Araştırma Makalesi
BibTex RIS Kaynak Göster

Sürekli mıknatıslı senkron generatörün azaltılmış anahtarlı evirici ile sensörsüz kontrolü

Yıl 2019, Cilt: 25 Sayı: 2, 132 - 142, 22.04.2019

Öz

Bu makalenin temel amacı,
enerji iletiminin mümkün olmadığı kırsal ve coğrafi açıdan problemli bölgelerde
yenilenebilir ve taşınabilir bir şekilde elektrik enerjisi üretimini
sağlamaktır. Önerilen sistem ile katastrofik sonuçları (uzun süreli ve yerel
olmayan elektrik kesintisi) olan doğal felaketler (deprem, yangın, sel vb.)
sırasında düşük fiyata, verimli ve taşınabilir küçük ölçekli rüzgar türbini ve
tahrik sistemi ile rüzgardan bireysel düşük güçlü elektrik enerjisi üretimi
hedeflenmektedir. Bu çalışmada, redüktörsüz sürekli mıknatıslı senkron
generatörün (SMSG) yük tarafı evirici kontrollü değişken hızlı rüzgar türbini
için toplam sekiz anahtarlama elemanlı, tam yükünde çalışabilen, iki yönlü, iki
seviyeli, sırt sırta bağlı gerilim kaynaklı doğrultucu/evirici kullanılarak
gerçekleştirilir. Ayrıca, bu sistemde model referans adaptif sistem (MRAS) ile
rotor kaçak akısı ve stator direnci kestirimcisi kullanılmasının en önemli
avantajlarından birisi ve yeniliği, kontrol sistemindeki akı ve stator direnç
değerlerinde meydana gelen değişikliklerinden kaynaklı bozulmaları
düzeltmektir. Basitliği ve etkin çalışma aralığı nedeniyle yük tarafının
kontrolü dört anahtarlı şebeke tarafı eviricisi ile gerçekleştirilmiştir.
Toplam sistem performansını gözlemlemek için evirici çıkışında üç fazlı pasif
bir yük kullanılmaktadır. Akım ve gerilim harmoniklerini azaltmak, güç
şebekesinin kararlılığını ve verimliliğini artırmak için yük tarafında alçak
geçiren LCL filtre tasarlanmış ve gerçeklenmiştir. Bütün sistemin performansı
gerçek zamanlı Sayısal İşaret İşleyici (Sİİ) sistemi ile doğrulanmıştır. Bu
makalede, generatör kontrolü için geniş çalışma aralığı ve ekonomik pozisyon
sensörsüz kontrolün dahil edilmesi ile yenilenebilir rüzgar enerjisi sisteminin
kırsal alanlar için uygulanabilir bir dağıtık yeşil enerji çözümü olabileceği
gösterilmektedir.

Kaynakça

  • American Wind Energy Turbine Market Report. “AWEA Small Wind Turbine Global Market Study”. American Wind Energy Association, 2010.
  • U.S. Department of Energy. “2014 Distributed Wind Market Report”. U.S. Department of Energy, 2014.
  • Smith J, Huskey A, Jager D, Hur J. “Wind Turbine Generator System Power Performance Test Report for The EW50 Wind Turbine Simulation Model of Wind Turbine”. 2011.
  • Renewable UK. “Small and Medium Wind UK Market Report”, 2013.
  • Dasgupta S, Mohan SN, Sahoo SK, Panda SK. “Application of four-switch-based three-phase grid-connected inverter to connect renewable energy source to a generalized unbalanced microgrid system”. IEEE Transactions on Industrial Electronics, 60(3), 1204-1215, 2013.
  • Zhao Y, Wei C, Zhang Z, Qiao W. “A review on position/speed sensorless control for permanent-magnet synchronous machine-based wind energy conversion systems”. IEEE Journal of Emerging and Selected Topics in Power Electronics, 1(4), 203-216, 2013.
  • Parviainen A, Pyrhonen J, and Kontkanen P. “Axial flux permanent magnet generator with concentrated winding for small wind power applications”. IEEE International Electric Machines and Drives Conference, San Antonio, TX, USA, 15-18 May 2005.
  • Bumby JR, Stannard N, Dominy J, McLeod N. “A permanent magnet generator for small scale wind and water turbines”. IEEE International Conference on Electrical Machines, Coimbra, Portugal, 6-9 September 2008.
  • Andriollo M, De Bortoli M, Martinelli G, Morini A, Tortella A. “Permanent magnet axial flux disc generator for small wind turbines”. IEEE International Conference on Electrical Machines, Vilamoura, Portugal, 6-9 September 2008.
  • Olano A, Moreno V, Molina J, Zubia I., “Design and construction of an outer-rotor PM synchronous generator for small wind turbines; comparing real results with those of FE model”. IEEE International Conference on Electrical Machines, Vilamoura, Portugal, 6-9 September 2008.
  • Haraguchi H, Morimoto S, Sanada M. “Suitable design of a PMSG for a small-scale wind power generator”. International Conference on Electrical Machines and Systems, Tokyo, Japan, 15-18 November 2009.
  • Yan J, Lin H, Feng Y, Guo X, Huang Y, Zhu ZQ. “Improved sliding mode model reference adaptive system speed observer for fuzzy control of direct-drive permanent magnet synchronous generator wind power generation system”. IET Renewable Power Generation, 7(1), 28-35, 2013.
  • Zhang Z, Zhao Y, Qiao W, Qu L. “A space-vector-modulated sensorless direct-torque control for direct-drive PMSG wind turbines”. IEEE Transaction on Industry Applications, 50(4), 2331-2341, 2014.
  • Tan K, Islam S. “Optimum control strategies in energy conversion of PMSG wind turbine system without mechanical sensors”. IEEE Transaction on Energy Conversion, 19(2), 392-399, 2004.
  • Okuyama Y, Fujimoto T, Matsui N, Kubota T. “A high performance speed control scheme of induction motor without speed and voltage sensors”. IEEE Industry Applications Society Annual Meeting, Denver, Colorado, USA, 28 September-3 October 1986.
  • Seok JK, Lee JK, Lee DC. “Sensorless speed control of nonsalient permanent-magnet synchronous motor using rotor-position-tracking PI controller”. IEEE Transaction on Industrial Electronics, 53(2), 399-405, 2006.
  • Yang S, Guo L, Qi L, Chang L, Zhang X. “A parameter-robust sliding mode observer for speed sensorless torque control of PMSG in wind power generation system”. IEEE Canadian Conference on Electrical and Computer Engineering, Halifax, Nova Scotia, Canada, 3-6 May 2015.
  • Ichikawa S, Tomita M, Doki S, Okuma S. “Sensorless control of permanent-magnet synchronous motors using online parameter identification based on system identification theory”. IEEE Transaction on Industrial Electronics, 53(2), 363-372, 2006.
  • Xiao X, Chen C, Zhang M. “Dynamic permanent magnet flux estimation of permanent magnet synchronous machines”. IEEE Transaction on Applied Superconductivity, 20(3), 1085-1088, 2010.
  • Kerkman RJ, Skibinski GL, Schlegel DW. “A.C. drives; Year 2000 and beyond”. IEEE Applied Power Electronics Conference and Exposition, Dallas, TX, USA, 14-18 March 1999.
  • Chan TF, Wang W, Borsje P, Wong YK, Ho SL. “Sensorless permanent-magnet synchronous motor drive using a reduced-order rotor flux observer”. IET Electric Power Applications, 2(2), 88-98, 2008.
  • Cacciato A, Scarcella M, Scelba G, Bille G, Costanzo SM, Cucuccio D. “Comparison of low-cost-implementation sensorless schemes in vector controlled adjustable speed drives”. IEEE International Symposium on Power Electronics, Electrical Drives, Automation and Motion, Ischia, Italy, 11-13 June 2008.
  • Chen Z, Guerrero JM, Blaabjerg F. “A review of the state of the art of power electronics for wind turbines”. IEEE Transaction on Power Electronics, 24(8), 1859-1875, 2009.
  • Jacobina CB, da Silva ERC, Lima AMN, Ribeiro RLA. “Induction generator static systems with a reduced number of components”. IEEE Industry Applications Society Annual Meeting, San Diego, CA, USA, 6-10 October 1996.
  • Raju AB, Chatterjee K, Fernandes BG. “A simple maximum power point tracker for grid connected variable speed wind energy conversion system with reduced switch count power converters”. IEEE 34th Annual Power Electronics Specialist Conference, Acapulco, Mexico, 15-19 June 2003.
  • Dos Santos EC, Jacobina CB, Rocha N, Dias JAA, Correa MBR. “Single-phase to three-phase four-leg converter applied to distributed generation system”. IET Power Electronics, 3(6), 892-903, 2010.
  • Baktash A, Jalilian A, Vahedi A. “Direct power control of reduced switch active filters”. IEEE 14th International Conference on Harmonics and Quality of Power, Bergamo, Italy, 26-29 September 2010.
  • Bose BK. Power Electronics and Variable Frequency Drives-Technology and Applications. 1st ed. Piscataway, New Jersey, USA, IEEE Press, 1997.
  • Krishnan R. Permanent Magnet Synchronous and Brushless DC Motor Drives. 1st ed. Boca Raton, Florida, USA, CRC Press, 2009.
  • Pillay P, Krishnan R. “Modeling, simulation and analysis of permanent-magnet motor drives, Part. I: The permanent-magnet synchronous motor drive”. IEEE Transaction on Industry Applications, 25(2), 265-273, 1989.
  • Reznik A, Simões MG, Al-Durra A, Muyeen SM. “LCL filter design and performance analysis for small wind turbine systems”. IEEE Power Electronics and Machines in Wind Applications, Denver, CO, USA, 16-18 July 2012.
  • Beres RN, Wang X, Liserre M, Blaabjerg F, Bak CL. “A review of passive power filters for three-phase grid Connected voltage-source converters”. IEEE Journal of Emerging and Selected Topics in Power Electronics, 4(1), 54-69, 2015.
  • Araujo SV, Engler A, Sahan B, Antunes FLM. “LCL filter design for grid-connected NPC inverters in offshore wind turbines”. 7th International Conference on Power Electronics, Daegu, South Korea, 22-26 October 2007.
  • Ahmed KH, Finney SJ, Williams BW. “Passive filter design for three-phase inverter interfacing in distributed generation”. Compatibility in Power Electronics, Gdansk, Poland, 29 May-1 June 2007.
  • Reznik A, Simões MG, Al-Durra A, Muyeen SM. “LCL filter design and performance analysis for grid-interconnected systems”. IEEE Transaction on Industry Applications, 50(2), 1225-1232, 2014.
  • Zabaleta M, Burguete E, Madariaga D, Zubimendi I, Zubiaga M, Larrazabal I. “LCL grid filter design of a multimegawatt medium-voltage converter for offshore wind turbine using SHEPWM modulation”. IEEE Transaction on Power Electronics, 31(3), 1993-2001, 2016.
  • Nahid-Mobarakeh B, Meibody-Tabar F, Sargos FM. “Mechanical sensorless control of PMSM with online estimation of stator resistance”. IEEE Transaction on Industry Applications, 40(2), 457-471, 2004.
  • Stumberger B, Stumberger G, Dolinar D, Hamler A, Trlep M. “Evaluation of saturation and cross-magnetization effects in interior permanent-magnet synchronous motor”. IEEE Transaction on Industry Applications, 39(5), 1264-1271, 2003.
  • Ramakrishnan R, Islam R, Islam M, Sebastian T. “Real time estimation of parameters for controlling and monitoring permanent magnet synchronous motors”. International Conference on Electrical Machines and Systems, Miami, FL, USA, 3-6 May 2009.
  • Underwood SJ, Husain I. “Online parameter estimation and adaptive control of permanent-magnet synchronous machines”. IEEE Transactions on Industrial Electronics, 57(7), 2435-2443, 2010.
  • Liu K, Zhu ZQ, Stone DA. “Parameter estimation for condition monitoring of PMSM stator winding and rotor permanent magnets”. IEEE Transaction on Industrial Electronics, 60(12), 5902-5913, 2013.
  • Benadja M, Chandra A. “Adaptive sensorless control of PMSGs-based offshore wind farm and VSC-HVDC stations”. IEEE Journal of Emerging and Selected Topics in Power Electronics, 3(4), 918-931, 2015.
  • Eskola M, Tuusa H. “Comparison of MRAS and novel simple method for position estimation in PMSM drives”. IEEE 34th Annual Power Electronics Specialist Conference, Acapulco, Mexico, 15-19 June 2003.
  • Baik I, Kim KH, Young MJ. “Robust nonlinear speed control of PM synchronous motor using boundary layer integral sliding mode control technique”. IEEE Transaction on Control Systems Technology, 8(1), 47-54, 2002.
  • Boileau T, Nahid-Mobarakeh B, Meibody-Tabar F. “On-line identification of PMSM parameters: Model-reference vs EKF”. IEEE Industry Applications Society Annual Meeting, Edmonton, AB, Canada, 5-9 October 2008.

Sensorless control of permanent magnet synchronous generator drive using reduced switch inverter

Yıl 2019, Cilt: 25 Sayı: 2, 132 - 142, 22.04.2019

Öz

The main aim of this paper is to provide
electric power generation using a renewable and portable method in rural and
geographically problematic areas where energy transmission is not possible.
Electric power generation from wind with low-cost, efficient and portable
small-scale wind turbine during natural disasters (earthquake, fire, flood,
etc.) leading to catastrophic consequences (long electrical black-outs) and for
individual low power applications is targeted. The control of gearless
Permanent Magnet Synchronous Generator (PMSG) along with load side inverter
control in this project are performed using a full-rating, bi-directional,
two-level, back-to-back voltage source rectifier/inverter with total of eight
switches for the variable speed wind turbine. Additionally, one of the major advantages
and novelty of using MRAS rotor flux linkage and stator resistance estimator in
this system is to correct changes in the flux and stator resistance values in
the control system. Due to its simplicity and effectiveness, the load side
control is achieved by using four switch grid side inverter. To observe the
total system performance, a three-phase passive load is used at the inverter
output. The low-pass LCL filter is designed and used in the load side to reduce
current and voltage harmonics and increase stability and efficiency of the
power network. The results of the overall system are validated with the
real-time DSP system. It is proved with this paper that the inclusion of a
simple, effective and economical position sensorless control in the generator
side show that renewable wind energy system can be a viable distributed green
energy solution for rural areas.

Kaynakça

  • American Wind Energy Turbine Market Report. “AWEA Small Wind Turbine Global Market Study”. American Wind Energy Association, 2010.
  • U.S. Department of Energy. “2014 Distributed Wind Market Report”. U.S. Department of Energy, 2014.
  • Smith J, Huskey A, Jager D, Hur J. “Wind Turbine Generator System Power Performance Test Report for The EW50 Wind Turbine Simulation Model of Wind Turbine”. 2011.
  • Renewable UK. “Small and Medium Wind UK Market Report”, 2013.
  • Dasgupta S, Mohan SN, Sahoo SK, Panda SK. “Application of four-switch-based three-phase grid-connected inverter to connect renewable energy source to a generalized unbalanced microgrid system”. IEEE Transactions on Industrial Electronics, 60(3), 1204-1215, 2013.
  • Zhao Y, Wei C, Zhang Z, Qiao W. “A review on position/speed sensorless control for permanent-magnet synchronous machine-based wind energy conversion systems”. IEEE Journal of Emerging and Selected Topics in Power Electronics, 1(4), 203-216, 2013.
  • Parviainen A, Pyrhonen J, and Kontkanen P. “Axial flux permanent magnet generator with concentrated winding for small wind power applications”. IEEE International Electric Machines and Drives Conference, San Antonio, TX, USA, 15-18 May 2005.
  • Bumby JR, Stannard N, Dominy J, McLeod N. “A permanent magnet generator for small scale wind and water turbines”. IEEE International Conference on Electrical Machines, Coimbra, Portugal, 6-9 September 2008.
  • Andriollo M, De Bortoli M, Martinelli G, Morini A, Tortella A. “Permanent magnet axial flux disc generator for small wind turbines”. IEEE International Conference on Electrical Machines, Vilamoura, Portugal, 6-9 September 2008.
  • Olano A, Moreno V, Molina J, Zubia I., “Design and construction of an outer-rotor PM synchronous generator for small wind turbines; comparing real results with those of FE model”. IEEE International Conference on Electrical Machines, Vilamoura, Portugal, 6-9 September 2008.
  • Haraguchi H, Morimoto S, Sanada M. “Suitable design of a PMSG for a small-scale wind power generator”. International Conference on Electrical Machines and Systems, Tokyo, Japan, 15-18 November 2009.
  • Yan J, Lin H, Feng Y, Guo X, Huang Y, Zhu ZQ. “Improved sliding mode model reference adaptive system speed observer for fuzzy control of direct-drive permanent magnet synchronous generator wind power generation system”. IET Renewable Power Generation, 7(1), 28-35, 2013.
  • Zhang Z, Zhao Y, Qiao W, Qu L. “A space-vector-modulated sensorless direct-torque control for direct-drive PMSG wind turbines”. IEEE Transaction on Industry Applications, 50(4), 2331-2341, 2014.
  • Tan K, Islam S. “Optimum control strategies in energy conversion of PMSG wind turbine system without mechanical sensors”. IEEE Transaction on Energy Conversion, 19(2), 392-399, 2004.
  • Okuyama Y, Fujimoto T, Matsui N, Kubota T. “A high performance speed control scheme of induction motor without speed and voltage sensors”. IEEE Industry Applications Society Annual Meeting, Denver, Colorado, USA, 28 September-3 October 1986.
  • Seok JK, Lee JK, Lee DC. “Sensorless speed control of nonsalient permanent-magnet synchronous motor using rotor-position-tracking PI controller”. IEEE Transaction on Industrial Electronics, 53(2), 399-405, 2006.
  • Yang S, Guo L, Qi L, Chang L, Zhang X. “A parameter-robust sliding mode observer for speed sensorless torque control of PMSG in wind power generation system”. IEEE Canadian Conference on Electrical and Computer Engineering, Halifax, Nova Scotia, Canada, 3-6 May 2015.
  • Ichikawa S, Tomita M, Doki S, Okuma S. “Sensorless control of permanent-magnet synchronous motors using online parameter identification based on system identification theory”. IEEE Transaction on Industrial Electronics, 53(2), 363-372, 2006.
  • Xiao X, Chen C, Zhang M. “Dynamic permanent magnet flux estimation of permanent magnet synchronous machines”. IEEE Transaction on Applied Superconductivity, 20(3), 1085-1088, 2010.
  • Kerkman RJ, Skibinski GL, Schlegel DW. “A.C. drives; Year 2000 and beyond”. IEEE Applied Power Electronics Conference and Exposition, Dallas, TX, USA, 14-18 March 1999.
  • Chan TF, Wang W, Borsje P, Wong YK, Ho SL. “Sensorless permanent-magnet synchronous motor drive using a reduced-order rotor flux observer”. IET Electric Power Applications, 2(2), 88-98, 2008.
  • Cacciato A, Scarcella M, Scelba G, Bille G, Costanzo SM, Cucuccio D. “Comparison of low-cost-implementation sensorless schemes in vector controlled adjustable speed drives”. IEEE International Symposium on Power Electronics, Electrical Drives, Automation and Motion, Ischia, Italy, 11-13 June 2008.
  • Chen Z, Guerrero JM, Blaabjerg F. “A review of the state of the art of power electronics for wind turbines”. IEEE Transaction on Power Electronics, 24(8), 1859-1875, 2009.
  • Jacobina CB, da Silva ERC, Lima AMN, Ribeiro RLA. “Induction generator static systems with a reduced number of components”. IEEE Industry Applications Society Annual Meeting, San Diego, CA, USA, 6-10 October 1996.
  • Raju AB, Chatterjee K, Fernandes BG. “A simple maximum power point tracker for grid connected variable speed wind energy conversion system with reduced switch count power converters”. IEEE 34th Annual Power Electronics Specialist Conference, Acapulco, Mexico, 15-19 June 2003.
  • Dos Santos EC, Jacobina CB, Rocha N, Dias JAA, Correa MBR. “Single-phase to three-phase four-leg converter applied to distributed generation system”. IET Power Electronics, 3(6), 892-903, 2010.
  • Baktash A, Jalilian A, Vahedi A. “Direct power control of reduced switch active filters”. IEEE 14th International Conference on Harmonics and Quality of Power, Bergamo, Italy, 26-29 September 2010.
  • Bose BK. Power Electronics and Variable Frequency Drives-Technology and Applications. 1st ed. Piscataway, New Jersey, USA, IEEE Press, 1997.
  • Krishnan R. Permanent Magnet Synchronous and Brushless DC Motor Drives. 1st ed. Boca Raton, Florida, USA, CRC Press, 2009.
  • Pillay P, Krishnan R. “Modeling, simulation and analysis of permanent-magnet motor drives, Part. I: The permanent-magnet synchronous motor drive”. IEEE Transaction on Industry Applications, 25(2), 265-273, 1989.
  • Reznik A, Simões MG, Al-Durra A, Muyeen SM. “LCL filter design and performance analysis for small wind turbine systems”. IEEE Power Electronics and Machines in Wind Applications, Denver, CO, USA, 16-18 July 2012.
  • Beres RN, Wang X, Liserre M, Blaabjerg F, Bak CL. “A review of passive power filters for three-phase grid Connected voltage-source converters”. IEEE Journal of Emerging and Selected Topics in Power Electronics, 4(1), 54-69, 2015.
  • Araujo SV, Engler A, Sahan B, Antunes FLM. “LCL filter design for grid-connected NPC inverters in offshore wind turbines”. 7th International Conference on Power Electronics, Daegu, South Korea, 22-26 October 2007.
  • Ahmed KH, Finney SJ, Williams BW. “Passive filter design for three-phase inverter interfacing in distributed generation”. Compatibility in Power Electronics, Gdansk, Poland, 29 May-1 June 2007.
  • Reznik A, Simões MG, Al-Durra A, Muyeen SM. “LCL filter design and performance analysis for grid-interconnected systems”. IEEE Transaction on Industry Applications, 50(2), 1225-1232, 2014.
  • Zabaleta M, Burguete E, Madariaga D, Zubimendi I, Zubiaga M, Larrazabal I. “LCL grid filter design of a multimegawatt medium-voltage converter for offshore wind turbine using SHEPWM modulation”. IEEE Transaction on Power Electronics, 31(3), 1993-2001, 2016.
  • Nahid-Mobarakeh B, Meibody-Tabar F, Sargos FM. “Mechanical sensorless control of PMSM with online estimation of stator resistance”. IEEE Transaction on Industry Applications, 40(2), 457-471, 2004.
  • Stumberger B, Stumberger G, Dolinar D, Hamler A, Trlep M. “Evaluation of saturation and cross-magnetization effects in interior permanent-magnet synchronous motor”. IEEE Transaction on Industry Applications, 39(5), 1264-1271, 2003.
  • Ramakrishnan R, Islam R, Islam M, Sebastian T. “Real time estimation of parameters for controlling and monitoring permanent magnet synchronous motors”. International Conference on Electrical Machines and Systems, Miami, FL, USA, 3-6 May 2009.
  • Underwood SJ, Husain I. “Online parameter estimation and adaptive control of permanent-magnet synchronous machines”. IEEE Transactions on Industrial Electronics, 57(7), 2435-2443, 2010.
  • Liu K, Zhu ZQ, Stone DA. “Parameter estimation for condition monitoring of PMSM stator winding and rotor permanent magnets”. IEEE Transaction on Industrial Electronics, 60(12), 5902-5913, 2013.
  • Benadja M, Chandra A. “Adaptive sensorless control of PMSGs-based offshore wind farm and VSC-HVDC stations”. IEEE Journal of Emerging and Selected Topics in Power Electronics, 3(4), 918-931, 2015.
  • Eskola M, Tuusa H. “Comparison of MRAS and novel simple method for position estimation in PMSM drives”. IEEE 34th Annual Power Electronics Specialist Conference, Acapulco, Mexico, 15-19 June 2003.
  • Baik I, Kim KH, Young MJ. “Robust nonlinear speed control of PM synchronous motor using boundary layer integral sliding mode control technique”. IEEE Transaction on Control Systems Technology, 8(1), 47-54, 2002.
  • Boileau T, Nahid-Mobarakeh B, Meibody-Tabar F. “On-line identification of PMSM parameters: Model-reference vs EKF”. IEEE Industry Applications Society Annual Meeting, Edmonton, AB, Canada, 5-9 October 2008.
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makale
Yazarlar

Ömer Cihan Kıvanç

Salih Barış Öztürk

Yayımlanma Tarihi 22 Nisan 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 25 Sayı: 2

Kaynak Göster

APA Kıvanç, Ö. C., & Öztürk, S. B. (2019). Sensorless control of permanent magnet synchronous generator drive using reduced switch inverter. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25(2), 132-142.
AMA Kıvanç ÖC, Öztürk SB. Sensorless control of permanent magnet synchronous generator drive using reduced switch inverter. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Nisan 2019;25(2):132-142.
Chicago Kıvanç, Ömer Cihan, ve Salih Barış Öztürk. “Sensorless Control of Permanent Magnet Synchronous Generator Drive Using Reduced Switch Inverter”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 25, sy. 2 (Nisan 2019): 132-42.
EndNote Kıvanç ÖC, Öztürk SB (01 Nisan 2019) Sensorless control of permanent magnet synchronous generator drive using reduced switch inverter. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 25 2 132–142.
IEEE Ö. C. Kıvanç ve S. B. Öztürk, “Sensorless control of permanent magnet synchronous generator drive using reduced switch inverter”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 25, sy. 2, ss. 132–142, 2019.
ISNAD Kıvanç, Ömer Cihan - Öztürk, Salih Barış. “Sensorless Control of Permanent Magnet Synchronous Generator Drive Using Reduced Switch Inverter”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 25/2 (Nisan 2019), 132-142.
JAMA Kıvanç ÖC, Öztürk SB. Sensorless control of permanent magnet synchronous generator drive using reduced switch inverter. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2019;25:132–142.
MLA Kıvanç, Ömer Cihan ve Salih Barış Öztürk. “Sensorless Control of Permanent Magnet Synchronous Generator Drive Using Reduced Switch Inverter”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 25, sy. 2, 2019, ss. 132-4.
Vancouver Kıvanç ÖC, Öztürk SB. Sensorless control of permanent magnet synchronous generator drive using reduced switch inverter. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2019;25(2):132-4.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.