In this study, 42 companies operating in food, textile and cement sectors within İstanbul Stock Exchange 100 (ISE-100) have been handled. The aim is to classify these companies into three groups according to financial ratios. The average values of 10 financial ratios of these companies between the years 2006-2011 have been handled. Based on these ratios, classes are derived from cluster analysis. These ratios and the results of the cluster analysis are the data set of this article. In order to test the performance of the learning algorithm and classification leave-one-out cross-validation method is used. The classification study conducted by Support Vector Machines approach has performed 95.23% correct classification with the help of 12 support vectors. Moreover, input sensitivity analysis has been conducted and 4 most efficient ratios have been determined out of these 10. These ratios are removed from the model one by one starting from the less influential one in order to investigate by which ratios the most effective Support Vector Machine model is obtained. It is seen that the best model is obtained by using the first 3 ratios. The classification success for this model is 97.61% and the number of support vector is 12.
ISE-100 Support vector machines Financial rates Classification Sensitivity analysis.
Bu çalışmada, İstanbul Menkul Kıymetler Borsası 100 (IMKB-100) içinde gıda, tekstil ve çimento sektörlerinde faaliyet gösteren 42 şirket ele alınmıştır. Bu şirketler finansal oranlara bağlı olarak üç sınıfa ayrılmak istenmektedir. Şirketlere ilişkin 10 adet finansal oranın 2006-2011 yılları arasındaki ortalama değerleri ele alınmıştır. Bu oranlara bağlı olarak kümeleme analizinden elde edilen sınıflar belirlenmiştir. Bu oranlar ve kümeleme analizi sonuçları bu makalenin veri kümesini oluşturmaktadır. Öğrenme algoritmasının ve sınıflandırmanın başarımını test etmek için tek çıkarımlı çapraz- doğrulama yöntemi kullanılmıştır. Destek Vektör Makineleri (DVM) yaklaşımı ile yapılan sınıflandırma çalışması %95,23 oranında doğru sınıflandırmayı 12 destek vektörü ile yapmıştır. Ayrıca giriş duyarlılık analizi yapılarak bu 10 orandan en etkin olan 4 oran belirlenmiştir. Bu oranlar en etkisizden en etkili olan faktöre doğru modelden sıra ile çıkarılarak, bu dört faktörden hangilerinin alınması ile en etkili DVM modeli elde edilebileceği araştırılmıştır. En iyi modelin ilk 3 faktöre bağlı olan model olduğu belirlenmiştir. Bu yeni modelde sınıflandırma başarı oranı %97,61 ve destek vektör sayısı 12 olarak kalmıştır.
IMKB-100 Destek vektör makineleri Finansal oranlar Sınıflandırma Duyarlılık analizi.
Birincil Dil | Türkçe |
---|---|
Bölüm | Makale |
Yazarlar | |
Yayımlanma Tarihi | 1 Mayıs 2014 |
Yayımlandığı Sayı | Yıl 2014 Cilt: 20 Sayı: 5 |