Araştırma Makalesi
BibTex RIS Kaynak Göster

Kozlu taşkömürünün koklaşma özelliklerine oltu linyiti ilavesinin etkisi

Yıl 2026, Sayı: Advanced Online Publication

Öz

Ülkemizde kok üretimi için kullanılan taşkömürü rezervleri oldukça sınırlıdır. Ancak koklaşamayan linyit rezervleri ise oldukça yüksektir. Linyitlerin taş kömürlerine ilave edilerek kok üretiminde kullanılabilmesi için bu karışımların koklaşabilme özelliklerinin tespit edilmesi gerekmektedir. Bu çalışmada Erzurum Oltu linyiti ve Zonguldak Kozlu taşkömürü ve bu kömürlerin belirli oranlarda hazırlanan karışımları kullanılmıştır. Ham kömür ve kömür karışımlarının koklaşma kalitesini belirleyen nem içeriği, kül, uçucu madde, petrografik analiz, serbest şişme indeksi, Gray-King kok testi, dilatasyon ve plastisite (akışkanlık) gibi çeşitli parametreler incelenmiştir. Oltu kömüründe maseral bileşiminin %75 oranında hüminitten oluşması bu kömürün düşük ranklı karakterini, Kozlu kömürünün %65 vitrinit içeriği yüksek ranklı ve koklaşabilir karakterini göstermektedir. Mikrolitotip bileşimleri de bu durumu desteklemektedir. Kömürlerin ve karışımlarının serbest şişme indeksi testinde, %100 Oltu linyitinin hiç yapışma göstermediği, %100 Kozlu kömürünün ise iyi bir koklaşma özelliğini yansıtan 6 FSI değerine sahip olduğu belirlenmiştir. Gray-King kok testinde, Oltu linyiti tek başına bir kok tipi üretmezken, %100 Kozlu kömürü ve %20 Oltu-%80 Kozlu karışımı G tipi bir kok üretimi sağlamıştır. Akışkanlık testleri, Oltu linyitinin tek başına hiçbir plastisite veya akışkan davranış göstermediğini, Kozlu taş kömürünün ise 87°C'lik geniş bir plastik aralık ve 980 DDPM'lik (dakikada kadran bölümü) maksimum akışkanlık gösterdiğini ortaya koymaktadır. Genleşme testlerinde, Oltu linyiti herhangi bir genleşme olmadan yumuşama ve büzülme davranışı göstermiş, Kozlu kömürü ise yumuşama ve büzülmenin yanında %+118'lik önemli bir genleşme oranı göstermiştir.

Kaynakça

  • [1] Díez MA, Alvarez R, Barriocanal C. “Coal for metallurgical coke production: predictions of coke quality and future requirements for cokemaking”, Int J Coal Geol, 50(1–4), 389–412, 2002, doi: 10.1016/S0166-5162(02)00123-4.
  • [2] Esin F, Acur O, İşçi B, Cantürk C, Besun C, Çevik E. ‘’Improvement of coke strength after reaction value (CSR) by spraying boron solutions on metallurgical coke’’, Pamukkale Univ Muh Bilim Derg, 30(1), 103-108, 2024
  • [3] 2023 Yılı Taşkömürü Sektör Raporu, 2024.
  • [4] Sahajwalla V, Maroufi S, Bell G, Bell P BariI. Alternative sustainable carbon sources as substitutes for metallurgical coal, IEA Bioenergy, 2019.
  • [5] Xiang C, Liu Q, Shi L, Zhou B, Liu Z. “Prediction of Gray-King coke type from radical concentration and basic properties of coal blends”, Fuel Process Technol, 211, 106584, 2021, doi: 10.1016/j.fuproc.2020.106584.
  • [6] Sahoo BK, Ghosh B, Abhijnan A, Kumar A. “Effect of different size fractions on coal quality”, Asian J Sci Technol, 9(4), 8032–8035, 2018.
  • [7] Akpabio IO, Chagga MM, Jauro A. “Assessment of Some Nigerian Coals for Metallurgical Application”, J Minerals Mater Charact Eng, 7(4), 301–306, 2008, doi: 10.4236/jmmce.2008.74023.
  • [8] Koszorek A, Krzesińska M, Pusz S, Pilawa B, Kwiecińska B. “Relationship between the technical parameters of cokes produced from blends of three Polish coals of different coking ability”, Int J Coal Geol, 77(3-4), 363-371, 2009.
  • [9] P. Kumari, A.K. Singh. Blending strategies of coals from diverse origins for efficient coke making. Journal of the Geological Society of India, 101(2), 220-229, 2025.
  • [10] L. Kieush, A. Koveria, J. Schenk, K. Rysbekov, V. Lozynskyi vd., Investigation into the Effect of Multi-Component Coal Blends on Properties of Metallurgical Coke via Petrographic Analysis under Industrial Conditions, Sustainability, 14, 9947, 2022.
  • [11] Arslan V. and Kemal M. The effects of inert matters and low volatile coal addition on the plasticity of high volatile Zonguldak coals, The Journal of The South African Institute of Mining and Metallurgy, 106, 199-204, 2006.
  • [12] European Patent Office (2015). Method for blending coal, blended coal, and method for producing coke, EP2832823B1, Publicationdate:04.11.2015. https://worldwide.espacenet.com/patent/search/family/050843609/publication/EP2832823B1
  • [13] Khorami MT, Chelgani SC, Hower JC, Jorjani E. “Studies of relationships between Free Swelling Index (FSI) and coal quality by regression and Adaptive Neuro Fuzzy Inference System”, Int J Coal Geol, 85(1), 65–71, 2011, doi: 10.1016/j.coal.2010.09.011.
  • [14] Maden Tetkik ve Arama Genel Müdürlüğü, ‘Oltu (Erzurum) kömür sondaj raporu’, MTA Yayınları, 1984.
  • [15] Maden Tetkik ve Arama Genel Müdürlüğü (MTA), ‘Türkiye kömür envanteri raporu,’ MTA Yayınları, 2018.
  • [16] ASTM D2013/D2013M-21, ‘Standard Practice for Preparing Coal Samples for Analysis’, 2022.
  • [17] Faes ED, Barriocanal C, Dı´ez MA, Alvarez R, ‘Characterization of different origin coking coals and their blends by Gieseler plasticity and TGA’, J. Anal. Appl. Pyrolysis 80, 203–208, 2007.
  • [18] Korkmaz M. “Erzurum Oltu kömürü ve Zonguldak Kozlu kömür karışımlarının koklaşma özelliklerinin incelenmesi”, M.Sc. thesis, Atatürk University, Erzurum, 2024.
  • [19] ASTM D05.21 Committee, Standard Test Method for Total Moisture in Coal, 2023. doi: 10.1520/D3302_D3302M-22A.
  • [20] ASTM D05.21 Committee, Standard Test Method for Ash in the Analysis Sample of Coal and Coke from Coal, 2020. doi: 10.1520/D3174-12R18E01.
  • [21] ASTM D05.21 Committee, Standard Test Method for Volatile Matter in the Analysis Sample of Coal and Coke, 2020. doi: 10.1520/D3175-20.
  • [22] ASTM D2799-23 Standard Test Method for Microscopical Determination of the Maceral Composition of Coal, 2023.
  • [23] ASTM D720/D720M-22 Committee, Standard Test Method for Free-Swelling Index of Coal, 2023 doi: 10.1520/D0720-91R10.
  • [24] Coal — Determination of caking power — Gray-King coke test: ISO 502:2015.
  • [25] ASTM D5515-22, Standart Test Method for Determination of the Swelling Properties of Bituminous Coal Using a Dilatometer, 2022. doi: 10.1520/D5515-22.
  • [26] ASTM D2639-D2639M-21, Standart Test Method for Plastic Properties of Coal by the Constant-Torque Gieseler Plastometer, 2022. doi: 10.1520/D2639_D2639M-21.
  • [27] Nasirudeen MB, Jauro A, “Quality of Some Nigerian Coals as Blending Stock in Metallurgical Coke Production”, JMMCE, 10(1) 101-109, 2011, doi: 10.4236/jmmce.2011.101007.
  • [28] Büzkan İ, ‘Kömür Petrografisi Teknikleri ve Endüstriyel uygulamalar’, Madencilik, 26(4), 31-39, 1987.
  • [29] Kumar D, Kumar D, ‘Evaluation of Coking Coal Resources and Reserves’, Management of Coking Coal Resources, 2016.
  • [30] Sahoo M, Bhowmick T, Mishra V, Pala S, Sharma M, Chakravarty S, Significance of coal quality on thermoplastic properties: a case study International Journal of Coal Preparation and Utilization 42 (4) 1015–1032, 2022.
  • [31] Hiçyılmaz C. “Kömürün Petrografik Özelliklerinden Yararlanılarak Koklaşma Özelliklerinin Tayini”, Madencilik, 24, 4, 1990.
  • [32] Sy´korov I, Pickel W, Christanis K, Wolf M, Taylor GH, Flores D, Classification of huminite—ICCP System 1994, International Journal of Coal Geology 62, 85-106, 2005.
  • [33] Kemal M, Arslan V, Cengizler H, Kömür Karışımlarının Koklaştırılmasında Bileşenler Arası Etikileşimler, Madencilik, 43 (4), 29-40, 2004
  • [34] Erik NY, Kömür Özelliklerinin Temiz Kömür Teknolojilerine (Gazlaştırma, Sıvılaştırma, Karbon Elyaf Ve Kok Üretimi) Etkisi: Derleme, UMÜFED Uluslararası Batı Karadeniz Mühendislik ve Fen Bilimleri Dergisi, 4(2), 22-56, 2022.
  • [35] Aziz H, Congo T, Steel KM. “Understanding the multiple interactions of inertinite during pyrolysis/carbonisation with vitrinite: A study of two Australian coals of different rank”, Fuel Process Technol, 217, 106823, 2021.
  • [36] Liu Z, Cao D, Chen G, Chen Q, Bi Z. “Differences in Molecular Structure between Vitrinite and Inertinite and Their Impact on Coal Conversion and Utilization”, ACS Omega, 8(1), 12345–12356, 2023.
  • [37] Samuel OO, Olugbenga EA. “Estimation and assessment of free swelling index and some petrographic properties from chemical analysis of coals across River Niger”, Petroleum and Coal, 2016.
  • [38] Ryemshak SA, Jauro A. “Proximate analysis, rheological properties and technological applications of some Nigerian coals”, Int J Ind Chem, 4(1) 7, 2013, doi: 10.1186/2228-5547-4-7.
  • [39] Sciazko M, Mertas B, Stepien L. Kinetic modelling of coking coal fuidity development, Journal of Thermal Analysis and Calorimetry, 142, 977–990, 2020.

Effect of oltu lignite addition on coking properties of kozlu hard coal

Yıl 2026, Sayı: Advanced Online Publication

Öz

In our country, hard coal reserves used for coke production are quite limited. However, non-coking lignite reserves are quite high. In order for lignites to be added to hard coals and used in coke production, the coking properties of these blends should be determined. In this study, Erzurum Oltu lignite and Zonguldak Kozlu hard coal and blends of these coals prepared at certain ratios were used. Various parameters such as moisture content, ash, volatile matter, petrographic analysis, free swelling index, Gray-King coke test, dilatation and plasticity (fluidity) which determine the coking quality of raw coal and coal blends were investigated. The 75% huminite content of the maceral composition in the Oltu coal indicates its low-ranking character, while the 65% vitrinite content in the Kozlu coal indicates its high-ranking and coking character. Microlithotype compositions also support this situation. In the free swelling index test of the coals and blends, it was determined that 100% Oltu lignite did not show any adhesion and 100% Kozlu coal had a FSI value of 6, which reflects a good coking property. In the Gray-King coke test, Oltu lignite alone did not produce a coke type, while 100% Kozlu coal and 20% Oltu-80% Kozlu coal blend produced a G type coke. Fluidity tests revealed that Oltu lignite alone showed no plasticity or fluid behaviour, while Kozlu coal showed a wide plastic range of 87°C and a maximum fluidity of 980 DDPM (Dial Division per minute). In expansion tests, Oltu lignite showed softening and shrinkage behaviour without any expansion, while Kozlu coal showed softening and shrinkage as well as a significant expansion rate of +118%.

Kaynakça

  • [1] Díez MA, Alvarez R, Barriocanal C. “Coal for metallurgical coke production: predictions of coke quality and future requirements for cokemaking”, Int J Coal Geol, 50(1–4), 389–412, 2002, doi: 10.1016/S0166-5162(02)00123-4.
  • [2] Esin F, Acur O, İşçi B, Cantürk C, Besun C, Çevik E. ‘’Improvement of coke strength after reaction value (CSR) by spraying boron solutions on metallurgical coke’’, Pamukkale Univ Muh Bilim Derg, 30(1), 103-108, 2024
  • [3] 2023 Yılı Taşkömürü Sektör Raporu, 2024.
  • [4] Sahajwalla V, Maroufi S, Bell G, Bell P BariI. Alternative sustainable carbon sources as substitutes for metallurgical coal, IEA Bioenergy, 2019.
  • [5] Xiang C, Liu Q, Shi L, Zhou B, Liu Z. “Prediction of Gray-King coke type from radical concentration and basic properties of coal blends”, Fuel Process Technol, 211, 106584, 2021, doi: 10.1016/j.fuproc.2020.106584.
  • [6] Sahoo BK, Ghosh B, Abhijnan A, Kumar A. “Effect of different size fractions on coal quality”, Asian J Sci Technol, 9(4), 8032–8035, 2018.
  • [7] Akpabio IO, Chagga MM, Jauro A. “Assessment of Some Nigerian Coals for Metallurgical Application”, J Minerals Mater Charact Eng, 7(4), 301–306, 2008, doi: 10.4236/jmmce.2008.74023.
  • [8] Koszorek A, Krzesińska M, Pusz S, Pilawa B, Kwiecińska B. “Relationship between the technical parameters of cokes produced from blends of three Polish coals of different coking ability”, Int J Coal Geol, 77(3-4), 363-371, 2009.
  • [9] P. Kumari, A.K. Singh. Blending strategies of coals from diverse origins for efficient coke making. Journal of the Geological Society of India, 101(2), 220-229, 2025.
  • [10] L. Kieush, A. Koveria, J. Schenk, K. Rysbekov, V. Lozynskyi vd., Investigation into the Effect of Multi-Component Coal Blends on Properties of Metallurgical Coke via Petrographic Analysis under Industrial Conditions, Sustainability, 14, 9947, 2022.
  • [11] Arslan V. and Kemal M. The effects of inert matters and low volatile coal addition on the plasticity of high volatile Zonguldak coals, The Journal of The South African Institute of Mining and Metallurgy, 106, 199-204, 2006.
  • [12] European Patent Office (2015). Method for blending coal, blended coal, and method for producing coke, EP2832823B1, Publicationdate:04.11.2015. https://worldwide.espacenet.com/patent/search/family/050843609/publication/EP2832823B1
  • [13] Khorami MT, Chelgani SC, Hower JC, Jorjani E. “Studies of relationships between Free Swelling Index (FSI) and coal quality by regression and Adaptive Neuro Fuzzy Inference System”, Int J Coal Geol, 85(1), 65–71, 2011, doi: 10.1016/j.coal.2010.09.011.
  • [14] Maden Tetkik ve Arama Genel Müdürlüğü, ‘Oltu (Erzurum) kömür sondaj raporu’, MTA Yayınları, 1984.
  • [15] Maden Tetkik ve Arama Genel Müdürlüğü (MTA), ‘Türkiye kömür envanteri raporu,’ MTA Yayınları, 2018.
  • [16] ASTM D2013/D2013M-21, ‘Standard Practice for Preparing Coal Samples for Analysis’, 2022.
  • [17] Faes ED, Barriocanal C, Dı´ez MA, Alvarez R, ‘Characterization of different origin coking coals and their blends by Gieseler plasticity and TGA’, J. Anal. Appl. Pyrolysis 80, 203–208, 2007.
  • [18] Korkmaz M. “Erzurum Oltu kömürü ve Zonguldak Kozlu kömür karışımlarının koklaşma özelliklerinin incelenmesi”, M.Sc. thesis, Atatürk University, Erzurum, 2024.
  • [19] ASTM D05.21 Committee, Standard Test Method for Total Moisture in Coal, 2023. doi: 10.1520/D3302_D3302M-22A.
  • [20] ASTM D05.21 Committee, Standard Test Method for Ash in the Analysis Sample of Coal and Coke from Coal, 2020. doi: 10.1520/D3174-12R18E01.
  • [21] ASTM D05.21 Committee, Standard Test Method for Volatile Matter in the Analysis Sample of Coal and Coke, 2020. doi: 10.1520/D3175-20.
  • [22] ASTM D2799-23 Standard Test Method for Microscopical Determination of the Maceral Composition of Coal, 2023.
  • [23] ASTM D720/D720M-22 Committee, Standard Test Method for Free-Swelling Index of Coal, 2023 doi: 10.1520/D0720-91R10.
  • [24] Coal — Determination of caking power — Gray-King coke test: ISO 502:2015.
  • [25] ASTM D5515-22, Standart Test Method for Determination of the Swelling Properties of Bituminous Coal Using a Dilatometer, 2022. doi: 10.1520/D5515-22.
  • [26] ASTM D2639-D2639M-21, Standart Test Method for Plastic Properties of Coal by the Constant-Torque Gieseler Plastometer, 2022. doi: 10.1520/D2639_D2639M-21.
  • [27] Nasirudeen MB, Jauro A, “Quality of Some Nigerian Coals as Blending Stock in Metallurgical Coke Production”, JMMCE, 10(1) 101-109, 2011, doi: 10.4236/jmmce.2011.101007.
  • [28] Büzkan İ, ‘Kömür Petrografisi Teknikleri ve Endüstriyel uygulamalar’, Madencilik, 26(4), 31-39, 1987.
  • [29] Kumar D, Kumar D, ‘Evaluation of Coking Coal Resources and Reserves’, Management of Coking Coal Resources, 2016.
  • [30] Sahoo M, Bhowmick T, Mishra V, Pala S, Sharma M, Chakravarty S, Significance of coal quality on thermoplastic properties: a case study International Journal of Coal Preparation and Utilization 42 (4) 1015–1032, 2022.
  • [31] Hiçyılmaz C. “Kömürün Petrografik Özelliklerinden Yararlanılarak Koklaşma Özelliklerinin Tayini”, Madencilik, 24, 4, 1990.
  • [32] Sy´korov I, Pickel W, Christanis K, Wolf M, Taylor GH, Flores D, Classification of huminite—ICCP System 1994, International Journal of Coal Geology 62, 85-106, 2005.
  • [33] Kemal M, Arslan V, Cengizler H, Kömür Karışımlarının Koklaştırılmasında Bileşenler Arası Etikileşimler, Madencilik, 43 (4), 29-40, 2004
  • [34] Erik NY, Kömür Özelliklerinin Temiz Kömür Teknolojilerine (Gazlaştırma, Sıvılaştırma, Karbon Elyaf Ve Kok Üretimi) Etkisi: Derleme, UMÜFED Uluslararası Batı Karadeniz Mühendislik ve Fen Bilimleri Dergisi, 4(2), 22-56, 2022.
  • [35] Aziz H, Congo T, Steel KM. “Understanding the multiple interactions of inertinite during pyrolysis/carbonisation with vitrinite: A study of two Australian coals of different rank”, Fuel Process Technol, 217, 106823, 2021.
  • [36] Liu Z, Cao D, Chen G, Chen Q, Bi Z. “Differences in Molecular Structure between Vitrinite and Inertinite and Their Impact on Coal Conversion and Utilization”, ACS Omega, 8(1), 12345–12356, 2023.
  • [37] Samuel OO, Olugbenga EA. “Estimation and assessment of free swelling index and some petrographic properties from chemical analysis of coals across River Niger”, Petroleum and Coal, 2016.
  • [38] Ryemshak SA, Jauro A. “Proximate analysis, rheological properties and technological applications of some Nigerian coals”, Int J Ind Chem, 4(1) 7, 2013, doi: 10.1186/2228-5547-4-7.
  • [39] Sciazko M, Mertas B, Stepien L. Kinetic modelling of coking coal fuidity development, Journal of Thermal Analysis and Calorimetry, 142, 977–990, 2020.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kimya Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Jale Naktiyok

Merve Korkmaz Bu kişi benim

Kübra Yanık Bu kişi benim

Gönderilme Tarihi 6 Haziran 2025
Kabul Tarihi 10 Ekim 2025
Erken Görünüm Tarihi 31 Ekim 2025
Yayımlandığı Sayı Yıl 2026 Sayı: Advanced Online Publication

Kaynak Göster

APA Naktiyok, J., Korkmaz, M., & Yanık, K. (2025). Kozlu taşkömürünün koklaşma özelliklerine oltu linyiti ilavesinin etkisi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi(Advanced Online Publication). https://doi.org/10.65206/pajes.73668
AMA Naktiyok J, Korkmaz M, Yanık K. Kozlu taşkömürünün koklaşma özelliklerine oltu linyiti ilavesinin etkisi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Ekim 2025;(Advanced Online Publication). doi:10.65206/pajes.73668
Chicago Naktiyok, Jale, Merve Korkmaz, ve Kübra Yanık. “Kozlu taşkömürünün koklaşma özelliklerine oltu linyiti ilavesinin etkisi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, sy. Advanced Online Publication (Ekim 2025). https://doi.org/10.65206/pajes.73668.
EndNote Naktiyok J, Korkmaz M, Yanık K (01 Ekim 2025) Kozlu taşkömürünün koklaşma özelliklerine oltu linyiti ilavesinin etkisi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Advanced Online Publication
IEEE J. Naktiyok, M. Korkmaz, ve K. Yanık, “Kozlu taşkömürünün koklaşma özelliklerine oltu linyiti ilavesinin etkisi”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, sy. Advanced Online Publication, Ekim2025, doi: 10.65206/pajes.73668.
ISNAD Naktiyok, Jale vd. “Kozlu taşkömürünün koklaşma özelliklerine oltu linyiti ilavesinin etkisi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Advanced Online Publication (Ekim2025). https://doi.org/10.65206/pajes.73668.
JAMA Naktiyok J, Korkmaz M, Yanık K. Kozlu taşkömürünün koklaşma özelliklerine oltu linyiti ilavesinin etkisi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025. doi:10.65206/pajes.73668.
MLA Naktiyok, Jale vd. “Kozlu taşkömürünün koklaşma özelliklerine oltu linyiti ilavesinin etkisi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, sy. Advanced Online Publication, 2025, doi:10.65206/pajes.73668.
Vancouver Naktiyok J, Korkmaz M, Yanık K. Kozlu taşkömürünün koklaşma özelliklerine oltu linyiti ilavesinin etkisi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025(Advanced Online Publication).