BibTex RIS Kaynak Göster

Fuzzy Multi-Objective Programming Model for Facility Location in an Integrated Supply Chain Network

Yıl 2014, Cilt: 20 Sayı: 5, 150 - 161, 01.05.2014

Öz

Traditional supply chain network design problems are often taken as a single objective. However, supply chains are complex networks formed by organizations having conflicting objectives with each other in real life. In this study, a multi-product, multi-stage and multi-period planning model is proposed to achieve multiple incommensurable goals in an integrated supply chain network with uncertain market demands. The supply chain planning model is constructed as a mixed-integer nonlinear programming problem to satisfy several conflicting objectives with each other. The proposed model consists of two objective functions. The first one is minimizing the fixed opening and operating costs with transportation costs determined depending on distances. Second one is minimizing the purchasing, ordering, inventory and backlogging costs according to Economic Production Quantity (EPQ) model. Fuzzy goal programming approach is used in order to include decision maker's imprecise goal values in proposed model. The model is solved using GAMS optimization program. The application results presented in this study, demonstrates that fuzzy modeling and solution approaches could be used in the creation of more realistic models of the supply chain.

Kaynakça

  • Bramel, J. ve Simchi-Levi, D., “The logic of logistics: theory, algorithms, and applications for logistics management”, Springer Series in Operations Research, New York, 1997.
  • Gümüş, A. T., Güneri, A. F. ve Keleş, S., “Supply chain network design using an integrated neuro-fuzzy and MILP approach: A comparative design study”, Expert Systems with Applications, 36 (10), 12570-12577, 2009.
  • Cohen, M.A. ve Lee, H.L., “Resource deployment analysis of global manufacturing and distribution networks”, Journal of Manufacturing and Operations Management, 2, 81-104, 1989.
  • Pyke, D.F. ve Cohen, M.A., “Performance characteristics of stochastic integrated production distribution systems”, European Journal of Operational Research, 68 (1), 23-48, 1993.
  • Özdamar, L. ve Yazgaç, T., “Capacity driven due date settings International Journal of Production Economics, 49 (1), 29- 44, 1997. production systems”,
  • Pirkul, H. ve Jayaraman, V., “A multi-commodity, multiplant, Formulation and efficient heuristic solution”, Computers Operations Research, 25, 869–878, 1998. facility location problem:
  • Syarif, A., Yun, Y.S. ve Gen, M., "Study on multi-stage logistic chain network: a spanning tree-based genetic algorithm Engineering, 43, 299–314, 2002. Computer and Industrial
  • Altıparmak, F., Gen, M., Lin, L. ve Paksoy, T., “A genetic algorithm approach for multi-objective optimization of supply chain networks”, Computers and Industrial Engineering, 51, 197-216, 2006.
  • Thanh, P. N., Bostel, N. ve Pe´ton, O., “A dynamic model for facility location in the design of complex supply chains”, International Journal of Production Economics, 113, 678– 693, 2008.
  • Paksoy, T., Özceylan, E. ve Weber, G.W., “A multi-objective mixed ınteger programming model for multi echelon supply chain network design and optimization”, System Research and Information Technologies, METU, 2009.
  • Qin, J., Shi, F., Miao, L. ve Tan, G., “Optimal model and algorithm for multi-commodity logistics network design considering stochastic demand and ınventory control”, Systems Engineering-Theory & Practice, 29 (4), 2009.
  • Tuzkaya, U. ve Önüt S., “A holonic approach based integration warehousing functions of the supply network, Computers and Industrial Engineering, 56, 708-723, 2009. for transportation and
  • Melo, M.T., Nickel, S. ve Saldanha-da-Gama, F., “Facility location and supply chain management-A review”, European Journal of Operational Research, 196, 401-412, 2009.
  • Mula, J., Peidro, D. ve Poler, R., “The effectiveness of a fuzzy mathematical programming approach for supply chain production planning with fuzzy demand”, International Journal of Production Economics, 128, 136- 143, 2010.
  • Zimmermann, H.J., “An application oriented view of modelling uncertainity”, European Journal of Operational Research, 122, 190-198, 2000.
  • Petrovic, D., Roy, R. ve Petrovic, R., “Supply chain modeling using fuzzy sets”, International Journal of Production Economics, 59, 443, 1999.
  • Chen, L. ve Lee, W., “Multi objective optimization of multi echelon supply chain networks with uncertain product demands Engineering, 28, 1131-1144, 2004.
  • Computers and Chemical
  • Wang, J. ve Shu, Y.F., “Fuzzy decision modeling for supply chain management”, Fuzzy Sets and Systems, 150, 107- 127, 2005.
  • Xie, Y., Petrovic D. ve Burnham, K., “A heuristic procedure for the two-level control of serial supply chains under fuzzy customer demand”, International Journal of Production Economics, 102 (1), 37-50, 2006.
  • Xu, J., Liu, Q. ve Wang, R., “A class of multi-objective supply chain networks optimal model under random fuzzy environment and its application to the industry of Chinese liquor”, Information Sciences, 178 (8), 2022-2043, 2008.
  • Liang, T.F., “Distribution planning decisions using interactive fuzzy multi-objective linear programming”, Fuzzy Sets and Systems, 157, 1303-1316, 2006.
  • Liang, T.F., “Applying fuzzy goal programming to production/transportation planning decisions in a supply chain”, International Journal of Systems Science, 38, 293- 304, 2007. [23] Liang, T.F., “Integrating
  • production-transportation
  • planning decision with fuzzy multiple goals in supply
  • chains”, International Journal of Production Research, 46
  • (15), 1477-1497, 2008. [24] Işık, A.T. ve Özdemir, etkileşimli üretim doğrusal planlamasında
  • programlama modeli ve bir uygulama”, DEÜ İşletme
  • Fakültesi Dergisi, 11 (2), 81-117, 2010. olabilirlikçi
  • Paksoy, T., Pehlivan, Y.P. ve Özceylan, E., “Application of fuzzy optimization to a supply chain network design: A case study of an edible vegetable oils manufacturer” Applied Mathematical Modelling, 36, 2762-2776, 2012.
  • Paksoy, T. ve Pehlivan, Y.P., “A fuzzy linear programming model for the optimization of multi-stage supply chain networks with triangular and trapezoidal membership functions” Journal of the Franklin Institute, 349, 93-109, 2012.
  • Kabak, Ö. ve Ülengin, F., “Possibilistic linear-programming approach for supply chain networking decisions”, European Journal of Operational Research, 209, 253–264, 2011.
  • Mula J., Peidro D., Madranoreo M.D. ve Vicens E., “Mathematical programming for supply chain production and transport planning”, European Journal of Operational Research, 204, 377–390, 2010.
  • Fahimnia, B., Farahani, R.Z., Marian, R. ve Luong, L., “A review and critique on integrated production-distribution planning Manufacturing Systems, 32, 1-19, 2013. techniques”, Journal of
  • Chang, S.C., “Fuzzy production inventory for fuzzy product quantity with triangular fuzzy number”, Fuzzy Sets and Systems, 107 (1), 37-57, 1999.
  • Hsieh, C.H., “Optimization of fuzzy production inventory models”, Information Sciences, 146, 29-40, 2002.
  • Chang, P.T. ve Chang, C.H., “An elborative unit cost structure-based fuzzy economic production quantity model”, Mathematical and Computer Modeling, Cilt 43, Sayı 11/12, 1337-1356, 2006.
  • Chen, S.H., Wang, C.C. ve Chang, S.M., “Fuzzy economic production quantity model for items with imperfect quality”, International Journal of Innovative Computing, Information and Control, 3 (1), 85-95, 2007.
  • Chen, S.H. ve Chang, S.M., “Optimization of fuzzy production inventory with unrepairable defective products” model for items with imperfect quality”, International Journal of Production Economics, 113, 887- 894, 2008.
  • Behret, H., “Üretim sistemlerinde bulanık tek dönemli stok kontrol modelleri, İTÜ Fen Bilimleri Enstitüsü, Doktora Tezi, 2011.
  • Zimmermann, H.J., “Fuzzy programming and linear programming with several objective functions”, Fuzzy Sets and Systems, 1, 45-55, 1978.
  • Zimmerman, H.J., Fuzzy Sets Theory and Its Applications, Kluwer Academics Publishers, Boston, 1991.
  • Lai, Y.J. ve Hwang, C.L., “Interactive fuzzy linear programming”, Fuzzy Sets and Systems, 45, 169-183, 1992.
  • Lai, Y.J. ve Hwang, C.L., “Fuzzy multiple objective decision making, methods and applications”, Lecture Notes in Economics and Mathematical Systems, Springer, Berlin, 1994.
  • Liang, T.F. ve Cheng, H.W., “Application of fuzzy sets to manufacturing/distribution planning decisions with multi-product and multi-time period in supply chains””, Expert Systems with Applications, 36, 3367-3377, 2009. [41] Liang, T.F., “Application of fuzzy sets to manufacturing/distribution planning decisions in supply chains”, Information Sciences, 181, 842-854, 2011.
  • Bellman, R.E. ve Zadeh, L.A., “Decision-making in a fuzzy environment”, Management Science, 17 (4), 141-164, 1970.
  • Hannan, E.L., "On Fuzzy Goal Programming", Decision Sciences, 12 (3), 522-531, 1981.
  • Zimmermann, H.J., “Description and optimization of fuzzy systems”, International Journal of General Systems, 2, 209- 215, 1976.

Bütünleşik Tedarik Zinciri Ağında Tesis Yeri Seçimi için Bulanık Çok Amaçlı Programlama Modeli

Yıl 2014, Cilt: 20 Sayı: 5, 150 - 161, 01.05.2014

Öz

Geleneksel tedarik zinciri ağı tasarım problemleri genellikle tek amaçlı olarak ele alınmıştır. Ancak, tedarik zincirleri gerçek hayatta birbirleri ile çelişen amaçları olan organizasyonların meydana getirdiği karmaşık ağlardır. Bu çalışmada, piyasa taleplerinin belirsiz olduğu bütünleşik bir tedarik zinciri ağındaki birden fazla ölçülemeyen amacı gerçekleştirmek için çok ürünlü, çok aşamalı ve çok dönemli planlama modeli önerilmiştir. Tedarik zinciri planlama modeli, birbiriyle çelişen birkaç amacı doyurmak için karışık tam sayılı doğrusal olmayan programlama problemi olarak bina edilmiştir. Önerilen model iki amaç fonksiyonundan oluşmaktadır. Birincisi, tedarik zincirindeki sabit tesis açma ve işletme maliyetleri ile mesafelere bağlı olarak belirlenen taşıma maliyetlerinin en azlanmasıdır. İkincisi, Ekonomik Üretim Miktarı (EÜM) modeline göre satın alma, sipariş verme, stok bulundurma ve yok satma maliyetlerinin en azlanmasıdır. Önerilen modelde, karar vericilerin kesin olmayan hedef değerlerini dahil edebilmek için bulanık hedef programlama yaklaşımı kullanılmıştır. Model, GAMS optimizasyon programı kullanılarak çözülmüştür. Çalışmada sunulan uygulama sonuçları, bulanık modelleme ve çözüm yaklaşımlarının daha gerçekçi tedarik zinciri modelleri oluşturulmasında kullanılabileceğini göstermiştir.

Kaynakça

  • Bramel, J. ve Simchi-Levi, D., “The logic of logistics: theory, algorithms, and applications for logistics management”, Springer Series in Operations Research, New York, 1997.
  • Gümüş, A. T., Güneri, A. F. ve Keleş, S., “Supply chain network design using an integrated neuro-fuzzy and MILP approach: A comparative design study”, Expert Systems with Applications, 36 (10), 12570-12577, 2009.
  • Cohen, M.A. ve Lee, H.L., “Resource deployment analysis of global manufacturing and distribution networks”, Journal of Manufacturing and Operations Management, 2, 81-104, 1989.
  • Pyke, D.F. ve Cohen, M.A., “Performance characteristics of stochastic integrated production distribution systems”, European Journal of Operational Research, 68 (1), 23-48, 1993.
  • Özdamar, L. ve Yazgaç, T., “Capacity driven due date settings International Journal of Production Economics, 49 (1), 29- 44, 1997. production systems”,
  • Pirkul, H. ve Jayaraman, V., “A multi-commodity, multiplant, Formulation and efficient heuristic solution”, Computers Operations Research, 25, 869–878, 1998. facility location problem:
  • Syarif, A., Yun, Y.S. ve Gen, M., "Study on multi-stage logistic chain network: a spanning tree-based genetic algorithm Engineering, 43, 299–314, 2002. Computer and Industrial
  • Altıparmak, F., Gen, M., Lin, L. ve Paksoy, T., “A genetic algorithm approach for multi-objective optimization of supply chain networks”, Computers and Industrial Engineering, 51, 197-216, 2006.
  • Thanh, P. N., Bostel, N. ve Pe´ton, O., “A dynamic model for facility location in the design of complex supply chains”, International Journal of Production Economics, 113, 678– 693, 2008.
  • Paksoy, T., Özceylan, E. ve Weber, G.W., “A multi-objective mixed ınteger programming model for multi echelon supply chain network design and optimization”, System Research and Information Technologies, METU, 2009.
  • Qin, J., Shi, F., Miao, L. ve Tan, G., “Optimal model and algorithm for multi-commodity logistics network design considering stochastic demand and ınventory control”, Systems Engineering-Theory & Practice, 29 (4), 2009.
  • Tuzkaya, U. ve Önüt S., “A holonic approach based integration warehousing functions of the supply network, Computers and Industrial Engineering, 56, 708-723, 2009. for transportation and
  • Melo, M.T., Nickel, S. ve Saldanha-da-Gama, F., “Facility location and supply chain management-A review”, European Journal of Operational Research, 196, 401-412, 2009.
  • Mula, J., Peidro, D. ve Poler, R., “The effectiveness of a fuzzy mathematical programming approach for supply chain production planning with fuzzy demand”, International Journal of Production Economics, 128, 136- 143, 2010.
  • Zimmermann, H.J., “An application oriented view of modelling uncertainity”, European Journal of Operational Research, 122, 190-198, 2000.
  • Petrovic, D., Roy, R. ve Petrovic, R., “Supply chain modeling using fuzzy sets”, International Journal of Production Economics, 59, 443, 1999.
  • Chen, L. ve Lee, W., “Multi objective optimization of multi echelon supply chain networks with uncertain product demands Engineering, 28, 1131-1144, 2004.
  • Computers and Chemical
  • Wang, J. ve Shu, Y.F., “Fuzzy decision modeling for supply chain management”, Fuzzy Sets and Systems, 150, 107- 127, 2005.
  • Xie, Y., Petrovic D. ve Burnham, K., “A heuristic procedure for the two-level control of serial supply chains under fuzzy customer demand”, International Journal of Production Economics, 102 (1), 37-50, 2006.
  • Xu, J., Liu, Q. ve Wang, R., “A class of multi-objective supply chain networks optimal model under random fuzzy environment and its application to the industry of Chinese liquor”, Information Sciences, 178 (8), 2022-2043, 2008.
  • Liang, T.F., “Distribution planning decisions using interactive fuzzy multi-objective linear programming”, Fuzzy Sets and Systems, 157, 1303-1316, 2006.
  • Liang, T.F., “Applying fuzzy goal programming to production/transportation planning decisions in a supply chain”, International Journal of Systems Science, 38, 293- 304, 2007. [23] Liang, T.F., “Integrating
  • production-transportation
  • planning decision with fuzzy multiple goals in supply
  • chains”, International Journal of Production Research, 46
  • (15), 1477-1497, 2008. [24] Işık, A.T. ve Özdemir, etkileşimli üretim doğrusal planlamasında
  • programlama modeli ve bir uygulama”, DEÜ İşletme
  • Fakültesi Dergisi, 11 (2), 81-117, 2010. olabilirlikçi
  • Paksoy, T., Pehlivan, Y.P. ve Özceylan, E., “Application of fuzzy optimization to a supply chain network design: A case study of an edible vegetable oils manufacturer” Applied Mathematical Modelling, 36, 2762-2776, 2012.
  • Paksoy, T. ve Pehlivan, Y.P., “A fuzzy linear programming model for the optimization of multi-stage supply chain networks with triangular and trapezoidal membership functions” Journal of the Franklin Institute, 349, 93-109, 2012.
  • Kabak, Ö. ve Ülengin, F., “Possibilistic linear-programming approach for supply chain networking decisions”, European Journal of Operational Research, 209, 253–264, 2011.
  • Mula J., Peidro D., Madranoreo M.D. ve Vicens E., “Mathematical programming for supply chain production and transport planning”, European Journal of Operational Research, 204, 377–390, 2010.
  • Fahimnia, B., Farahani, R.Z., Marian, R. ve Luong, L., “A review and critique on integrated production-distribution planning Manufacturing Systems, 32, 1-19, 2013. techniques”, Journal of
  • Chang, S.C., “Fuzzy production inventory for fuzzy product quantity with triangular fuzzy number”, Fuzzy Sets and Systems, 107 (1), 37-57, 1999.
  • Hsieh, C.H., “Optimization of fuzzy production inventory models”, Information Sciences, 146, 29-40, 2002.
  • Chang, P.T. ve Chang, C.H., “An elborative unit cost structure-based fuzzy economic production quantity model”, Mathematical and Computer Modeling, Cilt 43, Sayı 11/12, 1337-1356, 2006.
  • Chen, S.H., Wang, C.C. ve Chang, S.M., “Fuzzy economic production quantity model for items with imperfect quality”, International Journal of Innovative Computing, Information and Control, 3 (1), 85-95, 2007.
  • Chen, S.H. ve Chang, S.M., “Optimization of fuzzy production inventory with unrepairable defective products” model for items with imperfect quality”, International Journal of Production Economics, 113, 887- 894, 2008.
  • Behret, H., “Üretim sistemlerinde bulanık tek dönemli stok kontrol modelleri, İTÜ Fen Bilimleri Enstitüsü, Doktora Tezi, 2011.
  • Zimmermann, H.J., “Fuzzy programming and linear programming with several objective functions”, Fuzzy Sets and Systems, 1, 45-55, 1978.
  • Zimmerman, H.J., Fuzzy Sets Theory and Its Applications, Kluwer Academics Publishers, Boston, 1991.
  • Lai, Y.J. ve Hwang, C.L., “Interactive fuzzy linear programming”, Fuzzy Sets and Systems, 45, 169-183, 1992.
  • Lai, Y.J. ve Hwang, C.L., “Fuzzy multiple objective decision making, methods and applications”, Lecture Notes in Economics and Mathematical Systems, Springer, Berlin, 1994.
  • Liang, T.F. ve Cheng, H.W., “Application of fuzzy sets to manufacturing/distribution planning decisions with multi-product and multi-time period in supply chains””, Expert Systems with Applications, 36, 3367-3377, 2009. [41] Liang, T.F., “Application of fuzzy sets to manufacturing/distribution planning decisions in supply chains”, Information Sciences, 181, 842-854, 2011.
  • Bellman, R.E. ve Zadeh, L.A., “Decision-making in a fuzzy environment”, Management Science, 17 (4), 141-164, 1970.
  • Hannan, E.L., "On Fuzzy Goal Programming", Decision Sciences, 12 (3), 522-531, 1981.
  • Zimmermann, H.J., “Description and optimization of fuzzy systems”, International Journal of General Systems, 2, 209- 215, 1976.
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makale
Yazarlar

Hüseyin Ali Sarıkaya

Emre Çalışkan Bu kişi benim

Orhan Türkbey Bu kişi benim

Yayımlanma Tarihi 1 Mayıs 2014
Yayımlandığı Sayı Yıl 2014 Cilt: 20 Sayı: 5

Kaynak Göster

APA Sarıkaya, H. A. ., Çalışkan, E. ., & Türkbey, O. . (2014). Bütünleşik Tedarik Zinciri Ağında Tesis Yeri Seçimi için Bulanık Çok Amaçlı Programlama Modeli. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 20(5), 150-161. https://doi.org/10.5505/pajes.2014.98853
AMA Sarıkaya HA, Çalışkan E, Türkbey O. Bütünleşik Tedarik Zinciri Ağında Tesis Yeri Seçimi için Bulanık Çok Amaçlı Programlama Modeli. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Mayıs 2014;20(5):150-161. doi:10.5505/pajes.2014.98853
Chicago Sarıkaya, Hüseyin Ali, Emre Çalışkan, ve Orhan Türkbey. “Bütünleşik Tedarik Zinciri Ağında Tesis Yeri Seçimi için Bulanık Çok Amaçlı Programlama Modeli”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 20, sy. 5 (Mayıs 2014): 150-61. https://doi.org/10.5505/pajes.2014.98853.
EndNote Sarıkaya HA, Çalışkan E, Türkbey O (01 Mayıs 2014) Bütünleşik Tedarik Zinciri Ağında Tesis Yeri Seçimi için Bulanık Çok Amaçlı Programlama Modeli. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 20 5 150–161.
IEEE H. A. . Sarıkaya, E. . Çalışkan, ve O. . Türkbey, “Bütünleşik Tedarik Zinciri Ağında Tesis Yeri Seçimi için Bulanık Çok Amaçlı Programlama Modeli”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 20, sy. 5, ss. 150–161, 2014, doi: 10.5505/pajes.2014.98853.
ISNAD Sarıkaya, Hüseyin Ali vd. “Bütünleşik Tedarik Zinciri Ağında Tesis Yeri Seçimi için Bulanık Çok Amaçlı Programlama Modeli”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 20/5 (Mayıs 2014), 150-161. https://doi.org/10.5505/pajes.2014.98853.
JAMA Sarıkaya HA, Çalışkan E, Türkbey O. Bütünleşik Tedarik Zinciri Ağında Tesis Yeri Seçimi için Bulanık Çok Amaçlı Programlama Modeli. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2014;20:150–161.
MLA Sarıkaya, Hüseyin Ali vd. “Bütünleşik Tedarik Zinciri Ağında Tesis Yeri Seçimi için Bulanık Çok Amaçlı Programlama Modeli”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 20, sy. 5, 2014, ss. 150-61, doi:10.5505/pajes.2014.98853.
Vancouver Sarıkaya HA, Çalışkan E, Türkbey O. Bütünleşik Tedarik Zinciri Ağında Tesis Yeri Seçimi için Bulanık Çok Amaçlı Programlama Modeli. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2014;20(5):150-61.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.