Araştırma Makalesi
BibTex RIS Kaynak Göster

Petrogenesis and geochemical evolution of mafic dikes in the Kıratlı Region (Yüksekova Complex, SE Türkiye): Evidence for tholeiitic–alkaline transition during Neo-Tethyan evolution

Yıl 2025, Cilt: 31 Sayı: 8, 1456 - 1468, 17.12.2025
https://doi.org/10.65206/pajes.80745

Öz

This study presents new petrographic and geochemical data on mafic dikes intruding the Kıratlı ophiolite (İpekyolu–Van, Eastern Anatolia), a segment of the southeastern branch of the Neo-Tethys. The dikes are mainly represented by microgabbros and diabases, composed of plagioclase and pyroxene, and display alteration features such as chloritization and sericitization. Major and trace element analyses indicate basaltic compositions that can be divided into tholeiitic and alkaline groups. Tholeiitic samples show depleted rare earth element (REE) patterns, Nb depletion, and Th enrichment, consistent with a supra-subduction zone origin, whereas alkaline samples exhibit light rare earth element (LREE)-enriched signatures and within-plate affinities, reflecting low-degree partial melting and/or crustal contamination during extensional phases. Comparisons with other ophiolitic dike suites in Türkiye suggest that the Kıratlı dikes record polyphase magmatism related to both subduction and extension. These findings provide new insights into the tectono-magmatic evolution of the southeastern Anatolian Ophiolite Belt and highlight the complex interplay of mantle heterogeneity, fractional crystallization, and tectonic processes during the closure of the Neo-Tethys.

Kaynakça

  • [1] Şengör AMC, Yılmaz Y. “Tethyan Evolution of Turkey: A Plate Tectonic Approach”. Tectonophysics, 75, 181-241, 1981.
  • [2] Robertson AHF, Karamata S, Saric K. “Overview of ophiolites and related units in the Late Palaeozoic–Early Cenozoic magmatic and tectonic development of Tethys in the northern part of the Balkan region”. Lithos, 108(1-4), 1-36, 2004.
  • [3] Pearce JA. Trace Element Characteristics of Lavas from Destructive Plate Boundaries. Editor: Thorpe RS, Andesites: Orogenic Andesites and Related Rocks, 252-548, Chichester, England: John Wiley and Sons, 1982.
  • [4] Dilek Y, Furnes H. “Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere”. Geological Society of America Bulletin, 123, 387–411, 2011.
  • [5] Pearce, JA. Geochemical Evolution for the Genesis and Eruptive Setting of Lavas from Tethyan Ophiolites. Editor: Panayiotou A. Opiolites, 261-272, Geological Survey Department, Cyprus, 1980.
  • [6] Hawkins JW, Bloomer SH, Evans CA, Melchior JT. “Evolution of intra–oceanic arc–trench systems”. Tectonophysics, 102, 175–205, 1984.
  • [7] Parlak O, Höck V, Delaloye M. “Suprasubduction zone origin of the Pozanti-Karsanti ophiolite (Southern Turkey) deduced from whole-rock and mineral chemistry of the gabbroic cumulates”. Geological Society, London, Special Publications, 173(1), 219-234, 2000.
  • [8] Dilek Y, Thy P. “Island arc tholeiite to boninitic melt evolution of the Cretaceous Kizildag (Turkey) ophiolite: Model for multi-stage early arc-forearc magmatism in Tethyan subduction factories”. Lithos, 113, 68–87, 2009.
  • [9] Çimen O, Önal, AÖ. “Preliminary geochemical data of the mafic rocks from the Ovacik and Pülümür Ophiolite Zone (Eastern Anatolia, Turkey): implications for the geodynamic evolution of the Northern Neotethyan Ocean”. Ofioliti, 43(2), 103-116, 2018.
  • [10] Bağcı U, Parlak O, Höck V. “Geochemical character and tectonic environment of ultramafic to mafic cumulate rocks from the Tekirova (Antalya) ophiolite (southern Turkey)”. Geologıcal Journal, 41, 193-219, 2006.
  • [11] Elitok Ö, Dolmaz MN. Tectonic Escape Mechanism in the Crustal Evolution of Eastern Anatolian Region (Turkey). Editor: Schattner, U. New Frontiers in Tectonic Research-At the Midst of Plate Convergence, 289-302, Open Access Peer-Reviewed Edited Volume, 2011.
  • [12] Yılmaz Y. “New evidence and model on the evolution of the southeast anatolian orogen”. Geological Society of American Bulletin, 105, 251-271, 1993.
  • [13] Bozkurt E. “Neotectonics of Turkey-a Synthesis”. Geodinamica Acta, 13(1-3), 3-30, 2001.
  • [14] Koçyiğit A, Yılmaz A, Adamia A, Kuloshvili S. “Neotectonics of East Anatolian Plateau (Turkey) and Lesser Caucasus: Implication for Transition From Thrusting To Strike-Slip Faulting”. Geodinamica Acta, 14, 177–195, 2001.
  • [15] Barazangi M, Sandvol E, Seber D. “Structure and tectonic evolution of the Anatolian plateau in eastern Turkey”. Geological Society of America Special Paper, 409, 463-473, 2006.
  • [16] Şengör AMC, Özeren MS, Keskin M, Sakınç M, Özbakır AD, Kayan İ. “Eastern Turkish high plateau as a small Turkic-type orogen: Implications for post-collisional crust-forming processes in Turkic-type orogens”. Earth- Science Reviews, 90, 1–48, 2008.
  • [17] Göncüoğlu MC, Dirik K, Kozlu H. “General chracteristics of pre-Alpine and Alpine Terranes in Turkey: Explanatory notes to the terrane map of Turkey”. Annales Geologique de Pays Hellenique, 37, 515-536, 1997.
  • [18] Okay AI, Tüysüz O. “Tethyan sutures of northern Turkey”. Geological Society, London, Special Publications, 156, 475–515, 1999.
  • [19] Tüysüz N, Erler A. “Geology and geotectonic implications of Kazıkkaya area, Kağızman-Kars (Turkey)”. Proceedings of the International symposium on the Geology of the Black sea Region, Ankara, Turkey, 7-11 September 1995.
  • [20] Şengör AMC, Özeren S, Genç T, Zor E. “East Anatolian high plateau as a mantle-supported, north-south shortened domal structure”. Geophysical Research Letters, 30(4), 8045, 2003.
  • [21] Saydamer M. “İran Sınırı Boyunca Yapılan Jeolojik Çalışmanın Nihai Raporu”. MTA Genel Müdürlüğü, 5622, Ankara, 1976.
  • [22] Acarlar M, Bilgin A, Erkal T, Güner E, Şen A, Umut M, Elibol E, Gedik İ, Hakyemez Y, Uğuz F. “Van Gölü ve Kuzeyinin Jeolojisi”. Van, MTA Raporu, 9469, 1991.
  • [23] Ateş S, Mutlu G, Özerk OC, Çiçek İ, Karakaya Gülmez F, Bulut Ü A, Karabıyıkoğlu M, Osmançelebioğlu R, Özata A, Aksoy A. “Van İlinin yerbilim verileri”. Maden Tetkik ve Arama Genel Müdürlüğü, Ankara, Türkiye, 10961, 2007.
  • [24] Rollinson HR. Using Geochemical Data: Evolution, Presentation, Interpretation. Longman Scientific and Technical, England, 1993.
  • [25] Hart SR, Erlant AJ, Kable EJD. “Sea floor basalt alteration: some chemical and Sr isotopic effects”. Contributions to Mineralogy and Petrology, 44, 219-230, 1974.
  • [26] Humphris SE, Thompson G. “Trace element mobility during hydrothermal alteration of oceanic basalts”. Geochimica et Cosmochimica Acta, 42, 127–136, 1978.
  • [27] Thompson TB. Genesis of gold associated with alkaline igneous rocks. Geological Society of America, Abstracts with Programs, 23, 99- 100, 1991.
  • [28] Pearce JA, Cann JR. “Tectonic setting of basic volcanic rocks investigated using trace element analyses”. Earth and Planetary Science Letters, 19, 290-300, 1973.
  • [29] Smith RE, Smıth SE. “Comments on the use of Ti, Zr, Y, Sr, K, P and Nb in classification of basaltic magmas”. Earth and Planetary Science Letters, 32, 114-120, 1976.
  • [30] Floyd PA, Wınchester JA. “Magma type and tectonic setting discrimination using immobile elements”. Earth and Planetary Science Letters, 27, 211-218, 1978.
  • [31] Pearce JA. User’s Guide to Basaltic Discrimination Diagrams. Editor: Wyman DA. Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration V.12, 79-113. Geological Association of Canada, Short Course Notes, 1996.
  • [32] Miyashiro A. “Volcanic rock series in island arcs and active continental margins”. American Journal of Science, 274, 321–343, 1974.
  • [33] Le Maitre R W. Igneous rocks a Classification and Glossary of Terms Recommendations of the International Union of Geological Sciences, Sub-Commission on the Systematics of Igneous Rocks. 2nd ed. UK, Cambridge University Press, 2002.
  • [34] Hawkesworth CJ, Gallagher K, Hergt JM, McDermott F. “Mantle and slab contributions in arc magmas”. Annual Review of Earth and Planetary Sciences, 21, 175–204, 1993.
  • [35] Pearce JA. “Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust”. Lithos, 100, 14-48, 2008.
  • [36] Wood DA. “The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province”. Earth and Planetary Science Letters, 50, 11-30, 1980.
  • [37] Shervais JW. “Ti-V plots and the petrogenesis of modern and ophiolitic lavas”. Earth and Planetary Science Letters, 59, 101-118, 1982.
  • [38] Alabaster T, Pearce JA, Malpas J. “The Volcanic Stratigraphy and Petrogenesis of the Oman Ophiolite Complex”. Contributions to Mineralogy and Petrology, 81(3), 168–183, 1982.
  • [39] Pearce J A, Robinson PT. “The Troodos Ophiolite, Cyprus: Magmatic Evolution and Tectonic Setting”. Lithos, 114(1–2), 1–16, 2010.
  • [40] Schilling J-G, Zajac M, Evans R, Johnston T, White W, Devine JD, Kingsley R. “Petrologic and geochemical variations along the mid-Atlantic Ridge from 29ON to 73ON”. American Journal of Science, 283, 510-586, 1983.
  • [41] Coleman RG. Ophiolites. 1st ed. Berlin, Springer-Verlag, 1977.
  • [42] Sun SS, McDonough WF. “Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes”. Geological Society of London Special Publications, 42, 313–345, 1989.
  • [43] Nicolas A. Structure of Ophiolites and Dynamics of Oceanic Lithosphere. 7th ed. Holland, Kluwer Academic Publishers, 2012.
  • [44] Parlak O, Höck V, Delaloye M. “The supra-subduction zone Pozanti–Karsanti ophiolite, southern Turkey: Evidence for high-pressure crystal fractionation of ultramafic cumulates”. Lithos, 65(1–2), 205-224, 2002.

Kıratlı Bölgesi (Yüksekova Kompleksi, GB Türkiye) mafik dayklarının petrojenezi ve jeokimyasal evrimi: Neo-Tetis evrimi sırasında toleyitik–alkali geçişine kanıtlar

Yıl 2025, Cilt: 31 Sayı: 8, 1456 - 1468, 17.12.2025
https://doi.org/10.65206/pajes.80745

Öz

Bu çalışma, Doğu Anadolu'da (İpekyolu–Van) yer alan Kıratlı ofiyoliti içine sokulan mafik dayklara ait yeni petrografik ve jeokimyasal verileri sunmaktadır. Neo-Tetis’in güneydoğu koluna ait bir kesiti temsil eden bu dayklar, esas olarak plajiyoklas ve piroksen içeren mikrogabro ve diyabazlardan oluşmakta, ayrıca kloritlenme ve serisitlenme gibi alterasyon özellikleri sergilemektedir. Ana ve iz element analizleri, daykların bazaltik bileşimler gösterdiğini ve toleyitik ile alkalen olmak üzere iki gruba ayrıldığını ortaya koymaktadır. Toleyitik örnekler, nadir toprak elementlerinde (REE) tükenmiş desenler, niyobyum (Nb) azalması ve toryum (Th) zenginleşmesi ile karakterize olup, bunlar bir süpra-subdüksiyon zonu (SSZ) kökenine işaret etmektedir. Buna karşılık, alkalen örnekler hafif nadir toprak elementlerince (LREE) zengin desenler ve kıtasal iç plakaya (within-plate) benzer jeokimyasal özellikler sergileyerek, düşük dereceli kısmî erimeyi ve/veya gerilmeli tektonik evreler sırasında kabuksal kontaminasyonu yansıtmaktadır. Türkiye’deki diğer ofiyolitik dayk serileriyle yapılan karşılaştırmalar, Kıratlı dayklarının hem dalma-batma hem de gerilme rejimlerine bağlı çok evreli magmatizmayı kaydettiğini göstermektedir. Bu bulgular, Güneydoğu Anadolu Ofiyolit Kuşağı’nın tektono-magmatik evrimine dair yeni bilgiler sunmakta ve Neo-Tetis Okyanusu’nun kapanışı sırasında manto heterojenliği, fraksiyonel kristallenme ve tektonik süreçlerin karmaşık etkileşimini vurgulamaktadır.

Kaynakça

  • [1] Şengör AMC, Yılmaz Y. “Tethyan Evolution of Turkey: A Plate Tectonic Approach”. Tectonophysics, 75, 181-241, 1981.
  • [2] Robertson AHF, Karamata S, Saric K. “Overview of ophiolites and related units in the Late Palaeozoic–Early Cenozoic magmatic and tectonic development of Tethys in the northern part of the Balkan region”. Lithos, 108(1-4), 1-36, 2004.
  • [3] Pearce JA. Trace Element Characteristics of Lavas from Destructive Plate Boundaries. Editor: Thorpe RS, Andesites: Orogenic Andesites and Related Rocks, 252-548, Chichester, England: John Wiley and Sons, 1982.
  • [4] Dilek Y, Furnes H. “Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere”. Geological Society of America Bulletin, 123, 387–411, 2011.
  • [5] Pearce, JA. Geochemical Evolution for the Genesis and Eruptive Setting of Lavas from Tethyan Ophiolites. Editor: Panayiotou A. Opiolites, 261-272, Geological Survey Department, Cyprus, 1980.
  • [6] Hawkins JW, Bloomer SH, Evans CA, Melchior JT. “Evolution of intra–oceanic arc–trench systems”. Tectonophysics, 102, 175–205, 1984.
  • [7] Parlak O, Höck V, Delaloye M. “Suprasubduction zone origin of the Pozanti-Karsanti ophiolite (Southern Turkey) deduced from whole-rock and mineral chemistry of the gabbroic cumulates”. Geological Society, London, Special Publications, 173(1), 219-234, 2000.
  • [8] Dilek Y, Thy P. “Island arc tholeiite to boninitic melt evolution of the Cretaceous Kizildag (Turkey) ophiolite: Model for multi-stage early arc-forearc magmatism in Tethyan subduction factories”. Lithos, 113, 68–87, 2009.
  • [9] Çimen O, Önal, AÖ. “Preliminary geochemical data of the mafic rocks from the Ovacik and Pülümür Ophiolite Zone (Eastern Anatolia, Turkey): implications for the geodynamic evolution of the Northern Neotethyan Ocean”. Ofioliti, 43(2), 103-116, 2018.
  • [10] Bağcı U, Parlak O, Höck V. “Geochemical character and tectonic environment of ultramafic to mafic cumulate rocks from the Tekirova (Antalya) ophiolite (southern Turkey)”. Geologıcal Journal, 41, 193-219, 2006.
  • [11] Elitok Ö, Dolmaz MN. Tectonic Escape Mechanism in the Crustal Evolution of Eastern Anatolian Region (Turkey). Editor: Schattner, U. New Frontiers in Tectonic Research-At the Midst of Plate Convergence, 289-302, Open Access Peer-Reviewed Edited Volume, 2011.
  • [12] Yılmaz Y. “New evidence and model on the evolution of the southeast anatolian orogen”. Geological Society of American Bulletin, 105, 251-271, 1993.
  • [13] Bozkurt E. “Neotectonics of Turkey-a Synthesis”. Geodinamica Acta, 13(1-3), 3-30, 2001.
  • [14] Koçyiğit A, Yılmaz A, Adamia A, Kuloshvili S. “Neotectonics of East Anatolian Plateau (Turkey) and Lesser Caucasus: Implication for Transition From Thrusting To Strike-Slip Faulting”. Geodinamica Acta, 14, 177–195, 2001.
  • [15] Barazangi M, Sandvol E, Seber D. “Structure and tectonic evolution of the Anatolian plateau in eastern Turkey”. Geological Society of America Special Paper, 409, 463-473, 2006.
  • [16] Şengör AMC, Özeren MS, Keskin M, Sakınç M, Özbakır AD, Kayan İ. “Eastern Turkish high plateau as a small Turkic-type orogen: Implications for post-collisional crust-forming processes in Turkic-type orogens”. Earth- Science Reviews, 90, 1–48, 2008.
  • [17] Göncüoğlu MC, Dirik K, Kozlu H. “General chracteristics of pre-Alpine and Alpine Terranes in Turkey: Explanatory notes to the terrane map of Turkey”. Annales Geologique de Pays Hellenique, 37, 515-536, 1997.
  • [18] Okay AI, Tüysüz O. “Tethyan sutures of northern Turkey”. Geological Society, London, Special Publications, 156, 475–515, 1999.
  • [19] Tüysüz N, Erler A. “Geology and geotectonic implications of Kazıkkaya area, Kağızman-Kars (Turkey)”. Proceedings of the International symposium on the Geology of the Black sea Region, Ankara, Turkey, 7-11 September 1995.
  • [20] Şengör AMC, Özeren S, Genç T, Zor E. “East Anatolian high plateau as a mantle-supported, north-south shortened domal structure”. Geophysical Research Letters, 30(4), 8045, 2003.
  • [21] Saydamer M. “İran Sınırı Boyunca Yapılan Jeolojik Çalışmanın Nihai Raporu”. MTA Genel Müdürlüğü, 5622, Ankara, 1976.
  • [22] Acarlar M, Bilgin A, Erkal T, Güner E, Şen A, Umut M, Elibol E, Gedik İ, Hakyemez Y, Uğuz F. “Van Gölü ve Kuzeyinin Jeolojisi”. Van, MTA Raporu, 9469, 1991.
  • [23] Ateş S, Mutlu G, Özerk OC, Çiçek İ, Karakaya Gülmez F, Bulut Ü A, Karabıyıkoğlu M, Osmançelebioğlu R, Özata A, Aksoy A. “Van İlinin yerbilim verileri”. Maden Tetkik ve Arama Genel Müdürlüğü, Ankara, Türkiye, 10961, 2007.
  • [24] Rollinson HR. Using Geochemical Data: Evolution, Presentation, Interpretation. Longman Scientific and Technical, England, 1993.
  • [25] Hart SR, Erlant AJ, Kable EJD. “Sea floor basalt alteration: some chemical and Sr isotopic effects”. Contributions to Mineralogy and Petrology, 44, 219-230, 1974.
  • [26] Humphris SE, Thompson G. “Trace element mobility during hydrothermal alteration of oceanic basalts”. Geochimica et Cosmochimica Acta, 42, 127–136, 1978.
  • [27] Thompson TB. Genesis of gold associated with alkaline igneous rocks. Geological Society of America, Abstracts with Programs, 23, 99- 100, 1991.
  • [28] Pearce JA, Cann JR. “Tectonic setting of basic volcanic rocks investigated using trace element analyses”. Earth and Planetary Science Letters, 19, 290-300, 1973.
  • [29] Smith RE, Smıth SE. “Comments on the use of Ti, Zr, Y, Sr, K, P and Nb in classification of basaltic magmas”. Earth and Planetary Science Letters, 32, 114-120, 1976.
  • [30] Floyd PA, Wınchester JA. “Magma type and tectonic setting discrimination using immobile elements”. Earth and Planetary Science Letters, 27, 211-218, 1978.
  • [31] Pearce JA. User’s Guide to Basaltic Discrimination Diagrams. Editor: Wyman DA. Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration V.12, 79-113. Geological Association of Canada, Short Course Notes, 1996.
  • [32] Miyashiro A. “Volcanic rock series in island arcs and active continental margins”. American Journal of Science, 274, 321–343, 1974.
  • [33] Le Maitre R W. Igneous rocks a Classification and Glossary of Terms Recommendations of the International Union of Geological Sciences, Sub-Commission on the Systematics of Igneous Rocks. 2nd ed. UK, Cambridge University Press, 2002.
  • [34] Hawkesworth CJ, Gallagher K, Hergt JM, McDermott F. “Mantle and slab contributions in arc magmas”. Annual Review of Earth and Planetary Sciences, 21, 175–204, 1993.
  • [35] Pearce JA. “Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust”. Lithos, 100, 14-48, 2008.
  • [36] Wood DA. “The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province”. Earth and Planetary Science Letters, 50, 11-30, 1980.
  • [37] Shervais JW. “Ti-V plots and the petrogenesis of modern and ophiolitic lavas”. Earth and Planetary Science Letters, 59, 101-118, 1982.
  • [38] Alabaster T, Pearce JA, Malpas J. “The Volcanic Stratigraphy and Petrogenesis of the Oman Ophiolite Complex”. Contributions to Mineralogy and Petrology, 81(3), 168–183, 1982.
  • [39] Pearce J A, Robinson PT. “The Troodos Ophiolite, Cyprus: Magmatic Evolution and Tectonic Setting”. Lithos, 114(1–2), 1–16, 2010.
  • [40] Schilling J-G, Zajac M, Evans R, Johnston T, White W, Devine JD, Kingsley R. “Petrologic and geochemical variations along the mid-Atlantic Ridge from 29ON to 73ON”. American Journal of Science, 283, 510-586, 1983.
  • [41] Coleman RG. Ophiolites. 1st ed. Berlin, Springer-Verlag, 1977.
  • [42] Sun SS, McDonough WF. “Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes”. Geological Society of London Special Publications, 42, 313–345, 1989.
  • [43] Nicolas A. Structure of Ophiolites and Dynamics of Oceanic Lithosphere. 7th ed. Holland, Kluwer Academic Publishers, 2012.
  • [44] Parlak O, Höck V, Delaloye M. “The supra-subduction zone Pozanti–Karsanti ophiolite, southern Turkey: Evidence for high-pressure crystal fractionation of ultramafic cumulates”. Lithos, 65(1–2), 205-224, 2002.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yer Bilimleri ve Jeoloji Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Hakan Yazıcıoğlu1 Bu kişi benim

Tijen Üner

Gönderilme Tarihi 14 Eylül 2025
Kabul Tarihi 9 Kasım 2025
Erken Görünüm Tarihi 12 Aralık 2025
Yayımlanma Tarihi 17 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 31 Sayı: 8

Kaynak Göster

APA Yazıcıoğlu1, H., & Üner, T. (2025). Petrogenesis and geochemical evolution of mafic dikes in the Kıratlı Region (Yüksekova Complex, SE Türkiye): Evidence for tholeiitic–alkaline transition during Neo-Tethyan evolution. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 31(8), 1456-1468. https://doi.org/10.65206/pajes.80745
AMA Yazıcıoğlu1 H, Üner T. Petrogenesis and geochemical evolution of mafic dikes in the Kıratlı Region (Yüksekova Complex, SE Türkiye): Evidence for tholeiitic–alkaline transition during Neo-Tethyan evolution. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Aralık 2025;31(8):1456-1468. doi:10.65206/pajes.80745
Chicago Yazıcıoğlu1, Hakan, ve Tijen Üner. “Petrogenesis and geochemical evolution of mafic dikes in the Kıratlı Region (Yüksekova Complex, SE Türkiye): Evidence for tholeiitic–alkaline transition during Neo-Tethyan evolution”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31, sy. 8 (Aralık 2025): 1456-68. https://doi.org/10.65206/pajes.80745.
EndNote Yazıcıoğlu1 H, Üner T (01 Aralık 2025) Petrogenesis and geochemical evolution of mafic dikes in the Kıratlı Region (Yüksekova Complex, SE Türkiye): Evidence for tholeiitic–alkaline transition during Neo-Tethyan evolution. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31 8 1456–1468.
IEEE H. Yazıcıoğlu1 ve T. Üner, “Petrogenesis and geochemical evolution of mafic dikes in the Kıratlı Region (Yüksekova Complex, SE Türkiye): Evidence for tholeiitic–alkaline transition during Neo-Tethyan evolution”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 31, sy. 8, ss. 1456–1468, 2025, doi: 10.65206/pajes.80745.
ISNAD Yazıcıoğlu1, Hakan - Üner, Tijen. “Petrogenesis and geochemical evolution of mafic dikes in the Kıratlı Region (Yüksekova Complex, SE Türkiye): Evidence for tholeiitic–alkaline transition during Neo-Tethyan evolution”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31/8 (Aralık2025), 1456-1468. https://doi.org/10.65206/pajes.80745.
JAMA Yazıcıoğlu1 H, Üner T. Petrogenesis and geochemical evolution of mafic dikes in the Kıratlı Region (Yüksekova Complex, SE Türkiye): Evidence for tholeiitic–alkaline transition during Neo-Tethyan evolution. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31:1456–1468.
MLA Yazıcıoğlu1, Hakan ve Tijen Üner. “Petrogenesis and geochemical evolution of mafic dikes in the Kıratlı Region (Yüksekova Complex, SE Türkiye): Evidence for tholeiitic–alkaline transition during Neo-Tethyan evolution”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 31, sy. 8, 2025, ss. 1456-68, doi:10.65206/pajes.80745.
Vancouver Yazıcıoğlu1 H, Üner T. Petrogenesis and geochemical evolution of mafic dikes in the Kıratlı Region (Yüksekova Complex, SE Türkiye): Evidence for tholeiitic–alkaline transition during Neo-Tethyan evolution. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31(8):1456-68.