Araştırma Makalesi
BibTex RIS Kaynak Göster

Kardan mili dayanıklılığının tahmin edilmesi için bir yaklaşım

Yıl 2025, Cilt: 31 Sayı: 6, 922 - 933, 13.11.2025
https://doi.org/10.5505/pajes.2025.39129

Öz

Motorlu taşıtlarda, motorda üretilen gücün diferansiyele iletilmesini sağlayan kardan milleri, aktarma organları içindeki en önemli elemanlarından biridir. Kardan mili, dönme hareketi ve güç aktarımını sağlarken, yol koşullarına bağlı olarak aktarma organlarındaki elemanlar arasındaki açısal ve eksenel mesafe farklarını da kompanse eder.
Sırasıyla laboratuvar ve araç testlerine tabi tutarak doğrulamak için dondurulmuş tasarımların kardan mili prototipleri üretilir. Laboratuvar testleri, kardan milleri için özel olarak geliştirilmiş test cihazında gerçekleştirilmektedir. Bir kardan milinin emniyetli çevrim sayısı açısından dayanıklılık performansını belirlemek amacıyla yapılacak laboratuvar testlerinden biri olan dayanıklılık testi, uzun zaman aldığından yüksek maliyete neden olur.
Bu makalede, yeni geliştirilen bir analitik model kullanılarak bir kardan milinin dayanıklılık performansını tahmin etmeye yönelik bir yaklaşım sunulmaktadır. Çıktı olarak kardan mili için güvenli çevrim sayısını veren yeni bir model geliştirilmiştir. Buradaki güvenli çevrim sayısı, kardan milinde herhangi bir arıza olmadan kardan milinin yaptığı devir sayısını ifade eder. Yeni geliştirilen modelden elde edilen sonuçlar, kardan millerinin dayanıklılık testi sonuçlarıyla karşılaştırılmış, sonuçların test sonuçlarına %5'in altında bir fark ile yaklaştığı görülmüştür. Test ve modelden elde edilen sonuçlar göz önüne alındığında kardan milinin dayanıklılık performansının belirlenmesinde, dayanıklılık testi yerine yeni geliştirilen modelinin kullanılması önerilmektedir.

Kaynakça

  • [1] Ehrich F. Harris' Shock and Vibration Handbook, 5th Ed., Eds: Cyril M. Harris, Allan G. Piersol, McGraw-Hill Book Company, Inc., New York, 2002.
  • [2] Swanson E., Powell C.D., Weissman S. "A Practical Review of Rotating Machinery Critical Speeds and Modes", Sound and Vibration, 39, 10–17, 2005.
  • [3] Iwatsubo T., Saigo M. "Transverse Vibration of a Rotor System Driven by a Cardan Joint", Journal of Sound and Vibration, 95, 9–18, 1984.
  • [4] Seherr-Thoss H.C., Schmelz F., Aucktor E. Universal Joints and Driveshafts, Springer, Berlin, 2006.
  • [5] International Standard ISO 281. Rolling Bearings – Dynamic Load Ratings and Rating Life, International Organization for Standardization, 2007.
  • [6] Liao N.T., Lin J.F. "A New Method Developed for the Analysis of Ball Bearing Fatigue Life Considering Variable Contact Angles", Tribology Transactions, 46(3), 435–446, 2008.
  • [7] Goodman J. "Roller and Ball Bearings", Minutes of the Proceedings of the Institution of Civil Engineers, 189, 82–127, 1912.
  • [8] Zaretsky E.V. "A. Palmgren Revisited — A Basis for Bearing Life Prediction", Society of Tribologists and Lubrication Engineers, 54(2), 18–24, 1998.
  • [9] Lundberg G., Palmgren A. "Dynamic Capacity of Rolling Bearings", Acta Polytechnica, Mechanical Engineering Series, 1(3), 7–24, 1947.
  • [10] Lundberg G., Palmgren A. "Dynamic Capacity of Rolling Bearings", Acta Polytechnica, Mechanical Engineering Series, 2(4), 96–127, 1952.
  • [11] ISO 281:1990. Rolling Bearing – Dynamic Load Ratios and Rating Life, International Organization for Standardization, Geneva, 1990.
  • [12] ANSI/AFBMA 9. Load Rating and Fatigue Life for Ball Bearings, The Anti-Friction Bearing Manufacturers Association, Washington, DC, USA, 1990.
  • [13] Ioannides E., Harris T.A. "A New Fatigue Life Model for Rolling Bearings", Journal of Tribology, 107(3), 367–377, 1985.
  • [14] Zaretsky E.V. "Fatigue Criterion to System Design, Life and Reliability", Journal of Propulsion and Power, 3(1), 76–83, 1987.
  • [15] Zaretsky E.V., Poplawski J.V., Peters S.M. "Comparison of Life Theories for Rolling-Element Bearings", Tribology Transactions, 39(2), 501–503, 1996.
  • [16] Ebert F.J., Poulin P. "The Effect of Cleanliness on the Attainable Bearing Life in Aerospace Applications", Tribology Transactions, 38(4), 851–856, 1995.
  • [17] Losch T., Weigland M. "The Calculation of Fatigue-Life of Rolling Bearings Depending on Their Operating Conditions", in ASME 95-TRIB-58, Orlando, USA, 1995.
  • [18] Takata H. "Possibility of a New Method for Calculating Fatigue Life for Rolling Bearings", Japanese Journal of Tribology, 36(6), 707–718, 1994.
  • [19] Takata H., Furumura K., Murakami Y. "Development of a New Method for Estimating the Fatigue Life of Rolling Bearings", ASME/STLE Tribology Conference Proceedings, Orlando, USA, 1995, pp. 11–16.
  • [20] Tallian T.E. "A Data-Fitted Rolling Bearing Life Prediction, Part I: Mathematical Model", Tribology Transactions, 39(2), 249–258, 1996.
  • [21] Tallian T.E. "A Data-Fitted Rolling Bearing Life Prediction, Part II: Model Fit to the Historical Experimental Database", Tribology Transactions, 39(2), 259–268, 1996.
  • [22] Tallian T.E. "A Data-Fitted Rolling Bearing Life Prediction, Part III: Parametric Study, Comparison to Published Models and Engineering Review", Tribology Transactions, 39(2), 269–275, 1996.
  • [23] Zaretsky E.V., Poplawski J.V., Miller C.R. "Rolling Bearing Life Prediction — Past, Present, and Future", NASA/TM-2000-210529, Glenn Research Center, 2000.
  • [24] Zaretsky E.V. "Rolling Bearing Life Prediction: Theory and Application", in Recent Developments in Wear Prevention, Friction and Lubrication, 45–136, 2010.
  • [25] Zaretsky E.V. "In Search of a Fatigue Limit: A Critique of ISO Standard 281:2007", Tribology and Lubrication Technology, August 2010, 30–40.
  • [26] International Standard ISO 76:1987. Rolling Bearings – Static Load Ratings, International Organization for Standardization, Geneva, Switzerland, 1987.
  • [27] KOYO. High Wing Series Drive Shafts, JTEKT Corporation, Japan, Cat. No. B2022E.
  • [28] Harris T.A., Kotzalas M.N. Rolling Bearing Analysis, Vol. 1, CRC Press, Boca Raton, FL, 2007.
  • [29] Harris T.A., Kotzalas M.N. Rolling Bearing Analysis, Vol. 2, CRC Press, Boca Raton, FL, 2007.
  • [30] Stribeck R. "Ball Bearings for Various Loads", Transactions of the ASME, 29, 420–463, 1907.
  • [31] Sadeghi F., Jalalahmadi B., Slack T.S., Raje N., Arakere N.K. "A Review of Rolling Contact Fatigue", ASME Journal of Tribology, 131(4), 1–15, 2009.
  • [32] Oswald F.B., Zaretsky E.V., Poplawski J.V. "Effect of Internal Clearance on Load Distribution and Life of Radially Loaded Ball and Roller Bearings", Tribology Transactions, 55(2), 245–265, 2012.
  • [33] Belorit M., Hrcek S., Smetanka L. "Mathematical Algorithm for Calculating an Optimal Axial Preload of Rolling Bearings with Respect to Their Life", IOP Conf. Series: Materials Science and Engineering, 393, 2018. DOI: 10.1088/1757-899X/393/1/012055.
  • [34] Johnson K.L. Contact Mechanics, Cambridge University Press, London, 1994.
  • [35] Hertz H. "On the Contact of Solids—On the Contact of Rigid Elastic Solids and on Hardness", in Miscellaneous Papers, Macmillan & Co. Ltd., London, 1896, 146–183.
  • [36] Radzimovsky E. "Stress Distribution and Strength Condition of Two Rolling Cylinders Pressed Together", University of Illinois Bulletin, 50(44), 1953.
  • [37] Sackfield A., Hills D.A. "Some Useful Results in the Classical Hertz Contact Problem", The Journal of Strain Analysis for Engineering Design, 18, 101–105, 1983.
  • [38] Romanowicz P., Szybiński B. "Estimation of Maximum Fatigue Loads and Bearing Life in Ball Bearings Using Multiaxial High-Cycle Fatigue Criterion", Applied Mechanics and Materials, 621, 95–100, 2014.
  • [39] Burden R.L., Faires J.D. Numerical Analysis, 9th Ed., Brooks/Cole Cengage Learning, Boston, USA, 2010.

An approach to estimation of durability performance of a driveshaft

Yıl 2025, Cilt: 31 Sayı: 6, 922 - 933, 13.11.2025
https://doi.org/10.5505/pajes.2025.39129

Öz

In motor vehicles, driveshafts, which enable the power produced in the engine to be transmitted to the differential, are one of the major elements in the drivetrain. A driveshaft compensates for the angular and axial distance differences between the elements in the drivetrain, depending on road conditions while it provides rotation and power transmission. A driveshaft prototypes of frozen designs are manufactured to validate the product by subjecting it to laboratory and vehicle tests respectively. Laboratory tests are conducted via testing machine specially developed for driveshafts. Durability test, which is one of the laboratory tests to be conducted to determine the durability performance of a drive shaft in terms of the number of safe cycles for driveshaft, takes a long time causing the high cost. In this paper, an approach to estimate the durability performance of a driveshaft, using a new-developed analytical model, is presented. A new model has been developed that gives the number of safe cycles for the driveshaft as an output. The number of safe cycles here refers to the number of driveshaft revolution without any failure on the propeller shaft. The results from the new-developed model were compared with the durability test results of the driveshafts, it was seen that the results approached the test results with a difference of less than 5%. When the results obtained from the test and the model are considered, it is suggested to use the new-developed model instead of the durability test in determining the durability performance of the driveshaft.

Kaynakça

  • [1] Ehrich F. Harris' Shock and Vibration Handbook, 5th Ed., Eds: Cyril M. Harris, Allan G. Piersol, McGraw-Hill Book Company, Inc., New York, 2002.
  • [2] Swanson E., Powell C.D., Weissman S. "A Practical Review of Rotating Machinery Critical Speeds and Modes", Sound and Vibration, 39, 10–17, 2005.
  • [3] Iwatsubo T., Saigo M. "Transverse Vibration of a Rotor System Driven by a Cardan Joint", Journal of Sound and Vibration, 95, 9–18, 1984.
  • [4] Seherr-Thoss H.C., Schmelz F., Aucktor E. Universal Joints and Driveshafts, Springer, Berlin, 2006.
  • [5] International Standard ISO 281. Rolling Bearings – Dynamic Load Ratings and Rating Life, International Organization for Standardization, 2007.
  • [6] Liao N.T., Lin J.F. "A New Method Developed for the Analysis of Ball Bearing Fatigue Life Considering Variable Contact Angles", Tribology Transactions, 46(3), 435–446, 2008.
  • [7] Goodman J. "Roller and Ball Bearings", Minutes of the Proceedings of the Institution of Civil Engineers, 189, 82–127, 1912.
  • [8] Zaretsky E.V. "A. Palmgren Revisited — A Basis for Bearing Life Prediction", Society of Tribologists and Lubrication Engineers, 54(2), 18–24, 1998.
  • [9] Lundberg G., Palmgren A. "Dynamic Capacity of Rolling Bearings", Acta Polytechnica, Mechanical Engineering Series, 1(3), 7–24, 1947.
  • [10] Lundberg G., Palmgren A. "Dynamic Capacity of Rolling Bearings", Acta Polytechnica, Mechanical Engineering Series, 2(4), 96–127, 1952.
  • [11] ISO 281:1990. Rolling Bearing – Dynamic Load Ratios and Rating Life, International Organization for Standardization, Geneva, 1990.
  • [12] ANSI/AFBMA 9. Load Rating and Fatigue Life for Ball Bearings, The Anti-Friction Bearing Manufacturers Association, Washington, DC, USA, 1990.
  • [13] Ioannides E., Harris T.A. "A New Fatigue Life Model for Rolling Bearings", Journal of Tribology, 107(3), 367–377, 1985.
  • [14] Zaretsky E.V. "Fatigue Criterion to System Design, Life and Reliability", Journal of Propulsion and Power, 3(1), 76–83, 1987.
  • [15] Zaretsky E.V., Poplawski J.V., Peters S.M. "Comparison of Life Theories for Rolling-Element Bearings", Tribology Transactions, 39(2), 501–503, 1996.
  • [16] Ebert F.J., Poulin P. "The Effect of Cleanliness on the Attainable Bearing Life in Aerospace Applications", Tribology Transactions, 38(4), 851–856, 1995.
  • [17] Losch T., Weigland M. "The Calculation of Fatigue-Life of Rolling Bearings Depending on Their Operating Conditions", in ASME 95-TRIB-58, Orlando, USA, 1995.
  • [18] Takata H. "Possibility of a New Method for Calculating Fatigue Life for Rolling Bearings", Japanese Journal of Tribology, 36(6), 707–718, 1994.
  • [19] Takata H., Furumura K., Murakami Y. "Development of a New Method for Estimating the Fatigue Life of Rolling Bearings", ASME/STLE Tribology Conference Proceedings, Orlando, USA, 1995, pp. 11–16.
  • [20] Tallian T.E. "A Data-Fitted Rolling Bearing Life Prediction, Part I: Mathematical Model", Tribology Transactions, 39(2), 249–258, 1996.
  • [21] Tallian T.E. "A Data-Fitted Rolling Bearing Life Prediction, Part II: Model Fit to the Historical Experimental Database", Tribology Transactions, 39(2), 259–268, 1996.
  • [22] Tallian T.E. "A Data-Fitted Rolling Bearing Life Prediction, Part III: Parametric Study, Comparison to Published Models and Engineering Review", Tribology Transactions, 39(2), 269–275, 1996.
  • [23] Zaretsky E.V., Poplawski J.V., Miller C.R. "Rolling Bearing Life Prediction — Past, Present, and Future", NASA/TM-2000-210529, Glenn Research Center, 2000.
  • [24] Zaretsky E.V. "Rolling Bearing Life Prediction: Theory and Application", in Recent Developments in Wear Prevention, Friction and Lubrication, 45–136, 2010.
  • [25] Zaretsky E.V. "In Search of a Fatigue Limit: A Critique of ISO Standard 281:2007", Tribology and Lubrication Technology, August 2010, 30–40.
  • [26] International Standard ISO 76:1987. Rolling Bearings – Static Load Ratings, International Organization for Standardization, Geneva, Switzerland, 1987.
  • [27] KOYO. High Wing Series Drive Shafts, JTEKT Corporation, Japan, Cat. No. B2022E.
  • [28] Harris T.A., Kotzalas M.N. Rolling Bearing Analysis, Vol. 1, CRC Press, Boca Raton, FL, 2007.
  • [29] Harris T.A., Kotzalas M.N. Rolling Bearing Analysis, Vol. 2, CRC Press, Boca Raton, FL, 2007.
  • [30] Stribeck R. "Ball Bearings for Various Loads", Transactions of the ASME, 29, 420–463, 1907.
  • [31] Sadeghi F., Jalalahmadi B., Slack T.S., Raje N., Arakere N.K. "A Review of Rolling Contact Fatigue", ASME Journal of Tribology, 131(4), 1–15, 2009.
  • [32] Oswald F.B., Zaretsky E.V., Poplawski J.V. "Effect of Internal Clearance on Load Distribution and Life of Radially Loaded Ball and Roller Bearings", Tribology Transactions, 55(2), 245–265, 2012.
  • [33] Belorit M., Hrcek S., Smetanka L. "Mathematical Algorithm for Calculating an Optimal Axial Preload of Rolling Bearings with Respect to Their Life", IOP Conf. Series: Materials Science and Engineering, 393, 2018. DOI: 10.1088/1757-899X/393/1/012055.
  • [34] Johnson K.L. Contact Mechanics, Cambridge University Press, London, 1994.
  • [35] Hertz H. "On the Contact of Solids—On the Contact of Rigid Elastic Solids and on Hardness", in Miscellaneous Papers, Macmillan & Co. Ltd., London, 1896, 146–183.
  • [36] Radzimovsky E. "Stress Distribution and Strength Condition of Two Rolling Cylinders Pressed Together", University of Illinois Bulletin, 50(44), 1953.
  • [37] Sackfield A., Hills D.A. "Some Useful Results in the Classical Hertz Contact Problem", The Journal of Strain Analysis for Engineering Design, 18, 101–105, 1983.
  • [38] Romanowicz P., Szybiński B. "Estimation of Maximum Fatigue Loads and Bearing Life in Ball Bearings Using Multiaxial High-Cycle Fatigue Criterion", Applied Mechanics and Materials, 621, 95–100, 2014.
  • [39] Burden R.L., Faires J.D. Numerical Analysis, 9th Ed., Brooks/Cole Cengage Learning, Boston, USA, 2010.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Onur Şen

Enver Atik

Gönderilme Tarihi 16 Kasım 2023
Kabul Tarihi 7 Mart 2025
Erken Görünüm Tarihi 2 Kasım 2025
Yayımlanma Tarihi 13 Kasım 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 31 Sayı: 6

Kaynak Göster

APA Şen, O., & Atik, E. (2025). An approach to estimation of durability performance of a driveshaft. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 31(6), 922-933. https://doi.org/10.5505/pajes.2025.39129
AMA Şen O, Atik E. An approach to estimation of durability performance of a driveshaft. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Kasım 2025;31(6):922-933. doi:10.5505/pajes.2025.39129
Chicago Şen, Onur, ve Enver Atik. “An approach to estimation of durability performance of a driveshaft”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31, sy. 6 (Kasım 2025): 922-33. https://doi.org/10.5505/pajes.2025.39129.
EndNote Şen O, Atik E (01 Kasım 2025) An approach to estimation of durability performance of a driveshaft. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31 6 922–933.
IEEE O. Şen ve E. Atik, “An approach to estimation of durability performance of a driveshaft”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 31, sy. 6, ss. 922–933, 2025, doi: 10.5505/pajes.2025.39129.
ISNAD Şen, Onur - Atik, Enver. “An approach to estimation of durability performance of a driveshaft”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31/6 (Kasım2025), 922-933. https://doi.org/10.5505/pajes.2025.39129.
JAMA Şen O, Atik E. An approach to estimation of durability performance of a driveshaft. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31:922–933.
MLA Şen, Onur ve Enver Atik. “An approach to estimation of durability performance of a driveshaft”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 31, sy. 6, 2025, ss. 922-33, doi:10.5505/pajes.2025.39129.
Vancouver Şen O, Atik E. An approach to estimation of durability performance of a driveshaft. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31(6):922-33.