BibTex RIS Kaynak Göster

Contribution of Machine Learning Methods to the Construction Industry: Prediction of Compressive Strength

Yıl 2015, Cilt: 21 Sayı: 3, 109 - 114, 01.07.2015

Öz

Highly accurate prediction of high performance concrete (HPC) compressive strength is very important issue. In recent years, a variety of modeling approaches and methodologies have been applied to predict HPC’s compressive strength from a wide range of variables, with different ratios of success. In this study, an appropriate machine learning method, using different mixing ratios for the prediction of compressive strength of HPC, is investigated. In recent years, rather developing machine learning methods; Artificial Neural Networks (ANN) and Support Vector Machines (SVM)’s applicabilities for the prediction, handled in this study, are being investigated and extremely high results were obtained. In this paper, it’s obtained that prediction success of SVM has been found more satisfactory than ANN's. It is concluded that the SVM’s can be used effectively as an alternative method by research labs and the concrete firms for predicting the strength.

Kaynakça

  • Machine [1] Yeh IC. “UCI Compressive Repository: Concrete
  • http://archive.ics.uci.edu/ml/datasets/Concrete+Compr
  • essive+Strength (20.03.2014). Strength Data Set” [2] Yeh IC. “Modeling of Strength of High-Performance
  • Concrete Using Artificial Neural Networks”. Cement and
  • Concrete Research, 28(12), 1797-1808, 1998. [3] Hong-Guang N, Ji-Zong W. “Prediction of Compressive
  • Strength of Concrete by Neural Networks”. Cement and
  • Concrete Research, 30(8), 1245-1250, 2000. [4] Seyhan AT, Tayfur G, Karakurt M, Tanoğlu M. “Artificial
  • Neural Network (ANN) Prediction of Compressive
  • Strength of VARTM Processed Polymer Composites”.
  • Computational Materials Science, 34(1), 99-105, 2005. [5] Gupta R, Kewalramani MA, Goel A. “Prediction of Concrete
  • Strength Using Neural-Expert System”. Journal of
  • Materials in Civil Engineering, 18(3), 462-466, 2006. [6] Topcu IB, Sarıdemir M. “Prediction of Compressive
  • Strength of Concrete Containing Fly Ash Using Artificial
  • Neural Networks and Fuzzy Logic”. Computational
  • Materials Science, 41(3), 305-311, 2008. [7] Raghu Prasad BK, Eskandari H, Venkatarama Reddy BV.
  • “Prediction of Compressive Strength of SCC and HPC with
  • High Volume fly ash Using ANN”. Construction and
  • Building Materials, 23(1), 117-128, 2009. [8] Khan MI. “Predicting Properties of High Performance
  • Concrete Containing Composite Cementitious Materials
  • Using Artificial Neural Networks”. Automation in
  • Construction, 22, 516-524, 2012. [9] Atıcı U. “Prediction of the Strength of Mineral Admixture
  • Concrete Using Multivariable Regression Analysis and an
  • Artificial Neural Network”. Expert Systems with
  • Applications, 38(8), 9609-9618, 2011. [10] Nikoo M, Zarfam P, Sayahpour H. “Determination of
  • Compressive Strength of Concrete Using Self Organization
  • Feature Map (SOFM)”. Engineering with Computers, 31(1),
  • 113-121, 2015. [11] Fazel-Zarandi MH, Türksen IB, Sobhani J, Ramezanianpour AA.
  • Approximation of the Compressive Strength of Concrete”.
  • Applied Soft Computing, 8(1), 488-498, 2008. for [12] Yeh IC, Lien LC. “Knowledge Discovery of Concrete
  • Material Using Genetic Operation Trees”. Expert Systems
  • with Applications, 36(3), 5807–5812, 2009. [13] Cheng MY, Peng HS, Wu YW, Chen TL. “Estimate at
  • Completion for Construction Projects Using Evolutionary
  • Support Vector Machine Inference Model”. Automation in
  • Construction, 19(5), 619–629, 2010. [14] Wang YR, Yu CY, Chan HH. “Predicting Construction Cost
  • and Schedule Success Using Artificial Neural Networks
  • Ensemble and Support Vector Machines Classification
  • Models”. International Journal of Project Management,
  • 30(4), 470-478, 2012. [15] Cheng MY, Chou JS, Roy AFV, Wu YW. “High-performance
  • Concrete Compressive Strength Prediction using Time
  • Weighted Evolutionary Fuzzy Support Vector Machines
  • Inference Model”. Automation in Construction, 28,
  • 106–115, 2012. [16] Cheng MY, Firdausi PM, Prayogo D. “High-performance
  • Concrete Compressive Strength Prediction using Genetic Weighted
  • Engineering Applications of Artificial Intelligence.
  • 29, 104-113, 2014. Tree (GWPOT)”. [17] Chou JS, Chiu CK, Farfoura M, Al-Taharwa I. “Optimizing
  • the Prediction Accuracy of Concrete Compressive Strength
  • Based on A Comparison of Data-mining Techniques”.
  • Journal of Computing in Civil Engineering, 25(3), 242-253, 2011. [18] Abraham A, Philip NS, Saratchandran P. “Modeling Chaotic
  • Behavior of Stock Indices Using Intelligent Paradigms”.
  • Neural, Parallel & Scientific Computations, 11(1-2), 143- 160, 2003. [19] Huang S, Wu T. “Integrating GA-based Time-scale Feature
  • Extractions with SVMs for Stock Index Forecasting”.
  • Expert Systems with Applications, 35(4), 2080-2088, 2008. [20] Öztemel E. Yapay Sinir Ağları. İstanbul, Türkiye, Papatya
  • Yayıncılık, 2003. [21] Elmas Ç. Yapay Sinir Ağları Kuram, Mimari, Eğitim,
  • Uygulama. 1. Baskı, Ankara, Türkiye, Seçkin Yayıncılık, 2003. [22] Bayramoğlu MF. Finansal Endekslerin Öngörüsünde
  • Yapay Sinir Ağı Modellerinin Kullanılması: İMKB Ulusal
  • 100 Endeksinin Gün İçi En Yüksek ve En Düşük Değerlerinin
  • Yayımlanmamış Yüksek Lisans Tezi. Karaelmas
  • Üniversitesi, Zonguldak, Türkiye, 2007. Bir Uygulama.
  • Based Aerodynamic Analysis of Cable Stayed Bridges”.
  • Advances in Engineering Software, 40(9), 830-835, 2009.

Makine Öğrenmesi Yöntemlerinin İnşaat Sektörüne Katkısı: Basınç Dayanımı Tahminlemesi

Yıl 2015, Cilt: 21 Sayı: 3, 109 - 114, 01.07.2015

Öz

Yüksek performanslı beton (high performance concrete, HPC)’un eksenel basınç dayanımının yüksek doğrulukla tahmini son derece önemli bir konudur. Geçtiğimiz yıllarda, çeşitli gelişmiş modelleme yaklaşımları ve metodolojileri kullanılarak farklı başarı oranları ile HPC basınç dayanımı tahminlemeleri uygulanmıştır. Bu çalışmada farklı karışım oranları kullanılarak HPC’lerin eksenel basınç dayanımının tahmininde uygun bir makine öğrenmesi yöntemi araştırılmıştır. Son yıllarda makine öğrenmesinde oldukça gelişmekte olan Yapay Sinir Ağları (YSA) ve Destek Vektör Makineleri (DVM)’nin bu tahminde uygulanabilirliği incenmiş ve son derece yüksek tahmin sonuçları elde edilmiştir. Bu çalışmada DVM’lerin tahmin başarısının YSA’lara oranla daha tatmin edici sonuçlar verdiği görülmüştür. DVM yönteminin araştırma laboratuvarları ve beton firmaları tarafından dayanım tahmininde alternatif bir yöntem olarak etkin bir şekilde kullanılabileceği sonucuna varılmıştır.

Kaynakça

  • Machine [1] Yeh IC. “UCI Compressive Repository: Concrete
  • http://archive.ics.uci.edu/ml/datasets/Concrete+Compr
  • essive+Strength (20.03.2014). Strength Data Set” [2] Yeh IC. “Modeling of Strength of High-Performance
  • Concrete Using Artificial Neural Networks”. Cement and
  • Concrete Research, 28(12), 1797-1808, 1998. [3] Hong-Guang N, Ji-Zong W. “Prediction of Compressive
  • Strength of Concrete by Neural Networks”. Cement and
  • Concrete Research, 30(8), 1245-1250, 2000. [4] Seyhan AT, Tayfur G, Karakurt M, Tanoğlu M. “Artificial
  • Neural Network (ANN) Prediction of Compressive
  • Strength of VARTM Processed Polymer Composites”.
  • Computational Materials Science, 34(1), 99-105, 2005. [5] Gupta R, Kewalramani MA, Goel A. “Prediction of Concrete
  • Strength Using Neural-Expert System”. Journal of
  • Materials in Civil Engineering, 18(3), 462-466, 2006. [6] Topcu IB, Sarıdemir M. “Prediction of Compressive
  • Strength of Concrete Containing Fly Ash Using Artificial
  • Neural Networks and Fuzzy Logic”. Computational
  • Materials Science, 41(3), 305-311, 2008. [7] Raghu Prasad BK, Eskandari H, Venkatarama Reddy BV.
  • “Prediction of Compressive Strength of SCC and HPC with
  • High Volume fly ash Using ANN”. Construction and
  • Building Materials, 23(1), 117-128, 2009. [8] Khan MI. “Predicting Properties of High Performance
  • Concrete Containing Composite Cementitious Materials
  • Using Artificial Neural Networks”. Automation in
  • Construction, 22, 516-524, 2012. [9] Atıcı U. “Prediction of the Strength of Mineral Admixture
  • Concrete Using Multivariable Regression Analysis and an
  • Artificial Neural Network”. Expert Systems with
  • Applications, 38(8), 9609-9618, 2011. [10] Nikoo M, Zarfam P, Sayahpour H. “Determination of
  • Compressive Strength of Concrete Using Self Organization
  • Feature Map (SOFM)”. Engineering with Computers, 31(1),
  • 113-121, 2015. [11] Fazel-Zarandi MH, Türksen IB, Sobhani J, Ramezanianpour AA.
  • Approximation of the Compressive Strength of Concrete”.
  • Applied Soft Computing, 8(1), 488-498, 2008. for [12] Yeh IC, Lien LC. “Knowledge Discovery of Concrete
  • Material Using Genetic Operation Trees”. Expert Systems
  • with Applications, 36(3), 5807–5812, 2009. [13] Cheng MY, Peng HS, Wu YW, Chen TL. “Estimate at
  • Completion for Construction Projects Using Evolutionary
  • Support Vector Machine Inference Model”. Automation in
  • Construction, 19(5), 619–629, 2010. [14] Wang YR, Yu CY, Chan HH. “Predicting Construction Cost
  • and Schedule Success Using Artificial Neural Networks
  • Ensemble and Support Vector Machines Classification
  • Models”. International Journal of Project Management,
  • 30(4), 470-478, 2012. [15] Cheng MY, Chou JS, Roy AFV, Wu YW. “High-performance
  • Concrete Compressive Strength Prediction using Time
  • Weighted Evolutionary Fuzzy Support Vector Machines
  • Inference Model”. Automation in Construction, 28,
  • 106–115, 2012. [16] Cheng MY, Firdausi PM, Prayogo D. “High-performance
  • Concrete Compressive Strength Prediction using Genetic Weighted
  • Engineering Applications of Artificial Intelligence.
  • 29, 104-113, 2014. Tree (GWPOT)”. [17] Chou JS, Chiu CK, Farfoura M, Al-Taharwa I. “Optimizing
  • the Prediction Accuracy of Concrete Compressive Strength
  • Based on A Comparison of Data-mining Techniques”.
  • Journal of Computing in Civil Engineering, 25(3), 242-253, 2011. [18] Abraham A, Philip NS, Saratchandran P. “Modeling Chaotic
  • Behavior of Stock Indices Using Intelligent Paradigms”.
  • Neural, Parallel & Scientific Computations, 11(1-2), 143- 160, 2003. [19] Huang S, Wu T. “Integrating GA-based Time-scale Feature
  • Extractions with SVMs for Stock Index Forecasting”.
  • Expert Systems with Applications, 35(4), 2080-2088, 2008. [20] Öztemel E. Yapay Sinir Ağları. İstanbul, Türkiye, Papatya
  • Yayıncılık, 2003. [21] Elmas Ç. Yapay Sinir Ağları Kuram, Mimari, Eğitim,
  • Uygulama. 1. Baskı, Ankara, Türkiye, Seçkin Yayıncılık, 2003. [22] Bayramoğlu MF. Finansal Endekslerin Öngörüsünde
  • Yapay Sinir Ağı Modellerinin Kullanılması: İMKB Ulusal
  • 100 Endeksinin Gün İçi En Yüksek ve En Düşük Değerlerinin
  • Yayımlanmamış Yüksek Lisans Tezi. Karaelmas
  • Üniversitesi, Zonguldak, Türkiye, 2007. Bir Uygulama.
  • Based Aerodynamic Analysis of Cable Stayed Bridges”.
  • Advances in Engineering Software, 40(9), 830-835, 2009.
Toplam 60 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makale
Yazarlar

Hamit Erdal

Yayımlanma Tarihi 1 Temmuz 2015
Yayımlandığı Sayı Yıl 2015 Cilt: 21 Sayı: 3

Kaynak Göster

APA Erdal, H. (2015). Contribution of Machine Learning Methods to the Construction Industry: Prediction of Compressive Strength. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 21(3), 109-114. https://doi.org/10.5505/pajes.2014.26121
AMA Erdal H. Contribution of Machine Learning Methods to the Construction Industry: Prediction of Compressive Strength. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Temmuz 2015;21(3):109-114. doi:10.5505/pajes.2014.26121
Chicago Erdal, Hamit. “Contribution of Machine Learning Methods to the Construction Industry: Prediction of Compressive Strength”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 21, sy. 3 (Temmuz 2015): 109-14. https://doi.org/10.5505/pajes.2014.26121.
EndNote Erdal H (01 Temmuz 2015) Contribution of Machine Learning Methods to the Construction Industry: Prediction of Compressive Strength. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 21 3 109–114.
IEEE H. Erdal, “Contribution of Machine Learning Methods to the Construction Industry: Prediction of Compressive Strength”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 21, sy. 3, ss. 109–114, 2015, doi: 10.5505/pajes.2014.26121.
ISNAD Erdal, Hamit. “Contribution of Machine Learning Methods to the Construction Industry: Prediction of Compressive Strength”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 21/3 (Temmuz 2015), 109-114. https://doi.org/10.5505/pajes.2014.26121.
JAMA Erdal H. Contribution of Machine Learning Methods to the Construction Industry: Prediction of Compressive Strength. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2015;21:109–114.
MLA Erdal, Hamit. “Contribution of Machine Learning Methods to the Construction Industry: Prediction of Compressive Strength”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 21, sy. 3, 2015, ss. 109-14, doi:10.5505/pajes.2014.26121.
Vancouver Erdal H. Contribution of Machine Learning Methods to the Construction Industry: Prediction of Compressive Strength. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2015;21(3):109-14.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.