.
  • [9] Chang L, Li J, Chen S. “Initial alignment by attitude estimation for strapdown inertial navigation systems”. IEEE Transactions. Instrumentation and Measurements, 64(3), 784–794, 2015.
  • [10] Ribas D, Ridao P, Cufí X, El-Fakdi A, “Towards a DVL-based navigation system for an underwater robot”, 4th Workshop on European Scientific and Industrial Collaboration WESIC’03, Miscolc, Hungary, 2003.
  • [11] Shome SN, Nandy S, Pal D, Das, SK. “Development of modular shallow water AUV: issues & trial results”. Journal of Institution of Engineers Series C, 93, 217–228, 2012.
  • [12] Kang Y, Zhao L, Cheng J, Wu M, Fan XA. “Novel grid SINS/DVL integrated navigation algorithm for marine application”. Sensors, 18(2), 364, 2018.
  • [13] Liu J, Yu T, Wu C, Zhou C, Lu D, Zeng Q. “A Low-Cost and High-Precision Underwater Integrated Navigation System”. Journal of Marine Science Engineering. 12(200), 2024.
  • [14] Yang H, Gao X, Huang H, Li B, Jiang J. “A tightly integrated navigation method of SINS, DVL, and PS Based on RIMM in the complex underwater environment”. Sensors, 22(23), 94-109, 2022.
  • [15] Alcocer A, Oliveira P, Pascoal A. “Study and implementation of an EKF GIB-based underwater positioning system”. Control Engineering Practice, 15(6), 689–701, 2007.
  • [16] Li S, Bao G, Wu S, “A practical overview and prospect of acoustic positioning technology”. Ocean Technology, 24, 130–135, 2005.
  • [17] Yuan K, Wang H, Zhang H. “Robot position realization based on multi-sensor information fusion algorithm”, 2011 Fourth International Symposium on Computational Intelligence and Design, Hangzhou, China, 28-30 October 2011.
  • [18] Yang H, Xu Z, Jia B. “An Underwater Positioning System for UUVs Based on LiDAR Camera and Inertial Measurement Unit”. Sensors, 22, 5418, 2022.
  • [19] García CC, Rafael JB, Cufí i Solé X, Josep AIG. “Positioning an Underwater Vehicle Through Image Mosaicking”. IEEE International Conference on Robotics and Automation, Seoul, Korea, 21-26 May 2001.
  • [20] Chi W, Zhang W, Gu J, Ren H. “A vision-based mobile robot localization method”, IEEE International Conference on Robotics and Biomimetics (ROBIO), Shenzhen, China, 12-14 December 2013.
  • [21] Huang H, Sun D, Chen W, Mills JK. "A vision-based position control methodology to drive mobile robots towards target positions," 2005 IEEE International Conference on Robotics and Biomimetics - ROBIO, Hong Kong, China, 5-9 July 2005.
  • [22] Lu H, Li Y, Serikawa S. “Computer vision for ocean observing”, Artificial Intelligence and Computer Vision. Switzerland, Springer International Publishing, 2017.
  • [23] Wang Y, Wang Q, Jin S, Long w, Hu L.” A Literature Review of Underwater Image Detection”. Frontiers in Artificial Intelligence and Applications, 347, 42-51, 2022.
  • [24] Wang X, Sun Z, Chehri A, Jeon G, Song Y. “Deep learning and multi-modal fusion for real-time multi-object tracking: Algorithms, challenges, datasets, and comparative study”. Information Fusion, 105, 2024.
  • [25] Roberts P, Helmholz P, Parnum I, Krishna A. “Image feature extraction methods for structure detection from underwater imagery”. Remote Sensing and Spatial Information Sciences, XLVIII-1/W2, 1067–1074, 2023.
  • [26] Chen J, Zhu S, Luo W. Instance Segmentation of Underwater Images by Using Deep Learning. Electronics, 13, 274, 2024.
  • [27] Ferguson, J, “Under-ice seabed mapping with AUVs.” IEEE International Conference on OCEANS 2009-EUROPE, Bremen, Germany, 11-14 May 2009.
  • [28] Jalal F, Nasir F, "Underwater Navigation, Localization and Path Planning for Autonomous Vehicles: A Review”. 2021 International Bhurban Conference on Applied Sciences and Technologies (IBCAST), Islamabad, Pakistan, 12-16 January 2021.
  • [29] Westman E, Hinduja A, Kaess M. "Feature-Based SLAM for Imaging Sonar with Under-Constrained Landmarks”. 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 21-25 May 2018.
  • [30] Yan Z, Min X, Xu D, Geng D. “A novel method for underactuated UUV tracking unknown contour based on forward-looking sonar”. Ocean Engineering, 301, 117545, 2024.
  • [31] Wen X, Wang J, Cheng C, Zhang F, Pan G. “Underwater SideScan Sonar Target Detection: YOLOv7 Model Combined with Attention Mechanism and Scaling Factor”. Remote Sensing, 16, 2492, 2024.
  • [32] Morice C, Veres S, McPhail S. May 2009. “Terrain referencing for autonomous navigation of underwater vehicles IEEE International Conference on OCEANS 2009EUROPE, Bremen, Germany, 11-14 May 2009.
  • [33] Teixeira FC, Quintas, J, Pascoal, A. “AUV terrain-aided navigation using a Doppler velocity logger”. Annual Reviews in Control, 42, 166–176, 2016.
  • [34] Teixeira, FC, Quintas, J, Maurya, P, Pascoal, A. “Robust particle filter formulations with application to terrain-aided navigation”. International Journal of Adaptive Control and Signal Processing, 31(4), 608–651, 2017.
  • [35] Jian MW, Liu XY, Luo HJ, Lu XW, Yu H, Dong JY. “Underwater image processing and analysis: a review”. Signal Processing: Image Communication, 91:116088, 2021.
  • [36] Jian M, Yang N, Tao C, Zhi H, Luo H. “Underwater object detection and datasets: a survey”. Intelligent Marine Technology and Systems, 2(9), 2024.
  • [37] Yi Y, Sun S, Junxin S. “Research on Algorithms for Edge Detection and Contour Tracking of Marine Robots”. 2023 5th International Conference on Artificial Intelligence and Computer Applications (ICAICA), 758-761, Dalian, China, 28-30 November 2023.
  • [38] Hoff S, Haraldstad V, Hogstad BR, Varagnolo D. “Side-scan sonar based landmark detection for underwater vehicles”. 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Abu Dhabi, UAE, 14-18 October, 2024.
  • [39] Movafaghpour MA, Masehian E. “Poly line map extraction in sensor-based mobile robot navigation using a consecutive clustering algorithm”. Robotics and Autonomous Systems, 60, 1078-1092, 2012.
  • [40] Theodoridis S, Koutroumbas K. Pattern Recognition. 2nd ed. San Diego, USA, Elsevier Academic Press, 2003.
  • [41] Bishop CM. Pattern Recognition and Machine Learning. Singapore, Springer Science, 2006.
  • [42] Rousseeuw PJ. “Silhouettes: a graphical aid to the interpretation and validation of cluster analysis”. Computational & Applied Mathematics, 20(1), 53-65, 1987.
  • [43] Jain AK. “Data clustering: 50 years beyond k-means”. Pattern Recognition Letters, 31(8), 651-666. 2010.
  • [44] Blue Robotics Company. “Blue Robotics - Underwater ROVs, USVs, Thrusters and Sonars!”. https://bluerobotics.com/ (27.01.2025).
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrik Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Hilal Ezercan Kayır

Metin Baydarakçi Bu kişi benim

Gönderilme Tarihi 29 Ocak 2025
Kabul Tarihi 18 Şubat 2025
Erken Görünüm Tarihi 2 Kasım 2025
Yayımlanma Tarihi 13 Kasım 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 31 Sayı: 6

Kaynak Göster

APA Ezercan Kayır, H., & Baydarakçi, M. (2025). Detecting the borders of a pool-like environment by using scanning sonar data for AUVs. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 31(6), 984-992. https://doi.org/10.5505/pajes.2025.86344
AMA Ezercan Kayır H, Baydarakçi M. Detecting the borders of a pool-like environment by using scanning sonar data for AUVs. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Kasım 2025;31(6):984-992. doi:10.5505/pajes.2025.86344
Chicago Ezercan Kayır, Hilal, ve Metin Baydarakçi. “Detecting the borders of a pool-like environment by using scanning sonar data for AUVs”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31, sy. 6 (Kasım 2025): 984-92. https://doi.org/10.5505/pajes.2025.86344.
EndNote Ezercan Kayır H, Baydarakçi M (01 Kasım 2025) Detecting the borders of a pool-like environment by using scanning sonar data for AUVs. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31 6 984–992.
IEEE H. Ezercan Kayır ve M. Baydarakçi, “Detecting the borders of a pool-like environment by using scanning sonar data for AUVs”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 31, sy. 6, ss. 984–992, 2025, doi: 10.5505/pajes.2025.86344.
ISNAD Ezercan Kayır, Hilal - Baydarakçi, Metin. “Detecting the borders of a pool-like environment by using scanning sonar data for AUVs”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31/6 (Kasım2025), 984-992. https://doi.org/10.5505/pajes.2025.86344.
JAMA Ezercan Kayır H, Baydarakçi M. Detecting the borders of a pool-like environment by using scanning sonar data for AUVs. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31:984–992.
MLA Ezercan Kayır, Hilal ve Metin Baydarakçi. “Detecting the borders of a pool-like environment by using scanning sonar data for AUVs”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 31, sy. 6, 2025, ss. 984-92, doi:10.5505/pajes.2025.86344.
Vancouver Ezercan Kayır H, Baydarakçi M. Detecting the borders of a pool-like environment by using scanning sonar data for AUVs. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31(6):984-92.