Araştırma Makalesi
BibTex RIS Kaynak Göster

Kinetic studies of acetophenone derivative oximes and investigation of thermal decomposition mechanism

Yıl 2025, Cilt: 31 Sayı: 6, 1093 - 1101, 13.11.2025
https://doi.org/10.5505/pajes.2025.35514

Öz

In this study, two acetophenone derivatives, isonitrosomethyl-p-tolyl ketone (L1) and isonitroso-p-chloroacetophenone (L2), were resynthesized, and their thermal decompositions were investigated kinetically and thermodynamically. Nitrogen gas (5, 10, 15 min flow rate) was used as an inert medium in the thermal decompositions of both ligands. Kinetic analyses were first performed independently of the model using Flynn Wall Ozawa (FWO) and Kissinger Akahira Sunose (KAS) methods, and the effective model in the progression of the reaction was examined by combining the FWO and KAS equations with the model equations together with the graphs of the variation of activation energies with the event fraction. The thermal breakdown processes of L1 and L2 occurred within 25 to 600°C. The effect of heating rate on the TG and DTG curves was studied. As the heating rate went up, so did the temperature needed for the synthetic chemical compounds to break down. The activation energies of the L1molecule, as determined by the KAS and FWO techniques, were 75.96 kJ∙mol-1 and 79.49 kJ∙mol-1, respectively. The computed values for the L2 molecule were 43.80 and 49.37 kJ∙mol-1, respectively.

Kaynakça

  • [1] Chen R, Zhang D, Xu X, Yuan Y. “Pyrolysis characteristics, kinetics, thermodynamics and volatile products of waste medical surgical mask rope by thermogravimetry and online thermogravimetry-Fourier transform infrared-mass spectrometry analysis”. Fuel, 295, 120632, 2021.
  • [2] Saeed S, Ashour I, Sherif H, Ali MRO. “Catalytic and noncatalytic fast pyrolysis of jatropha seeds: Experimental measurements and modeling”. Egyptian Journal of Chemistry, 63, 683–702, 2020.
  • [3] Mishra G, Kumar J, Bhaskar T. “Kinetic studies on the pyrolysis of pinewood”. Bioresource Technology, 182, 282–288, 2015.
  • [4] Singh S, Patil T, Tekade SP, Gawande MB, Sawarkar AN. “Studies on individual pyrolysis and co-pyrolysis of corn cob and polyethylene: Thermal degradation behavior, possible synergism, kinetics, and thermodynamic analysis”. The Science of The Total Environment, 783, 147004, 2021.
  • [5] Wen Y, Wang S, Mu W, Yang W, Jönsson PG. “Pyrolysis performance of peat moss: A simultaneous in-situ thermal analysis and bench-scale experimental study”. Fuel, 277, 118173, 2020.
  • [6] Wang X, Hu M, Hu W, Chen Z, Liu S, Hu Z, Xiao B. “Thermogravimetric kinetic study of agricultural residue biomass pyrolysis based on combined kinetics”. Bioresource Technology, 219, 510–520, 2016.
  • [7] Vargeese A. “A Kinetics Investigation on the Mechanism and Activity of Copper Oxide Nanorods on the Thermal Decomposition of Propellants”. Combustion and Flame, 165, 354–360, 2016.
  • [8] Dewi WU. “Evaluasi Kinetika Dekomposisi Termal Propelan Komposit Ap/Htpb Dengan Metode Kissinger, Flynn Wall Ozawa Dan Coats - Redfren (Evaluation of Thermal Decomposition Kinetics of Ap/Htpb Composite Solid Propellant Using Kissinger, Flynn Wall Ozawa and Coats)”. Jurnal Teknologi Dirgantara, 15, 115–132, 2017.
  • [9] Mothe´ CG, de Miranda IC. “Study of kinetic parameters of thermal decomposition of bagasse and sugarcane straw using Friedman and Ozawa–Flynn–Wall isoconversional methods”. Journal of Thermal Analysis and Calorimetry, 113(2), 497–505, 2013.
  • [10] Rego F, Dias APS, Casquilho M, Rosa FC, Rodrigues A. “Pyrolysis kinetics of short rotation coppice poplar biomass”. Energy, 207, 118191, 2020.
  • [11] Pekacar Aİ. Synthesis of Different Phenylglyoximes Containing Different Substituted Amine Groups and Investigation of Their Metal Complexes. PhD Thesis, Selcuk University, Konya, Turkey, 1994.
  • [12] Sevindir HC. Synthesis of vic-Dioximes Containing Different Substituents and Investigation of Some Transition Metal Complexes of Them. PhD Thesis, Selcuk University, Konya, Turkey, 1992.
  • [13] Karapınar E, Karapınar N, Özcan E. “Synthesis of N’-(4’-benzo[15-crown-5])phenylaminoglyoxime and its Complexes with Nickel(II), Cobalt(II) and Copper(II)”. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 33(8), 1319–1328, 2003.
  • [14] Brown ME, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham A, Opfermann J, Strey R, Anderson HL, Kemmler A, Keuleers R, Janssens J, Desseyn HO, Li Chao-Rui, Tang, Tong B, Roduit B, Malek J, Mitsuhashi T. “Computational Aspects of Kinetic Analysis: Part A: The ICTAC Kinetics Project—Data, Methods and Results”. Thermochimica Acta, 355(1–2), 125–143, 2000.
  • [15] Maciejewski M. “Computational Aspects of Kinetic Analysis. Part B: The ICTAC Kinetics Project—The Decomposition Kinetics of Calcium Carbonate Revisited, or Some Tips on Survival in the Kinetic Minefield”. Thermochimica Acta, 355(1–2), 145–154, 2000.
  • [16] Vyazovkin S. “Computational Aspects of Kinetic Analysis. Part C. The ICTAC Kinetics Project—The Light at the End of the Tunnel”. Thermochimica Acta, 355(1–2), 155–163, 2000.
  • [17] Burnham AK. “Computational Aspects of Kinetic Analysis. Part D: The ICTAC Kinetics Project—Multi-Thermal-History Model-Fitting Methods and Their Relation to Isoconversional Methods”. Thermochimica Acta, 355(1–2), 165–170, 2000.
  • [18] Roduit B. “Computational Aspects of Kinetic Analysis. Part E: The ICTAC Kinetics Project—Numerical Techniques and Kinetics of Solid State Processes”. Thermochimica Acta, 355(1–2), 171–180, 2000.
  • [19] Morancho JM, Salla JM, Cadenato A, Fernández-Francos X, Ramis X, Colomer P, Calventus Y, Ruíz R. “Kinetic Studies of the Degradation of Poly(vinyl alcohol)-Based Proton-Conducting Membranes at Low Temperatures”. Thermochimica Acta, 521(1–2), 139–147, 2011.
  • [20] Doyle CD. “Estimating Isothermal Life From Thermogravimetric Data”. Journal of Applied Polymer Science, 6(24), 639–642, 1962.
  • [21] Kissinger H. “Variation of Peak Temperature With Heating Rate in Differential Thermal Analysis”. Journal of Research of the National Bureau of Standards, 57(4), 217–221, 1956.
  • [22] Akahira T, Sunose T. “Joint Convention of Four Electrical Institutes”. Science Technology, 16, 22–31, 1971.
  • [23] Ozawa T. “A New Method of Analyzing Thermogravimetric Data”. Bulletin of the Chemical Society of Japan, 38(11), 1881–1886, 1965.
  • [24] Flynn J, Wall L. “A Quick, Direct Method for the Determination of Activation Energy from Thermogravimetric Data”. Journal of Polymer Science Part B: Polymer Letters, 4(5), 323–328, 1966.
  • [25] Ortega A. “Some Successes and Failures of the Methods Based on Several Experiments”. Thermochimica Acta, 284(2), 379–387, 1996.
  • [26] Halikia I, Zoumpoulakis L, Christodoulou E, Prattis D. “Kinetic Study of the Thermal Decomposition of Calcium Carbonate by Isothermal Methods of Analysis”. The European Journal of Mineral Processing and Environmental Protection, 1(2), 89–102, 2001.
  • [27] Galwey AK, Brown ME. Kinetic Background to Thermal Analysis and Calorimetry. In: Brown ME (ed.). Handbook of Thermal Analysis and Calorimetry: Principles and Practice, 691. Elsevier Scientific, Amsterdam, Holland, 1998.
  • [28] Vyazovkin S, Burnham AK, Criado JM, Perez-Maqueda LA, Popescu C, Sbirazzuoli N. “ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data”. Thermochimica Acta, 520, 1–19, 2011.
  • [29] Tuncer YG. Investigation of Coordination Compounds Prepared Using Bis(N,N’-Salicylidene)-1,3-Diaminopropane Ligand and Heterocyclic Compounds by Thermal Analysis Methods. MSc Thesis, Ankara University, Ankara, Turkey, 2021.

Asetofenon türevi oksimlerin kinetik çalışmaları ve termal bozunma mekanizmasının incelenmesi

Yıl 2025, Cilt: 31 Sayı: 6, 1093 - 1101, 13.11.2025
https://doi.org/10.5505/pajes.2025.35514

Öz

Bu çalışmada, iki adet asetofenon türevi olan izonitrosometil-p-tolil keton (L1) ve izonitroso-p-kloroasetofenon (L2) ligandları yeniden sentezlenerek kinetik ve termodinamik olarak termal bozunmaları incelenmiştir. Her iki ligandın termal bozunmalarında inert ortam olarak azot gazı (5, 10, 15 dak akış hızı) kullanılmıştır. Kinetik analizler ilk olarak modelden bağımsız olarak Flynn Wall Ozawa (FWO) ve Kissinger Akahira Sunose (KAS) yöntemleri kullanılarak, aktivasyon enerjilerinin olay kesriyle değişiminin grafikleri ile birlikte FWO ve KAS denklemlernini model denklemleriyle birleştirilmiş haliyle reaksiyonun ilerlemesinde etkin model incelenmiştir. İzonitrosometil-p-tolil keton (L1) ve izonitroso-p-kloroasetofenon (L2)’un termal bozunma basamakları 25 ila 600°C arasında gerçekleşti. Isıtma hızının TG ve DTG eğrileri üzerindeki etkisi incelendi. Isıtma hızı arttıkça, sentezlenen kimyasal bileşiklerin parçalanması için gereken sıcaklık da arttı. L1 molekülünün KAS ve FWO teknikleriyle belirlenen aktivasyon enerjileri sırasıyla 75,96 kJ∙mol-1 ve 79,49 kJ∙mol-1 idi. L2 molekülü için hesaplanan değerler sırasıyla 43,80 ve 49,37 kJ∙mol-1 dür.

Kaynakça

  • [1] Chen R, Zhang D, Xu X, Yuan Y. “Pyrolysis characteristics, kinetics, thermodynamics and volatile products of waste medical surgical mask rope by thermogravimetry and online thermogravimetry-Fourier transform infrared-mass spectrometry analysis”. Fuel, 295, 120632, 2021.
  • [2] Saeed S, Ashour I, Sherif H, Ali MRO. “Catalytic and noncatalytic fast pyrolysis of jatropha seeds: Experimental measurements and modeling”. Egyptian Journal of Chemistry, 63, 683–702, 2020.
  • [3] Mishra G, Kumar J, Bhaskar T. “Kinetic studies on the pyrolysis of pinewood”. Bioresource Technology, 182, 282–288, 2015.
  • [4] Singh S, Patil T, Tekade SP, Gawande MB, Sawarkar AN. “Studies on individual pyrolysis and co-pyrolysis of corn cob and polyethylene: Thermal degradation behavior, possible synergism, kinetics, and thermodynamic analysis”. The Science of The Total Environment, 783, 147004, 2021.
  • [5] Wen Y, Wang S, Mu W, Yang W, Jönsson PG. “Pyrolysis performance of peat moss: A simultaneous in-situ thermal analysis and bench-scale experimental study”. Fuel, 277, 118173, 2020.
  • [6] Wang X, Hu M, Hu W, Chen Z, Liu S, Hu Z, Xiao B. “Thermogravimetric kinetic study of agricultural residue biomass pyrolysis based on combined kinetics”. Bioresource Technology, 219, 510–520, 2016.
  • [7] Vargeese A. “A Kinetics Investigation on the Mechanism and Activity of Copper Oxide Nanorods on the Thermal Decomposition of Propellants”. Combustion and Flame, 165, 354–360, 2016.
  • [8] Dewi WU. “Evaluasi Kinetika Dekomposisi Termal Propelan Komposit Ap/Htpb Dengan Metode Kissinger, Flynn Wall Ozawa Dan Coats - Redfren (Evaluation of Thermal Decomposition Kinetics of Ap/Htpb Composite Solid Propellant Using Kissinger, Flynn Wall Ozawa and Coats)”. Jurnal Teknologi Dirgantara, 15, 115–132, 2017.
  • [9] Mothe´ CG, de Miranda IC. “Study of kinetic parameters of thermal decomposition of bagasse and sugarcane straw using Friedman and Ozawa–Flynn–Wall isoconversional methods”. Journal of Thermal Analysis and Calorimetry, 113(2), 497–505, 2013.
  • [10] Rego F, Dias APS, Casquilho M, Rosa FC, Rodrigues A. “Pyrolysis kinetics of short rotation coppice poplar biomass”. Energy, 207, 118191, 2020.
  • [11] Pekacar Aİ. Synthesis of Different Phenylglyoximes Containing Different Substituted Amine Groups and Investigation of Their Metal Complexes. PhD Thesis, Selcuk University, Konya, Turkey, 1994.
  • [12] Sevindir HC. Synthesis of vic-Dioximes Containing Different Substituents and Investigation of Some Transition Metal Complexes of Them. PhD Thesis, Selcuk University, Konya, Turkey, 1992.
  • [13] Karapınar E, Karapınar N, Özcan E. “Synthesis of N’-(4’-benzo[15-crown-5])phenylaminoglyoxime and its Complexes with Nickel(II), Cobalt(II) and Copper(II)”. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 33(8), 1319–1328, 2003.
  • [14] Brown ME, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham A, Opfermann J, Strey R, Anderson HL, Kemmler A, Keuleers R, Janssens J, Desseyn HO, Li Chao-Rui, Tang, Tong B, Roduit B, Malek J, Mitsuhashi T. “Computational Aspects of Kinetic Analysis: Part A: The ICTAC Kinetics Project—Data, Methods and Results”. Thermochimica Acta, 355(1–2), 125–143, 2000.
  • [15] Maciejewski M. “Computational Aspects of Kinetic Analysis. Part B: The ICTAC Kinetics Project—The Decomposition Kinetics of Calcium Carbonate Revisited, or Some Tips on Survival in the Kinetic Minefield”. Thermochimica Acta, 355(1–2), 145–154, 2000.
  • [16] Vyazovkin S. “Computational Aspects of Kinetic Analysis. Part C. The ICTAC Kinetics Project—The Light at the End of the Tunnel”. Thermochimica Acta, 355(1–2), 155–163, 2000.
  • [17] Burnham AK. “Computational Aspects of Kinetic Analysis. Part D: The ICTAC Kinetics Project—Multi-Thermal-History Model-Fitting Methods and Their Relation to Isoconversional Methods”. Thermochimica Acta, 355(1–2), 165–170, 2000.
  • [18] Roduit B. “Computational Aspects of Kinetic Analysis. Part E: The ICTAC Kinetics Project—Numerical Techniques and Kinetics of Solid State Processes”. Thermochimica Acta, 355(1–2), 171–180, 2000.
  • [19] Morancho JM, Salla JM, Cadenato A, Fernández-Francos X, Ramis X, Colomer P, Calventus Y, Ruíz R. “Kinetic Studies of the Degradation of Poly(vinyl alcohol)-Based Proton-Conducting Membranes at Low Temperatures”. Thermochimica Acta, 521(1–2), 139–147, 2011.
  • [20] Doyle CD. “Estimating Isothermal Life From Thermogravimetric Data”. Journal of Applied Polymer Science, 6(24), 639–642, 1962.
  • [21] Kissinger H. “Variation of Peak Temperature With Heating Rate in Differential Thermal Analysis”. Journal of Research of the National Bureau of Standards, 57(4), 217–221, 1956.
  • [22] Akahira T, Sunose T. “Joint Convention of Four Electrical Institutes”. Science Technology, 16, 22–31, 1971.
  • [23] Ozawa T. “A New Method of Analyzing Thermogravimetric Data”. Bulletin of the Chemical Society of Japan, 38(11), 1881–1886, 1965.
  • [24] Flynn J, Wall L. “A Quick, Direct Method for the Determination of Activation Energy from Thermogravimetric Data”. Journal of Polymer Science Part B: Polymer Letters, 4(5), 323–328, 1966.
  • [25] Ortega A. “Some Successes and Failures of the Methods Based on Several Experiments”. Thermochimica Acta, 284(2), 379–387, 1996.
  • [26] Halikia I, Zoumpoulakis L, Christodoulou E, Prattis D. “Kinetic Study of the Thermal Decomposition of Calcium Carbonate by Isothermal Methods of Analysis”. The European Journal of Mineral Processing and Environmental Protection, 1(2), 89–102, 2001.
  • [27] Galwey AK, Brown ME. Kinetic Background to Thermal Analysis and Calorimetry. In: Brown ME (ed.). Handbook of Thermal Analysis and Calorimetry: Principles and Practice, 691. Elsevier Scientific, Amsterdam, Holland, 1998.
  • [28] Vyazovkin S, Burnham AK, Criado JM, Perez-Maqueda LA, Popescu C, Sbirazzuoli N. “ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data”. Thermochimica Acta, 520, 1–19, 2011.
  • [29] Tuncer YG. Investigation of Coordination Compounds Prepared Using Bis(N,N’-Salicylidene)-1,3-Diaminopropane Ligand and Heterocyclic Compounds by Thermal Analysis Methods. MSc Thesis, Ankara University, Ankara, Turkey, 2021.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kimya Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Züleyha Merve İlkileri Bu kişi benim

Emin Karapinar

Ramazan Donat

Nazan Karapınar

Gönderilme Tarihi 17 Ocak 2025
Kabul Tarihi 10 Mart 2025
Erken Görünüm Tarihi 2 Kasım 2025
Yayımlanma Tarihi 13 Kasım 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 31 Sayı: 6

Kaynak Göster

APA İlkileri, Z. M., Karapinar, E., Donat, R., Karapınar, N. (2025). Kinetic studies of acetophenone derivative oximes and investigation of thermal decomposition mechanism. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 31(6), 1093-1101. https://doi.org/10.5505/pajes.2025.35514
AMA İlkileri ZM, Karapinar E, Donat R, Karapınar N. Kinetic studies of acetophenone derivative oximes and investigation of thermal decomposition mechanism. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Kasım 2025;31(6):1093-1101. doi:10.5505/pajes.2025.35514
Chicago İlkileri, Züleyha Merve, Emin Karapinar, Ramazan Donat, ve Nazan Karapınar. “Kinetic studies of acetophenone derivative oximes and investigation of thermal decomposition mechanism”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31, sy. 6 (Kasım 2025): 1093-1101. https://doi.org/10.5505/pajes.2025.35514.
EndNote İlkileri ZM, Karapinar E, Donat R, Karapınar N (01 Kasım 2025) Kinetic studies of acetophenone derivative oximes and investigation of thermal decomposition mechanism. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31 6 1093–1101.
IEEE Z. M. İlkileri, E. Karapinar, R. Donat, ve N. Karapınar, “Kinetic studies of acetophenone derivative oximes and investigation of thermal decomposition mechanism”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 31, sy. 6, ss. 1093–1101, 2025, doi: 10.5505/pajes.2025.35514.
ISNAD İlkileri, Züleyha Merve vd. “Kinetic studies of acetophenone derivative oximes and investigation of thermal decomposition mechanism”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31/6 (Kasım2025), 1093-1101. https://doi.org/10.5505/pajes.2025.35514.
JAMA İlkileri ZM, Karapinar E, Donat R, Karapınar N. Kinetic studies of acetophenone derivative oximes and investigation of thermal decomposition mechanism. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31:1093–1101.
MLA İlkileri, Züleyha Merve vd. “Kinetic studies of acetophenone derivative oximes and investigation of thermal decomposition mechanism”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 31, sy. 6, 2025, ss. 1093-01, doi:10.5505/pajes.2025.35514.
Vancouver İlkileri ZM, Karapinar E, Donat R, Karapınar N. Kinetic studies of acetophenone derivative oximes and investigation of thermal decomposition mechanism. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31(6):1093-101.