Derleme
BibTex RIS Kaynak Göster

Sürdürülebilir ve çevre dostu biyoyakıt hammaddesi: Mikroalgler

Yıl 2019, Cilt: 25 Sayı: 3, 304 - 319, 28.06.2019

Öz

Son
yıllarda petrol rezervlerinin hızlı tüketilmesi ve buna bağlı olarak meydana
gelen sera gazlarının çevre üzerinde olumsuz etkileri neticesinde, endüstriyel
ekonomi ve toplum tüketimi için sürdürülebilir ve çevre dostu alternatif enerji
kaynağı olan mikroalgler ön plana çıkmıştır. Bu çalışma kapsamında, biyoyakıt
üretim proseslerinin seçimini etkileyen mikroalglerin kimyasal kompozisyonu,
mikroalg kültürü yetiştirilmesini etkileyen faktörler, kültür yetiştirmede
kullanılan sistemler, biyoyakıt üretim prosesleri ve ekonomik analizleri
incelenmiştir. Mikroalglerin içeriği, dönüştürme proseslerini etkilemekte ve
elde edilen biyoyakıtlar farklılık göstermektedir. Bu inceleme neticesinde,
mikroalgler kullanılarak biyodizel, biyoetanol, metan ve mikroalg kalıntılarının
yakılması veya gazlaştırılması ile ısı ve elektrik üretiminin söz konusu
olabileceği tespit edilmiştir. Mevcut teknolojiler ile biyoyakıt üretimi için
alg yetiştirilmesinin tam ölçekli uygulamaları oldukça pahalıdır. Alg üretim
maliyetlerini azaltmak için bölgesel enerji santralleri veya endüstriyel baca
gazı ve atıksu arıtma tesisleri etkili ve entegre bir şekilde kullanılabilir.

Kaynakça

  • Kumar K, Ghosh S, Angelidaki I, Holdt SL, Karakashev DB, Morales MA, Das D. “Recent developments on biofuels production from microalgae and macroalgae”. Renewable and Sustainable Energy Reviews, 65, 235-249, 2016.
  • Milano J, Ong HC, Masjuki HH, Chong WT, Lam MK, Loh PK, Vellayan V. “Microalgae biofuels as an alternative to fossil fuel for power generation”. Renewable and Sustainable Energy Reviews, 58, 180-197, 2016.
  • Suganya T, Varman M, Masjuki HH, Renganathan S. “Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach”. Renewable and Sustainable Energy Reviews, 55, 909-941, 2016.
  • Putrasari Y, Praptijanto A, Santoso WB, Lim O. “Resources, policy and research activities of biofuel in Indonesia: A review”. Energy Reports, 2, 237-245, 2016.
  • Rojan PJ, Anisha GS, Nampoothiri KM, Pandey A. “Micro and macroalgal biomass: A renewable source for bioethanol”. Bioresource Technology, 102(1), 186-193, 2011.
  • Moncada J, Tamayo JA, Cardona CA. “Integrating first, second, and third generation biorefineries: Incorporating microalgae into the sugarcane biorefinery”. Chemical Engineering Science, 118, 126-140, 2014.
  • Hallenbeck PC, Grogger M, Mraz M, Veverka D. “Solar biofuels production with microalgae”. Applied Energy, 179, 136-145, 2016.
  • Jebali A, Acién FG, Gómez C, Fernández-Sevilla JM, Mhiri N, Karray F, Dhouib A, Molina-Grima E, Sayadi S. "Selection of native Tunisian microalgae for simultaneous wastewater treatment and biofuel production”. Bioresource Technology, 198, 424-430, 2015.
  • Hannon M, Gimpel J, Tran M, Rasala B, Mayfield S. “Biofuels from algae: challenges and potential”. Biofuels, 1(5), 763-784, 2010.
  • Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B. “Second generation biofuels: high-efficiency microalgae for biodiesel production”. BioEnergy Research, 1, 20-43, 2008.
  • Singh J, Gu S. “Commercialization potential of microalgae for biofuels production”. Renewable and Sustainable Energy Reviews, 14, 2596-2610, 2010.
  • Ahmad AL, Mat Yasin NH, Derek CJC, Lim JK. “Microalgae as a sustainable energy source for biodiesel production: A review”. Renewable and Sustainable Energy Reviews, 15(1), 584-593, 2011.
  • Chen C, Yeh K, Aisyah R, Lee D, Chang J. “Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review”. Bioresource Technology, 102, 71-81, 2011.
  • Amaro HM, Guedes AC, Malcata FX. “Advances and perspectives in using microalgae to produce biodiesel”. Applied Energy, 88, 3402-3410, 2011.
  • Costa JAV, Morais MG. An Open Pond System for Microalgal Cultivation. Editors: Pandey A, Lee DJ, Chisti Y, Soccol CR. Biofuels from Algae, 1-22, Oxford, UK, Elsevier, 2014.
  • Templeton DW, Quinn M, Wychen SV, Hyman D, Laurens LML. “Separation and quantification of microalgal carbohydrates”. Journal of Chromatography A, 1270, 225- 234, 2012.
  • Mata TM, Martins AA, Caetano NS. “Microalgae for biodiesel production and other applications: A review”. Renewable and Sustainable Energy Reviews, 14, 217-232, 2010.
  • Qiua R, Gaob S, Lopez PA, Ogden KL. “Effects of pH on cell growth, lipid production and CO2 addition of microalgae Chlorella sorokiniana”. Algal Research, 28, 192-199, 2017.
  • Das P, Thaher MI, Hakim MAQMA, Al-Jabri HMSJ, Alghasal GSHS. “Microalgae harvesting by pH adjusted coagulation-flocculation, recycling of the coagulant and the growth media”. Bioresource Technology, 216, 824-829, 2016
  • Lee H, Roh SW, Cho K, Kim K, Cha I, Yim KJ, Song HS, Nam Y, Oda T, Chung Y, Kim SJ, Choi J, Kim D. “Phylogenetic analysis of microalgae based on highly abundant proteins using mass spectrometry”. Talanta, 132, 630-634, 2014.
  • Subhash GV, Rohit MV, Prathima Devi M, Swamy YV, Mohan VS. “Temperature induced stress influence on biodiesel productivity during mixotrophic microalgae cultivation with wastewater”. Bioresource Technology, 169, 789-793, 2014.
  • Huesemann M, Crowe B, Waller P, Chavis A, Hobbs S, Edmundson S, Wigmosta M. “A validated model to predict microalgae growth in outdoor pond cultures subjected to fluctuating light intensities and water temperatures”. Algal Research, 13, 195-206, 2016.
  • Mottet A, Habouzit F, Steyer JP. “Anaerobic digestion of marine microalgae in different salinity levels”. Bioresource Technology, 158, 300-306, 2014.
  • Sun Y, Lia Q, Huang Y, Xia A, Fu Q, Zhu X, Fu J, Li J. “Application of growth-phase based light-feeding strategies to simultaneously enhance Chlorella vulgaris growth and lipid accumulation”. Bioresource Technology, 256, 421-430, 2018.
  • Luangpipat T, Chist Y. “Biomass and oil production by chlorella vulgaris and four other microalgae-effects of salinity and other factors”. Journal of Biotechnology, 257, 47-57, 2017.
  • Li Y, Xu H, Han F, Mu J, Chen D, Feng B, Zeng H. “Regulation of lipid metabolism in the green microalga Chlorella protothecoides by heterotrophy-photoinduction cultivation regime”. Bioresource Technology, 192, 781-791, 2015.
  • Grossmanna L, Eberta S, Hinrichs J, Weiss J. “Effect of precipitation, lyophilization, and organic solvent extraction on preparation of protein-rich powders from the microalgae Chlorella protothecoides”. Algal Research, 29, 266-276, 2018.
  • Gouveia JD, Ruiz J, van den Broek LAM, Hesselink T, Peters S, Kleinegris DMM, Smithe AG, van der Veena D, Barbosa MJ, Wijffels RH. “Botryococcus braunii strains compared for biomass productivity, hydrocarbon and carbohydrate content”. Journal of Biotechnology, 248, 77-86, 2017.
  • Khichi SS, Anis A, Ghosh S. “Mathematical modeling of light energy flux balance in flat panel photobioreactor for Botryococcus braunii growth, CO2 biofixation and lipid production under varying light regimes”. Biochemical Engineering Journal, 134, 44-56, 2018.
  • Lupatini AL, Bispo LO, Colla LM, Costa JAV, Canan C, Colla E. “Protein and carbohydrate extraction from S. platensis biomass by ultrasound and mechanical agitation”. Food Research International, 99, 1028-1035, 2017.
  • Casazza AA, Ferrari PF, Aliakbarian B, Converti A, Perego P. “Effect of UV radiation or titanium dioxide on polyphenol and lipid contents of Arthrospira (Spirulina) platensis”. Algal Research, 12, 308-315, 2015.
  • Vandamme D, Gheysen L, Muylaert K, Foubert I. “Impact of harvesting method on total lipid content and extraction efficiency for Phaeodactylum tricornutum”. Separation and Purification Technology, 362-367, 2018.
  • Heo YM, Lee H, Lee C, Kang J, Ahnd J, Lee YM, Kang KY, Choi Y, Kim J. “An integrative process for obtaining lipids and glucose from Chlorella vulgaris biomass with a single treatment of cell disruption”. Algal Research, 27, 286-294, 2017.
  • Xie T, Xia Y, Zeng Y, Li X, Zhang Y. “Nitrate "concentration-shift cultivation to enhance protein content of heterotrophic microalga Chlorella vulgaris: Over-compensation strategy”. Bioresource Technology, 233, 247-255, 2017.
  • Wang Y, Guo W, Yen HW, Ho HS, Lo YC, Cheng CL, Ren N, Chang JS. “Cultivation of Chlorella vulgaris JSC-6 with swine wastewater for simultaneous nutrient/COD removal and carbohydrate production”. Bioresource Technology, 198, 619-625, 2015.
  • Ho SH, Kondo A, Hasunuma T, Chang JS. “Engineering strategies for improving the CO2 fixation and carbohydrate productivity of Scenedesmus obliquus CNW-N used for bioethanol fermentation”. Bioresource Technology, 143, 163-171, 2013.
  • Esakkimuthu S, Krishnamurthy V, Govindarajan R, Swaminathan K. “Augmentation and starvation of calcium, magnesium, phosphate on lipid production of Scenedesmus obliquus”. Biomass and Bioenergy, 88, 126-134, 2016.
  • Çılgın E. “3. Nesil biyoyakıt teknolojisi alglerin bir dizel motorunda performans ve egzoz emisyonlarına etkisinin araştırılması”. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 5, 33-41, 2015.
  • Miao X, Wu Q. “Biodiesel production from heterotrophic microalgal oil”. Bioresource Technology, 97, 841-846, 2006.
  • Salla ACV, Margarites AC, Seibel FI, Holz LC, Brião VB, Bertolin TE, Colla LM, Costa JAV. “Increase in the carbohydrate content of the microalgae Spirulina in culture by nutrient starvation and the addition of residues of whey protein concentrate”. Bioresource Technology, 209, 133-141, 2016.
  • Zhu LD, Hiltunen E, Antila E, Zhong JJ, Yuan ZH, Wang ZM. “Microalgal biofuels: Flexible bioenergies for sustainable development”. Renewable and Sustainable Energy Reviews, 30, 1035-1046, 2014.
  • Dragone G, Fernandes B, Vicente AA, Teixeira JA. 3rd Generation Biofuels From Microalgae. Editor: Méndez-Vilas A. 2 Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology Microbiology Series No 2, Vol. 2, 1355-1366, Badajoz, Spain, Formatex, 2010.
  • Raheem A, Wan Azlina WAKG, Taufiq Yap YH, Danquah MK, Harun R. “Thermochemical conversion of microalgal biomass for biofuel production”. Renewable and Sustainable Energy Reviews, 49, 990-999, 2015.
  • Tian Y, Li C, Bian J, Feng L. “Microalgae Derived Biofuels and Processes Processes”. 2011 International Conference on Materials for Renewable Energy & Environment (ICMREE 2011), Shanghai, China, 20-22 May 2011.
  • Yen HW, Hu IC, Chen CY, Ho SH, Lee DJ, Chang JS. “Microalgae-based biorefinery-From biofuels to natural products”. Bioresource Technology, 135, 166-174, 2013.
  • Huang GH, Chen F, Wei D, Zhang XW, Chen G. “Biodiesel production by microalgal biotechnology”. Applied Energy, 87, 38-46, 2010.
  • Peng W, Wu Q, Tu P. “Effects of temperature and holding time on production of renewable fuels from pyrolysis of Chlorella protothecoides”. Journal of Applied Phycology, 12, 147-152, 2000.
  • Gross M. Development and Optimization of Algal Cultivation Systems. MSc Thesis, Iowa State University, Ames, Iowa, US, 2013.
  • Renaud SM, Thinh LV, Lambrinidis G, Parry DL. “Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures”. Aquaculture, 211, 195-214, 2002.
  • Converti A, Casazza AA, Ortiz EY, Perego P, Borghi MD. “Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production”. Chemical Engineering and Processing, 48, 1146-1151, 2009.
  • Masojídek J, Koblízek M, Torzillo G. Photosynthesis in Microalgae. Editor: Richmond A. Handbook of Microalgal Culture: Biotechnology and Applied Phycology. 20-39, Pondicherry, India, Blackwell Publishers, 2004.
  • Kim TH, Lee Y, Han SH, Hwang SJ. “The effects of wavelength and wavelength mixing ratios on microalgae growth and nitrogen, phosphorus removal using Scenedesmus sp. for wastewater treatment”. Bioresource Technology, 130, 75-80, 2013.
  • Lee CG. “Calculation of light penetration depth in photobioreactors”. Biotechnology and Bioprocess Engineering, 4, 78‐81, 1999.
  • Ren, T. Primary Factors Affecting Growth of Microalgae Optimal Light Exposure Duration and Frequency. MSc Thesis, Iowa State University, Ames, Iowa, US, 2014.
  • Sforza E, Grisa B, Silva C, Morosinotto T, Bertucco A. “Effects of light on cultivation of Scenedesmus obliquus in batch and continuous flat plate photobioreactor”. Chemical Engineering Transactions, 38, 211-216, 2014.
  • Al-Qasmi M, Raut N, Talebi S, Al-Rajhi S, Al-Barwani T. “A review of effect of light on microalgae growth”. The World Congress on Engineering 2012, WCE 2012, London, UK, 4-6 July, 2012.
  • Eriksen NT. “The technology of microalgal culturing”. Biotechnology Letter, 30, 1525-1536, 2008.
  • Huang J, Li Y, Wan M, Yan Y, Feng F, Qu X, Wang J, Shen G, Li W, Fan J, Wang W. “Novel flat-plate photobioreactors for microalgae cultivation with special mixers to promote mixing along the light gradient”. Bioresource Technology, 159, 8-16, 2014.
  • Barbosa MJ, Janssen M, Ham N, Tramper J, Wijffels RH. “Microalgae cultivation in air-lift reactors: Modeling biomass yield and growth rate as a function of mixing frequency”. Biotechnology and Bioengineering, 82(2), 170-179, 2003.
  • Blair MF, Kokabian B, Gude VG. “Light and growth medium effect on Chlorella vulgaris biomass production”. Journal of Environmental Chemical Engineering 2, 665-674, 2014.
  • Kliphuis AMJ, Martens DE, Janssen M, Wijffels RH. “Effect of o2:co2 ratio on the primary metabolism of Chlamydomonas reinhardtii”. Biotechnology and Bioengineering, 108, 2390-2402, 2011.
  • Wolkers H, Barbosa M, Kleinegris D, Bosma R, Wijffels RH. Microalgae: The Green Gold of The Future?. Wageningen UR, Propress, 2011.
  • Nwoba EG, Ayre JM, Moheimani NR, Ubi BE, Ogbonna JC. “Growth comparison of microalgae in tubular photobioreactor and open pond for treating anaerobic digestion piggery effluent”. Algal Research, 17, 268-276, 2016.
  • Yılmaz HK. “Mikroalg üretimi için fotobiyoreaktör tasarımları”. Ege Üniversitesi Su Ürünleri Dergisi, 23(1/2), 327-332, 2006.
  • Dębowski M, Zieliński M, Krzemieniewski M, Dudek M, Grala A. “Microalgae-cultivation methods”. Polish Journal of Natural Sciences, 27(2), 151-164, 2012.
  • van der Hulst C. Microalgae Cultivation Systems: Analysis of Microalgae Cultivation Systems and LCA for Biodiesel Production. MSc Thesis, Utrecht University, Heidelberglaan, Utrecht, Netherlands, 2012.
  • Naz M, Gökçek K. “Fotobiyoreaktörler: Fototropik mikroorganizmalar için alternatif üretim sistemleri”. Ulusal Su Günleri, İzmir, Türkiye, 6-8 Ekim 2004.
  • Kükdamar İ, Tokuç A. “Sıfır karbon binalara ulaşmada anahtar bir cephe önerisi”. 12. Ulusal Tesisat Mühendisliği Kongresi, Bayraklı, İzmir, Türkiye, 8-11 Nisan 2015.
  • Yang Z, Cheng J, Xu X, Zhou J, Cen K. “Enhanced solution velocity between dark and light areas with horizontal tubes and triangular prism baffles to improve microalgal growth in a flat-panel photo-bioreactor”. Bioresource Technology, 211, 519-526, 2016.
  • Pulz O. Open-air and semi-closed cultivation systems for the mass cultivation of microalgae. Editors: Phang SM, Lee YK, Borowitzka MA, Whitton BA. Algal Biotechnology in the Asia-Pacific Region, 113-117, University of Malaya, Kuala Lumpur, 1994.
  • Richmond A, Cheng-Wu Z. “Optimization of a flat plate glass reactor for mass production of Nannochloropsis sp. outdoors”. Journal of Biotechnology, 85, 259-269, 2001.
  • Su Z, Kang R, Shi S, Cong W, Cai Z. “Study on the destabilization mixing in the flat plate photobioreactor by means of CFD”. Biomass and Bioenergy, 34, 1879-1884, 2010.
  • San Pedro A, González-López CV, Acién FG, Molina-Grima E. “Outdoor pilot-scale production of Nannochloropsis gaditana: Influence of culture parameters and lipid production rates in tubular photobioreactors”. Bioresource Technology, 169, 667-676, 2014.
  • de Andrade GA, Berenguel M, Guzmán JL, Pagano DJ, Acién FG. “Optimization of biomass production in outdoor tubular photobioreactors”. Journal of Process Control, 37, 58-69, 2016.
  • Slegers PM, van Beveren PJM, Wijffels RH, van Straten G, van Boxtel AJB. “Scenario analysis of large scale algae production in tubular photobioreactors”. Applied Energy, 105, 395-406, 2012.
  • Chen C, Chang Y, Chang HY. “Outdoor cultivation of Chlorella vulgaris FSP-E in vertical tubular-type photobioreactors for microalgal protein production”. Algal Research, 13, 264-270, 2016.
  • Seo I, Lee I, Hwang H, Hong S, Bitog JP, Kwon K, Lee C, Kim Z, Cuello JL. “Numerical investigation of a bubble-column photo-bioreactor design for microalgae cultivation”. Biosystems Engineering, 113, 229-241, 2012.
  • Fernandes BD, Mota A, Ferreira A, Dragone G, Teixeira JA, Vicente AA. “Characterization of split cylinder airlift photobioreactors for efficient microalgae cultivation”. Chemical Engineering Science, 117, 445-454, 2014.
  • Huang Q, Jiang F, Wang L, Yang C. “Design of photobioreactors for mass cultivation of photosynthetic organisms”. Engineering, 3, 318-329, 2017.
  • Saladini F, Patrizi N, Pulselli FM, Marchettini N, Bastianoni S. “Guidelines for emergy evaluation of first, second and third generation biofuels”. Renewable and Sustainable Energy Reviews, 66, 221-227, 2016.
  • Naik SN, Goud VV, Rout PK, Dalai AK. “Production of first and second generation biofuels: A comprehensive review”. Renewable and Sustainable Energy Reviews, 14, 578-597, 2010.
  • Sabancı A, Ören N, Yaşar B, Öztürk HH, Atal M, “Türkiye’de biyodizel ve biyoetanol üretiminin tarım sektörü açısından değerlendirilmesi”. Türkiye Ziraat Mühendisliği VII. Teknik Kongresi, Ankara, 11-15 Ocak 2010.
  • Mohammede S, Ani FN. “An integrated approach for biodiesel and bioethanol production from Scenedesmus bijugatus cultivated in a vertical tubular photobioreactor”. Energy Conversion and Management 101, 778-786, 2015.
  • Silva CEF, Bertucco A. “Bioethanol from microalgae and cyanobacteria: A review and technological Outlook”. Process Biochemistry, 51, 1833-1842, 2016.
  • Chisti Y. “Biodiesel from microalgae beats bioethanol”. Trends in Biotechnology, 26(3), 126-131, 2008.
  • Wang H, Ji C, Bi S, Zhou P, Chen L, Liu T. “Joint production of biodiesel and bioethanol from filamentous oleaginous microalgae Tribonema sp.”. Bioresource Technology, 172, 169-173, 2014.
  • Lam MK, Lee KT. Chapter 12-Bioethanol Production from Microalgae, Editor: Kim SK. Handbook of Marine Microalgae, Biotechnology Advances, 197-208, London, UK, Elsevier Inc, 2015.
  • Gruber-Brunhumer MR, Jerney J, Zohar E, Nussbaumer M, Hieger C, Bochmann G, Schagerl M, Obbard JP, Fuchs W, Drosg B. “Acutodesmus obliquus as a benchmark strain for evaluating methane production from microalgae: Influence of different storage and pretreatment methods on biogas yield”. Algal Research, 12, 230-238, 2015.
  • Tongprawhan W, Srinuanpan S, Cheirsilp B. “Biocapture of CO2 from biogas by oleaginous microalgae for improving methane content and simultaneously producing lipid”. Bioresource Technology, 170, 90-99, 2014.
  • Marcilla A, Catalá L, García-Quesada JC, Valdés FJ, Hernández MR. “A review of thermochemical conversion of microalgae”. Renewable and Sustainable Energy Reviews, 27, 11-19, 2013.
  • Chiaramonti D, Prussi M, Buffi M, Casini D, Rizzo AM. “Thermochemical conversion of microalgae: challenges and opportunities”. Energy Procedia, 75, 819-826, 2015.
  • Figueira CE, Moreira JrPF, Giudici R. “Thermogravimetric analysis of the gasification of microalgae Chlorella vulgaris”. Bioresource Technology, 198, 717-724, 2015.
  • Ferreira AF, Soares DAP, Silva CM, Costa M. “Evaluation of thermochemical properties of raw and extracted microalgae”. Energy, 92, 365-372, 2015.
  • Wang P, Li Z, Bai J, Langa Y, Hu H. “Optimization of microalgal bead preparation with Scenedesmus obliquus for both nutrient removal and lipid production”. Ecological Engineering, 92, 236-242, 2016.
  • Zhou W Li Y, Min M, Hu B, Zhang H, Ma X, Li L, Cheng Y, Chen P, Ruan R. “Growing wastewater-born microalga Auxenochlorella protothecoides UMN280 on concentrated municipal wastewater for simultaneous nutrient removal and energy feedstock production”. Applied Energy, 98, 433-440, 2012.
  • Ip SY, Bridger JS, Chi C, Martin, WRB, Rape WGC. “Algal growth in primary settled sewage-the effects of five key variables”. Water Research, 16, 621-632,1982.
  • Konig A, Pearson HW, Silva SA. “Ammonia toxicity to algal growth in waste stabilization ponds”. Water Sci. Technol, 19, 115-122İ 1987.
  • Wrigley TJ, Toerien DF, “Limnological aspects of small sewage ponds”. Water Research, 24(1), 83-90, 1990.
  • Lau PS, Tam NFY, Wong YS. “Effect of algal density on nutrient removal from primary settled wastewater”. Environmental Pollution, 89 (1), 59-66, 1995.
  • Pittman JK, Dean AP, Osundeko O, “The potential of sustainable algal biofuel production using wastewater resources”. Bioresource Technology, 102(1), 17-25, 2011.
  • Olguın EJ. “Phycoremediation: key issues for cost-effective nutrient removal processes”. Biotechnology Advances, 22(1-2), 81-91, 2003.
  • Chinnasamy S, Bhatnagar A, Hunt RW, Das KC. “Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications”. Bioresource Technology, 101(9), 3097-105, 2010.
  • Kong Q, Li L, Martinez B, Chen P, Ruan R. “Culture of microalgae chlamydomonas reinhardtii in wastewater for biomass feedstock production”. Applied Biochemistry and Biotechnology, 160(1), 9-18, 2010.
  • Wang L, Min M, Li Y, Chen P, Chen Y, Liu Y. “Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant.”. Applied Biochemistry and Biotechnology, 162(4), 1174-1186, 2010.
  • Rawat I, Ranjith Kumar R, Mutanda T, Bux F. “Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production”. Applied Energy, 88(10), 3411-3424. 2011.
  • Martinez ME, Sanchez S, Jimenez JM, El Yousfi F, Munoz L. “Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus”. Bioresource Technology, 73(3), 263-272, 2000.
  • Ruiz-Marin A, Mendoza-Espinosa LG, Stephenson T. “Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater”. Bioresource Technology, 101(1), 58-64, 2010.
  • Zhang ED, Wang B, Wang QH, Zhang SB, Zhao BD. “Ammonia-nitrogen and orthophosphate removal by immobilized Scenedesmus sp isolated from municipal wastewater for potential use in tertiary treatment”. Bioresource Technology, 99(9), 3787-3793, 2008.
  • Masseret E, Amblard C, Bourdier G, Sargos D. “Effects of a waste stabilization lagoon discharge on bacterial and phytoplanktonic communities of a stream”. Water Environment Research, 72(3), 285-294, 2000.
  • Canovas S, Picot B, Casellas, C, Zulkifi , Dubois, A., Bontoux J. “Seasonal development of phytoplankton and zooplankton in a high-rate algal pond”. Water Science and Technology, 33(7), 199-206, 1996.
  • Travieso L, Benitez F, Dupeiron R. “Sewage treatment using immobilized microalgae”. Bioresource Technology, 40(2), 183-187, 1992.
  • Ruiz-Marin A, Mendoza-Espinosa LG, Stephenson T. “Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater”. Bioresource Technology,101(1), 58-64, 2010.
  • Orpez R, Martinez ME, Hodaifa G, El Yousfi F, Jbari N, Sanchez S. “Growth of the microalga Botryococcus braunii in secondarily treated sewage”. Desalination, 246(1-3), 625-630, 2009.
  • Woertz I, Feffer A, Lundquist T, Nelson Y. “Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock”. Journal of Environmental Engineering, 135(11), 1115-1122, 2009.
  • Bhatnagar A, Bhatnagar M, Chinnasamy S, Das K. “Chlorella minutissima - a promising fuel alga for cultivation in municipal wastewaters”. Applied Biochemistry and Biotechnology, 161(1-8), 523-536, 2010.
  • Wilkie AC, Mulbry WW. “Recovery of dairy manure nutrients by benthic freshwater algae”. Bioresource Technology, 84(1), 81-91, 2002.
  • An JY, Sim SJ, Lee JS, Kim BW. “Hydrocarbon production from secondarily treated piggery wastewater by the green alga Botryococcus braunii”. Journal of Applied Phycology, 15(2-3), 185-191, 2003.
  • Gonzalez LE, Canizares RO, Baena S. “Efficiency of ammonia and phosphorus removal from a Colombian agroindustrial wastewater by the microalgae Chlorella vulgaris and Scenedesmus dimorphus”. Bioresource Technology, 60(3), 259-262, 1997.
  • Blier R, Laliberte G, De la Noüe J. “Tertiary treatment of cheese factory anaerobic effluent with Phormidium bohneri and Micractinum pusillum”. Bioresource Technology,52 (2), 151-155, 1995.
  • El-Sikaily A, El Nemr A, Khaled A, Abdelwehab O. “Removal of toxic chromium from wastewater using green alga Ulva lactuca and its activated carbon”. Journal of Hazardous Materials, 148(1-2), 216-228, 2007.
  • Christenson L, Sims R. “Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts”. Biotechnology Adnvances, 29 (6), 686-702, 2011.
  • Woertz I, Feffer A, Lundquist T, Nelson Y. “Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock”. Journal of Environmental Engineering, 135 (11), 1115-1122, 2009.
  • Markou G, Georgakakis D. “Cultivation of filamentous cyanobacteria (bluegreen algae) in agro-industrial wastes and wastewaters: a review”. Applied Energy,,88 (10), 3389-3401, 2011.
  • Öztürk I, Eroglu V, Ubay G, Demir I. “Hybrid upflow anaerobic sludge blanket reactor (HUASBR) treatment of dairy effluents.” Water Science and Technology, 28 (2), 77-85. 1993.
  • Longhurst R, Roberts A, O’Connor M. “Farm dairy effluent: a review of published data on chemical and physical characteristics in New Zealand.” New Zealand Journal of Agricultural Research, 43 (1), 7-14, 2000.
  • Lincoln E, Wilkie A, Frenc B. “Cyanobacterial process for renovating dairy wastewater.” Biomass Bioenergy 10 (1), 63-68, 1996.
  • Gentili FG. “Microalgal biomass and lipid production in mixed municipal, dairy, pulp and paper wastewater together with added flue gases.” Bioresource Technology, 169, 27-32, 2014.
  • Lu W, Wang Z, Wang X, Yuan Z. “Cultivation of Chlorellasp. using raw dairy wastewater for nutrient removal and biodiesel production: Characteristics comparison of indoor bench-scale and outdoor pilot-scale cultures”. Bioresource Technology, 192, 382-388, 2015.
  • Hena S, Fatimah S, Tabassum S. “Cultivation of algae consortium in a dairy farm wastewater for biodiesel production”. Water Resources and Industry, 10, 1-14, 2011.
  • Choi H. “Dairy wastewater treatment using microalgae for potential biodiesel application”. Environmental Engineering Research, 21(4), 393-400, 2016.
  • Sreekanth D, Pooja K, Seeta Y, Himabindu V, Reddy PM. “Bioremediation of dairy wastewater using microalgae for the production of biodiesel”. International Journal of Science Engineering and Advance Technology, 2, 783-791, 2014.
  • Lu Q, Zhou W, Min M, Ma X, Ma Y, Chen P, Zheng H, Doan YTT, Liu H, Chen C, Urriola PE, Shurson GC, Ruan R. “Mitigating ammonia nitrogen deficiency in dairy wastewaters for algae cultivation”. Bioresource Technology, 201, 33-40, 2016.
  • Koç C, Duran H. “Determination of the effect of whey as a nutritional supplement in different growth medium regarding to its potential to biodiesel feedstock production”. Anadolu Tarım Bilimleri Dergisi 32(3), 309-315, 2017.
  • Seo YH, Lee I, Jeon SH, Han JI. “Efficient conversion from cheese whey to lipid using Cryptococcus curvatus”. Biochemical Engineering Journal, 90, 149-153, 2014..
  • Tsolcha ON, Tekerlekopoulou AG, Akratos CS, Bellou S, Aggelis G, Katsiapi M, Moustaka MG, Vayenas DV, Chem J. “Treatment of second cheese whey effluents using a Choricystis-based system with simultaneous lipid production”. Journal of Chemical Technology and Biotechnology, 91(8), 2349-2359, 2016.
  • Ahluwalia SS, Goyal D. “Microbial and plant derived biomass for removal of heavy metals from wastewater”. Bioresource Technology, 98(12), 2243-2257, 2007.
  • de-Bashan LE, Bashan Y. “Immobilized microalgae for removing pollutants: review of practical aspects”. Bioresource Technology, 101(6), 1611-1627, 2010.
  • Mallick N. “Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review”. BioMetals 15, 377-390, 2002.
  • Lam MK, Lee KT, Mohamed AR. “Review Current status and challenges on microalgae-based carbon capture”. International Journal of Greenhouse Gas Control, 10, 456-469, 2012.
  • Slade R, Bauen A. “Micro-algae cultivation for biofuels: Cost, energy balance, environmental impacts and future prospects”. Biomass and Bioenergy, 53, 29-38, 2013.
  • Xin C, Addy MM, Zhao J, Cheng Y, Cheng S, Mud D, Liu Y, Ding R, Chen P, Ruan R. “Comprehensive techno-economic analysis of wastewater-based algal biofuel production: A case study”. Bioresource Technology, 211, 584-593, 2016.
  • Min M, Wang L, Li Y, Mohr MJ, Hu B, Zhou W, Chen P, Ruan R, “Cultivating Chlorella sp. in a pilot-scale photobioreactor using centrate wastewater for microalgae biomass production and wastewater nutrient Removal”. Applied Biochemistry and Biotechnology 165(1), 123-137, 2011.
  • Mata TM, Mendes AM, Caetano NS, Martins AA. “Sustainability and economic evaluation of microalgae grown in brewery wastewater.” Bioresource Technology. 168, 151-158, 2014.
  • Davis RE, Fishman DB, Frank ED, Johnson MC, Jones SB, Kinchin CM, Skaggs RL, Venteris ER, Wigmosta MS. 2014. “Integrated evaluation of cost, emissions, and resource potential for algal biofuels at the national scale.” Environmental Science & Technology, 48(10), 6035-6042.
  • Ventura JRS, Yang B, Lee YW, Lee K, Jahng D. “Life cycle analyses of CO2, energy, and cost for four different routes of microalgal bioenergy conversion”. Bioresource Technology, 137, 302-310, 2013.
  • Nagarajan A, Chou SK, Cao S, Wub C, Zhou Z. “An updated comprehensive techno-economic analysis of algae biodiesel”. Bioresource Technology, 145, 150-156, 2013.
  • Thilakaratne R, Wright MM, Brown RC. “A techno-economic analysis of microalgae remnant catalytic pyrolysis and upgrading to fuels.” Fuel, 128, 104-112. 2014.
  • Orfield ND, Keoleian GA, Love NG. “A GIS based national assessment of algal bio-oil production potential through flue gas and wastewater coutilization”. Biomass Bioenergy, 63, 76-85. 2014.
  • Lundquist TJ, Woertz IC, Quinn NWT, Benemann JR. “A realistic technology and engineering assessment of algae biofuel production 2010”. Energy Biosciences Institute, University of California, Berkeley.
  • EERE, 2008. Algae biofuels. In: E.E.R.E. U.S. Department of Energy (Ed.), Growing America’s Energy Future. Alternative Fuels Data Center, Washington, DC, USA.
  • Elmoraghy M, Farag I. “Bio-jet Fuel from Microalgae Reducing Water and Energy Requirements for Algae Growth”. International Journal of Engineering and Science 1(2):22-30, 2012.
  • Brutyan MM, “Foresight of Microalgae Usage for the Production of Third-Generation Biofuel”, Indian Journal of Science and Technology, 10(16), 2016.
  • Harun R, Davidson M, Doyle M, Gopiraj R, Danquah M, Forde G. “Technoeconomic analysis of an integrated microalgae photobioreactor, biodiesel and biogas production facility.” Biomass & Bioenerg,y 35(1), 741-747, 2011.
  • Amer L, Adhikari B, Pellegrino J. “Technoeconomic analysis of fivemicroalgae-to-biofuels processes of varying complexity”. Bioresource Technology, 102 (20), 9350-9359. 2011.
  • Delrue F, Setier PA, Sahut C, Cournac L, Roubaud A, Peltier G, Froment AK. “An economic, sustainability, and energetic model of biodiesel production from microalgae”. Bioresource Technology, 111, 191-200. 2012.
  • Richardson JW, Johnson MD, Zhang X, Zemke P, Chen W, Hu Q. “A financial assessment of two alternative cultivation systems and their contributions to algae biofuel economic viability”. Algal Research, 4, 96-104, 2014.
  • Park JBK, Craggs RJ, Shilton AN. “Wastewater treatment high rate algal ponds for biofuel production”. Bioresource Technology, 102, 35-42, 2011.
  • Usher PK, Ross AB, Camargo-Valero MA, Tomlin AS, Gale WF. “An overview of the potential environmental impacts of largescale microalgae cultivation”. Biofuels, 5(3), 331-349, 2014.
  • Defense Advanced Research Projects Agency. “Biofuels (Archived)”. https://www.darpa.mil/program/biofuels (10.04.2018).
  • Quinn JC, Catton K, Wagner N, Bradley TH, “Current Large-Scale US Biofuel Potential from Microalgae Cultivated in Photobioreactors”, Bioenergy Research, 5, 49-60, 2012.
  • Business Wire. “Hawaiian Algae Biofuel Companies, Military Customers Featured at BIO’s 2010 Pacific Rim Summit” https://www.businesswire.com/news/home/20101202006322/en/Hawaiian-Algae-Biofuel-Companies-Military-Customers-Featured (10.04.2018).
  • Berner K. “Commercializing algal biofuels”. Paper presented at the Pacific Rim Summit on Industrial Biotechnology & Bioenergy, Honolulu, HI, 11-14 December 2010.
  • Cyanotech. “Welcome to Cyanotech”. http://www.cyanotech. com/index.html (10.04.2018).
  • Asia Biomass Energy Cooperation Promotion Office. “Initiatives for the Large-Scale Outdoor Cultivation of Microalgae”. https://www.asiabiomass.jp/english/topics/1505_04.html (10.04.2018).

Sustainable and eco-friendly raw materials for biofuels: Microalgae

Yıl 2019, Cilt: 25 Sayı: 3, 304 - 319, 28.06.2019

Öz

Microalgae,
a sustainable and environmentally friendly alternative energy source for the
industrial economy and community consumption, has come to the forefront in
recent years due to the rapid depletion of oil reserves and consequent negative
effects of greenhouse gases on the environment. In this study, the chemical
composition of microalgae affecting the selection of biofuel production
processes, factors affecting microalgae cultivation, cultivated systems,
biofuel production processes and its economic analysis are examined. The
content of microalgae affects the conversion processes, and the obtained
biofuels from microalgae show differences. As a result of this investigation,
it has been concluded that the heat and electricity production may be obtained
from burning or gasification of microalgae residues. Biodiesel, bioethanol and
methane can also be produced using microalgae. The full-scale applications of
algae cultivation for biofuel production with existing technologies are quite
expensive. To reduce algal production costs, the regional power plants or the
industrial flue gas and the wastewater treatment plants should be used in an
effectively and integrally.

Kaynakça

  • Kumar K, Ghosh S, Angelidaki I, Holdt SL, Karakashev DB, Morales MA, Das D. “Recent developments on biofuels production from microalgae and macroalgae”. Renewable and Sustainable Energy Reviews, 65, 235-249, 2016.
  • Milano J, Ong HC, Masjuki HH, Chong WT, Lam MK, Loh PK, Vellayan V. “Microalgae biofuels as an alternative to fossil fuel for power generation”. Renewable and Sustainable Energy Reviews, 58, 180-197, 2016.
  • Suganya T, Varman M, Masjuki HH, Renganathan S. “Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach”. Renewable and Sustainable Energy Reviews, 55, 909-941, 2016.
  • Putrasari Y, Praptijanto A, Santoso WB, Lim O. “Resources, policy and research activities of biofuel in Indonesia: A review”. Energy Reports, 2, 237-245, 2016.
  • Rojan PJ, Anisha GS, Nampoothiri KM, Pandey A. “Micro and macroalgal biomass: A renewable source for bioethanol”. Bioresource Technology, 102(1), 186-193, 2011.
  • Moncada J, Tamayo JA, Cardona CA. “Integrating first, second, and third generation biorefineries: Incorporating microalgae into the sugarcane biorefinery”. Chemical Engineering Science, 118, 126-140, 2014.
  • Hallenbeck PC, Grogger M, Mraz M, Veverka D. “Solar biofuels production with microalgae”. Applied Energy, 179, 136-145, 2016.
  • Jebali A, Acién FG, Gómez C, Fernández-Sevilla JM, Mhiri N, Karray F, Dhouib A, Molina-Grima E, Sayadi S. "Selection of native Tunisian microalgae for simultaneous wastewater treatment and biofuel production”. Bioresource Technology, 198, 424-430, 2015.
  • Hannon M, Gimpel J, Tran M, Rasala B, Mayfield S. “Biofuels from algae: challenges and potential”. Biofuels, 1(5), 763-784, 2010.
  • Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B. “Second generation biofuels: high-efficiency microalgae for biodiesel production”. BioEnergy Research, 1, 20-43, 2008.
  • Singh J, Gu S. “Commercialization potential of microalgae for biofuels production”. Renewable and Sustainable Energy Reviews, 14, 2596-2610, 2010.
  • Ahmad AL, Mat Yasin NH, Derek CJC, Lim JK. “Microalgae as a sustainable energy source for biodiesel production: A review”. Renewable and Sustainable Energy Reviews, 15(1), 584-593, 2011.
  • Chen C, Yeh K, Aisyah R, Lee D, Chang J. “Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review”. Bioresource Technology, 102, 71-81, 2011.
  • Amaro HM, Guedes AC, Malcata FX. “Advances and perspectives in using microalgae to produce biodiesel”. Applied Energy, 88, 3402-3410, 2011.
  • Costa JAV, Morais MG. An Open Pond System for Microalgal Cultivation. Editors: Pandey A, Lee DJ, Chisti Y, Soccol CR. Biofuels from Algae, 1-22, Oxford, UK, Elsevier, 2014.
  • Templeton DW, Quinn M, Wychen SV, Hyman D, Laurens LML. “Separation and quantification of microalgal carbohydrates”. Journal of Chromatography A, 1270, 225- 234, 2012.
  • Mata TM, Martins AA, Caetano NS. “Microalgae for biodiesel production and other applications: A review”. Renewable and Sustainable Energy Reviews, 14, 217-232, 2010.
  • Qiua R, Gaob S, Lopez PA, Ogden KL. “Effects of pH on cell growth, lipid production and CO2 addition of microalgae Chlorella sorokiniana”. Algal Research, 28, 192-199, 2017.
  • Das P, Thaher MI, Hakim MAQMA, Al-Jabri HMSJ, Alghasal GSHS. “Microalgae harvesting by pH adjusted coagulation-flocculation, recycling of the coagulant and the growth media”. Bioresource Technology, 216, 824-829, 2016
  • Lee H, Roh SW, Cho K, Kim K, Cha I, Yim KJ, Song HS, Nam Y, Oda T, Chung Y, Kim SJ, Choi J, Kim D. “Phylogenetic analysis of microalgae based on highly abundant proteins using mass spectrometry”. Talanta, 132, 630-634, 2014.
  • Subhash GV, Rohit MV, Prathima Devi M, Swamy YV, Mohan VS. “Temperature induced stress influence on biodiesel productivity during mixotrophic microalgae cultivation with wastewater”. Bioresource Technology, 169, 789-793, 2014.
  • Huesemann M, Crowe B, Waller P, Chavis A, Hobbs S, Edmundson S, Wigmosta M. “A validated model to predict microalgae growth in outdoor pond cultures subjected to fluctuating light intensities and water temperatures”. Algal Research, 13, 195-206, 2016.
  • Mottet A, Habouzit F, Steyer JP. “Anaerobic digestion of marine microalgae in different salinity levels”. Bioresource Technology, 158, 300-306, 2014.
  • Sun Y, Lia Q, Huang Y, Xia A, Fu Q, Zhu X, Fu J, Li J. “Application of growth-phase based light-feeding strategies to simultaneously enhance Chlorella vulgaris growth and lipid accumulation”. Bioresource Technology, 256, 421-430, 2018.
  • Luangpipat T, Chist Y. “Biomass and oil production by chlorella vulgaris and four other microalgae-effects of salinity and other factors”. Journal of Biotechnology, 257, 47-57, 2017.
  • Li Y, Xu H, Han F, Mu J, Chen D, Feng B, Zeng H. “Regulation of lipid metabolism in the green microalga Chlorella protothecoides by heterotrophy-photoinduction cultivation regime”. Bioresource Technology, 192, 781-791, 2015.
  • Grossmanna L, Eberta S, Hinrichs J, Weiss J. “Effect of precipitation, lyophilization, and organic solvent extraction on preparation of protein-rich powders from the microalgae Chlorella protothecoides”. Algal Research, 29, 266-276, 2018.
  • Gouveia JD, Ruiz J, van den Broek LAM, Hesselink T, Peters S, Kleinegris DMM, Smithe AG, van der Veena D, Barbosa MJ, Wijffels RH. “Botryococcus braunii strains compared for biomass productivity, hydrocarbon and carbohydrate content”. Journal of Biotechnology, 248, 77-86, 2017.
  • Khichi SS, Anis A, Ghosh S. “Mathematical modeling of light energy flux balance in flat panel photobioreactor for Botryococcus braunii growth, CO2 biofixation and lipid production under varying light regimes”. Biochemical Engineering Journal, 134, 44-56, 2018.
  • Lupatini AL, Bispo LO, Colla LM, Costa JAV, Canan C, Colla E. “Protein and carbohydrate extraction from S. platensis biomass by ultrasound and mechanical agitation”. Food Research International, 99, 1028-1035, 2017.
  • Casazza AA, Ferrari PF, Aliakbarian B, Converti A, Perego P. “Effect of UV radiation or titanium dioxide on polyphenol and lipid contents of Arthrospira (Spirulina) platensis”. Algal Research, 12, 308-315, 2015.
  • Vandamme D, Gheysen L, Muylaert K, Foubert I. “Impact of harvesting method on total lipid content and extraction efficiency for Phaeodactylum tricornutum”. Separation and Purification Technology, 362-367, 2018.
  • Heo YM, Lee H, Lee C, Kang J, Ahnd J, Lee YM, Kang KY, Choi Y, Kim J. “An integrative process for obtaining lipids and glucose from Chlorella vulgaris biomass with a single treatment of cell disruption”. Algal Research, 27, 286-294, 2017.
  • Xie T, Xia Y, Zeng Y, Li X, Zhang Y. “Nitrate "concentration-shift cultivation to enhance protein content of heterotrophic microalga Chlorella vulgaris: Over-compensation strategy”. Bioresource Technology, 233, 247-255, 2017.
  • Wang Y, Guo W, Yen HW, Ho HS, Lo YC, Cheng CL, Ren N, Chang JS. “Cultivation of Chlorella vulgaris JSC-6 with swine wastewater for simultaneous nutrient/COD removal and carbohydrate production”. Bioresource Technology, 198, 619-625, 2015.
  • Ho SH, Kondo A, Hasunuma T, Chang JS. “Engineering strategies for improving the CO2 fixation and carbohydrate productivity of Scenedesmus obliquus CNW-N used for bioethanol fermentation”. Bioresource Technology, 143, 163-171, 2013.
  • Esakkimuthu S, Krishnamurthy V, Govindarajan R, Swaminathan K. “Augmentation and starvation of calcium, magnesium, phosphate on lipid production of Scenedesmus obliquus”. Biomass and Bioenergy, 88, 126-134, 2016.
  • Çılgın E. “3. Nesil biyoyakıt teknolojisi alglerin bir dizel motorunda performans ve egzoz emisyonlarına etkisinin araştırılması”. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 5, 33-41, 2015.
  • Miao X, Wu Q. “Biodiesel production from heterotrophic microalgal oil”. Bioresource Technology, 97, 841-846, 2006.
  • Salla ACV, Margarites AC, Seibel FI, Holz LC, Brião VB, Bertolin TE, Colla LM, Costa JAV. “Increase in the carbohydrate content of the microalgae Spirulina in culture by nutrient starvation and the addition of residues of whey protein concentrate”. Bioresource Technology, 209, 133-141, 2016.
  • Zhu LD, Hiltunen E, Antila E, Zhong JJ, Yuan ZH, Wang ZM. “Microalgal biofuels: Flexible bioenergies for sustainable development”. Renewable and Sustainable Energy Reviews, 30, 1035-1046, 2014.
  • Dragone G, Fernandes B, Vicente AA, Teixeira JA. 3rd Generation Biofuels From Microalgae. Editor: Méndez-Vilas A. 2 Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology Microbiology Series No 2, Vol. 2, 1355-1366, Badajoz, Spain, Formatex, 2010.
  • Raheem A, Wan Azlina WAKG, Taufiq Yap YH, Danquah MK, Harun R. “Thermochemical conversion of microalgal biomass for biofuel production”. Renewable and Sustainable Energy Reviews, 49, 990-999, 2015.
  • Tian Y, Li C, Bian J, Feng L. “Microalgae Derived Biofuels and Processes Processes”. 2011 International Conference on Materials for Renewable Energy & Environment (ICMREE 2011), Shanghai, China, 20-22 May 2011.
  • Yen HW, Hu IC, Chen CY, Ho SH, Lee DJ, Chang JS. “Microalgae-based biorefinery-From biofuels to natural products”. Bioresource Technology, 135, 166-174, 2013.
  • Huang GH, Chen F, Wei D, Zhang XW, Chen G. “Biodiesel production by microalgal biotechnology”. Applied Energy, 87, 38-46, 2010.
  • Peng W, Wu Q, Tu P. “Effects of temperature and holding time on production of renewable fuels from pyrolysis of Chlorella protothecoides”. Journal of Applied Phycology, 12, 147-152, 2000.
  • Gross M. Development and Optimization of Algal Cultivation Systems. MSc Thesis, Iowa State University, Ames, Iowa, US, 2013.
  • Renaud SM, Thinh LV, Lambrinidis G, Parry DL. “Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures”. Aquaculture, 211, 195-214, 2002.
  • Converti A, Casazza AA, Ortiz EY, Perego P, Borghi MD. “Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production”. Chemical Engineering and Processing, 48, 1146-1151, 2009.
  • Masojídek J, Koblízek M, Torzillo G. Photosynthesis in Microalgae. Editor: Richmond A. Handbook of Microalgal Culture: Biotechnology and Applied Phycology. 20-39, Pondicherry, India, Blackwell Publishers, 2004.
  • Kim TH, Lee Y, Han SH, Hwang SJ. “The effects of wavelength and wavelength mixing ratios on microalgae growth and nitrogen, phosphorus removal using Scenedesmus sp. for wastewater treatment”. Bioresource Technology, 130, 75-80, 2013.
  • Lee CG. “Calculation of light penetration depth in photobioreactors”. Biotechnology and Bioprocess Engineering, 4, 78‐81, 1999.
  • Ren, T. Primary Factors Affecting Growth of Microalgae Optimal Light Exposure Duration and Frequency. MSc Thesis, Iowa State University, Ames, Iowa, US, 2014.
  • Sforza E, Grisa B, Silva C, Morosinotto T, Bertucco A. “Effects of light on cultivation of Scenedesmus obliquus in batch and continuous flat plate photobioreactor”. Chemical Engineering Transactions, 38, 211-216, 2014.
  • Al-Qasmi M, Raut N, Talebi S, Al-Rajhi S, Al-Barwani T. “A review of effect of light on microalgae growth”. The World Congress on Engineering 2012, WCE 2012, London, UK, 4-6 July, 2012.
  • Eriksen NT. “The technology of microalgal culturing”. Biotechnology Letter, 30, 1525-1536, 2008.
  • Huang J, Li Y, Wan M, Yan Y, Feng F, Qu X, Wang J, Shen G, Li W, Fan J, Wang W. “Novel flat-plate photobioreactors for microalgae cultivation with special mixers to promote mixing along the light gradient”. Bioresource Technology, 159, 8-16, 2014.
  • Barbosa MJ, Janssen M, Ham N, Tramper J, Wijffels RH. “Microalgae cultivation in air-lift reactors: Modeling biomass yield and growth rate as a function of mixing frequency”. Biotechnology and Bioengineering, 82(2), 170-179, 2003.
  • Blair MF, Kokabian B, Gude VG. “Light and growth medium effect on Chlorella vulgaris biomass production”. Journal of Environmental Chemical Engineering 2, 665-674, 2014.
  • Kliphuis AMJ, Martens DE, Janssen M, Wijffels RH. “Effect of o2:co2 ratio on the primary metabolism of Chlamydomonas reinhardtii”. Biotechnology and Bioengineering, 108, 2390-2402, 2011.
  • Wolkers H, Barbosa M, Kleinegris D, Bosma R, Wijffels RH. Microalgae: The Green Gold of The Future?. Wageningen UR, Propress, 2011.
  • Nwoba EG, Ayre JM, Moheimani NR, Ubi BE, Ogbonna JC. “Growth comparison of microalgae in tubular photobioreactor and open pond for treating anaerobic digestion piggery effluent”. Algal Research, 17, 268-276, 2016.
  • Yılmaz HK. “Mikroalg üretimi için fotobiyoreaktör tasarımları”. Ege Üniversitesi Su Ürünleri Dergisi, 23(1/2), 327-332, 2006.
  • Dębowski M, Zieliński M, Krzemieniewski M, Dudek M, Grala A. “Microalgae-cultivation methods”. Polish Journal of Natural Sciences, 27(2), 151-164, 2012.
  • van der Hulst C. Microalgae Cultivation Systems: Analysis of Microalgae Cultivation Systems and LCA for Biodiesel Production. MSc Thesis, Utrecht University, Heidelberglaan, Utrecht, Netherlands, 2012.
  • Naz M, Gökçek K. “Fotobiyoreaktörler: Fototropik mikroorganizmalar için alternatif üretim sistemleri”. Ulusal Su Günleri, İzmir, Türkiye, 6-8 Ekim 2004.
  • Kükdamar İ, Tokuç A. “Sıfır karbon binalara ulaşmada anahtar bir cephe önerisi”. 12. Ulusal Tesisat Mühendisliği Kongresi, Bayraklı, İzmir, Türkiye, 8-11 Nisan 2015.
  • Yang Z, Cheng J, Xu X, Zhou J, Cen K. “Enhanced solution velocity between dark and light areas with horizontal tubes and triangular prism baffles to improve microalgal growth in a flat-panel photo-bioreactor”. Bioresource Technology, 211, 519-526, 2016.
  • Pulz O. Open-air and semi-closed cultivation systems for the mass cultivation of microalgae. Editors: Phang SM, Lee YK, Borowitzka MA, Whitton BA. Algal Biotechnology in the Asia-Pacific Region, 113-117, University of Malaya, Kuala Lumpur, 1994.
  • Richmond A, Cheng-Wu Z. “Optimization of a flat plate glass reactor for mass production of Nannochloropsis sp. outdoors”. Journal of Biotechnology, 85, 259-269, 2001.
  • Su Z, Kang R, Shi S, Cong W, Cai Z. “Study on the destabilization mixing in the flat plate photobioreactor by means of CFD”. Biomass and Bioenergy, 34, 1879-1884, 2010.
  • San Pedro A, González-López CV, Acién FG, Molina-Grima E. “Outdoor pilot-scale production of Nannochloropsis gaditana: Influence of culture parameters and lipid production rates in tubular photobioreactors”. Bioresource Technology, 169, 667-676, 2014.
  • de Andrade GA, Berenguel M, Guzmán JL, Pagano DJ, Acién FG. “Optimization of biomass production in outdoor tubular photobioreactors”. Journal of Process Control, 37, 58-69, 2016.
  • Slegers PM, van Beveren PJM, Wijffels RH, van Straten G, van Boxtel AJB. “Scenario analysis of large scale algae production in tubular photobioreactors”. Applied Energy, 105, 395-406, 2012.
  • Chen C, Chang Y, Chang HY. “Outdoor cultivation of Chlorella vulgaris FSP-E in vertical tubular-type photobioreactors for microalgal protein production”. Algal Research, 13, 264-270, 2016.
  • Seo I, Lee I, Hwang H, Hong S, Bitog JP, Kwon K, Lee C, Kim Z, Cuello JL. “Numerical investigation of a bubble-column photo-bioreactor design for microalgae cultivation”. Biosystems Engineering, 113, 229-241, 2012.
  • Fernandes BD, Mota A, Ferreira A, Dragone G, Teixeira JA, Vicente AA. “Characterization of split cylinder airlift photobioreactors for efficient microalgae cultivation”. Chemical Engineering Science, 117, 445-454, 2014.
  • Huang Q, Jiang F, Wang L, Yang C. “Design of photobioreactors for mass cultivation of photosynthetic organisms”. Engineering, 3, 318-329, 2017.
  • Saladini F, Patrizi N, Pulselli FM, Marchettini N, Bastianoni S. “Guidelines for emergy evaluation of first, second and third generation biofuels”. Renewable and Sustainable Energy Reviews, 66, 221-227, 2016.
  • Naik SN, Goud VV, Rout PK, Dalai AK. “Production of first and second generation biofuels: A comprehensive review”. Renewable and Sustainable Energy Reviews, 14, 578-597, 2010.
  • Sabancı A, Ören N, Yaşar B, Öztürk HH, Atal M, “Türkiye’de biyodizel ve biyoetanol üretiminin tarım sektörü açısından değerlendirilmesi”. Türkiye Ziraat Mühendisliği VII. Teknik Kongresi, Ankara, 11-15 Ocak 2010.
  • Mohammede S, Ani FN. “An integrated approach for biodiesel and bioethanol production from Scenedesmus bijugatus cultivated in a vertical tubular photobioreactor”. Energy Conversion and Management 101, 778-786, 2015.
  • Silva CEF, Bertucco A. “Bioethanol from microalgae and cyanobacteria: A review and technological Outlook”. Process Biochemistry, 51, 1833-1842, 2016.
  • Chisti Y. “Biodiesel from microalgae beats bioethanol”. Trends in Biotechnology, 26(3), 126-131, 2008.
  • Wang H, Ji C, Bi S, Zhou P, Chen L, Liu T. “Joint production of biodiesel and bioethanol from filamentous oleaginous microalgae Tribonema sp.”. Bioresource Technology, 172, 169-173, 2014.
  • Lam MK, Lee KT. Chapter 12-Bioethanol Production from Microalgae, Editor: Kim SK. Handbook of Marine Microalgae, Biotechnology Advances, 197-208, London, UK, Elsevier Inc, 2015.
  • Gruber-Brunhumer MR, Jerney J, Zohar E, Nussbaumer M, Hieger C, Bochmann G, Schagerl M, Obbard JP, Fuchs W, Drosg B. “Acutodesmus obliquus as a benchmark strain for evaluating methane production from microalgae: Influence of different storage and pretreatment methods on biogas yield”. Algal Research, 12, 230-238, 2015.
  • Tongprawhan W, Srinuanpan S, Cheirsilp B. “Biocapture of CO2 from biogas by oleaginous microalgae for improving methane content and simultaneously producing lipid”. Bioresource Technology, 170, 90-99, 2014.
  • Marcilla A, Catalá L, García-Quesada JC, Valdés FJ, Hernández MR. “A review of thermochemical conversion of microalgae”. Renewable and Sustainable Energy Reviews, 27, 11-19, 2013.
  • Chiaramonti D, Prussi M, Buffi M, Casini D, Rizzo AM. “Thermochemical conversion of microalgae: challenges and opportunities”. Energy Procedia, 75, 819-826, 2015.
  • Figueira CE, Moreira JrPF, Giudici R. “Thermogravimetric analysis of the gasification of microalgae Chlorella vulgaris”. Bioresource Technology, 198, 717-724, 2015.
  • Ferreira AF, Soares DAP, Silva CM, Costa M. “Evaluation of thermochemical properties of raw and extracted microalgae”. Energy, 92, 365-372, 2015.
  • Wang P, Li Z, Bai J, Langa Y, Hu H. “Optimization of microalgal bead preparation with Scenedesmus obliquus for both nutrient removal and lipid production”. Ecological Engineering, 92, 236-242, 2016.
  • Zhou W Li Y, Min M, Hu B, Zhang H, Ma X, Li L, Cheng Y, Chen P, Ruan R. “Growing wastewater-born microalga Auxenochlorella protothecoides UMN280 on concentrated municipal wastewater for simultaneous nutrient removal and energy feedstock production”. Applied Energy, 98, 433-440, 2012.
  • Ip SY, Bridger JS, Chi C, Martin, WRB, Rape WGC. “Algal growth in primary settled sewage-the effects of five key variables”. Water Research, 16, 621-632,1982.
  • Konig A, Pearson HW, Silva SA. “Ammonia toxicity to algal growth in waste stabilization ponds”. Water Sci. Technol, 19, 115-122İ 1987.
  • Wrigley TJ, Toerien DF, “Limnological aspects of small sewage ponds”. Water Research, 24(1), 83-90, 1990.
  • Lau PS, Tam NFY, Wong YS. “Effect of algal density on nutrient removal from primary settled wastewater”. Environmental Pollution, 89 (1), 59-66, 1995.
  • Pittman JK, Dean AP, Osundeko O, “The potential of sustainable algal biofuel production using wastewater resources”. Bioresource Technology, 102(1), 17-25, 2011.
  • Olguın EJ. “Phycoremediation: key issues for cost-effective nutrient removal processes”. Biotechnology Advances, 22(1-2), 81-91, 2003.
  • Chinnasamy S, Bhatnagar A, Hunt RW, Das KC. “Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications”. Bioresource Technology, 101(9), 3097-105, 2010.
  • Kong Q, Li L, Martinez B, Chen P, Ruan R. “Culture of microalgae chlamydomonas reinhardtii in wastewater for biomass feedstock production”. Applied Biochemistry and Biotechnology, 160(1), 9-18, 2010.
  • Wang L, Min M, Li Y, Chen P, Chen Y, Liu Y. “Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant.”. Applied Biochemistry and Biotechnology, 162(4), 1174-1186, 2010.
  • Rawat I, Ranjith Kumar R, Mutanda T, Bux F. “Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production”. Applied Energy, 88(10), 3411-3424. 2011.
  • Martinez ME, Sanchez S, Jimenez JM, El Yousfi F, Munoz L. “Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus”. Bioresource Technology, 73(3), 263-272, 2000.
  • Ruiz-Marin A, Mendoza-Espinosa LG, Stephenson T. “Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater”. Bioresource Technology, 101(1), 58-64, 2010.
  • Zhang ED, Wang B, Wang QH, Zhang SB, Zhao BD. “Ammonia-nitrogen and orthophosphate removal by immobilized Scenedesmus sp isolated from municipal wastewater for potential use in tertiary treatment”. Bioresource Technology, 99(9), 3787-3793, 2008.
  • Masseret E, Amblard C, Bourdier G, Sargos D. “Effects of a waste stabilization lagoon discharge on bacterial and phytoplanktonic communities of a stream”. Water Environment Research, 72(3), 285-294, 2000.
  • Canovas S, Picot B, Casellas, C, Zulkifi , Dubois, A., Bontoux J. “Seasonal development of phytoplankton and zooplankton in a high-rate algal pond”. Water Science and Technology, 33(7), 199-206, 1996.
  • Travieso L, Benitez F, Dupeiron R. “Sewage treatment using immobilized microalgae”. Bioresource Technology, 40(2), 183-187, 1992.
  • Ruiz-Marin A, Mendoza-Espinosa LG, Stephenson T. “Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater”. Bioresource Technology,101(1), 58-64, 2010.
  • Orpez R, Martinez ME, Hodaifa G, El Yousfi F, Jbari N, Sanchez S. “Growth of the microalga Botryococcus braunii in secondarily treated sewage”. Desalination, 246(1-3), 625-630, 2009.
  • Woertz I, Feffer A, Lundquist T, Nelson Y. “Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock”. Journal of Environmental Engineering, 135(11), 1115-1122, 2009.
  • Bhatnagar A, Bhatnagar M, Chinnasamy S, Das K. “Chlorella minutissima - a promising fuel alga for cultivation in municipal wastewaters”. Applied Biochemistry and Biotechnology, 161(1-8), 523-536, 2010.
  • Wilkie AC, Mulbry WW. “Recovery of dairy manure nutrients by benthic freshwater algae”. Bioresource Technology, 84(1), 81-91, 2002.
  • An JY, Sim SJ, Lee JS, Kim BW. “Hydrocarbon production from secondarily treated piggery wastewater by the green alga Botryococcus braunii”. Journal of Applied Phycology, 15(2-3), 185-191, 2003.
  • Gonzalez LE, Canizares RO, Baena S. “Efficiency of ammonia and phosphorus removal from a Colombian agroindustrial wastewater by the microalgae Chlorella vulgaris and Scenedesmus dimorphus”. Bioresource Technology, 60(3), 259-262, 1997.
  • Blier R, Laliberte G, De la Noüe J. “Tertiary treatment of cheese factory anaerobic effluent with Phormidium bohneri and Micractinum pusillum”. Bioresource Technology,52 (2), 151-155, 1995.
  • El-Sikaily A, El Nemr A, Khaled A, Abdelwehab O. “Removal of toxic chromium from wastewater using green alga Ulva lactuca and its activated carbon”. Journal of Hazardous Materials, 148(1-2), 216-228, 2007.
  • Christenson L, Sims R. “Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts”. Biotechnology Adnvances, 29 (6), 686-702, 2011.
  • Woertz I, Feffer A, Lundquist T, Nelson Y. “Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock”. Journal of Environmental Engineering, 135 (11), 1115-1122, 2009.
  • Markou G, Georgakakis D. “Cultivation of filamentous cyanobacteria (bluegreen algae) in agro-industrial wastes and wastewaters: a review”. Applied Energy,,88 (10), 3389-3401, 2011.
  • Öztürk I, Eroglu V, Ubay G, Demir I. “Hybrid upflow anaerobic sludge blanket reactor (HUASBR) treatment of dairy effluents.” Water Science and Technology, 28 (2), 77-85. 1993.
  • Longhurst R, Roberts A, O’Connor M. “Farm dairy effluent: a review of published data on chemical and physical characteristics in New Zealand.” New Zealand Journal of Agricultural Research, 43 (1), 7-14, 2000.
  • Lincoln E, Wilkie A, Frenc B. “Cyanobacterial process for renovating dairy wastewater.” Biomass Bioenergy 10 (1), 63-68, 1996.
  • Gentili FG. “Microalgal biomass and lipid production in mixed municipal, dairy, pulp and paper wastewater together with added flue gases.” Bioresource Technology, 169, 27-32, 2014.
  • Lu W, Wang Z, Wang X, Yuan Z. “Cultivation of Chlorellasp. using raw dairy wastewater for nutrient removal and biodiesel production: Characteristics comparison of indoor bench-scale and outdoor pilot-scale cultures”. Bioresource Technology, 192, 382-388, 2015.
  • Hena S, Fatimah S, Tabassum S. “Cultivation of algae consortium in a dairy farm wastewater for biodiesel production”. Water Resources and Industry, 10, 1-14, 2011.
  • Choi H. “Dairy wastewater treatment using microalgae for potential biodiesel application”. Environmental Engineering Research, 21(4), 393-400, 2016.
  • Sreekanth D, Pooja K, Seeta Y, Himabindu V, Reddy PM. “Bioremediation of dairy wastewater using microalgae for the production of biodiesel”. International Journal of Science Engineering and Advance Technology, 2, 783-791, 2014.
  • Lu Q, Zhou W, Min M, Ma X, Ma Y, Chen P, Zheng H, Doan YTT, Liu H, Chen C, Urriola PE, Shurson GC, Ruan R. “Mitigating ammonia nitrogen deficiency in dairy wastewaters for algae cultivation”. Bioresource Technology, 201, 33-40, 2016.
  • Koç C, Duran H. “Determination of the effect of whey as a nutritional supplement in different growth medium regarding to its potential to biodiesel feedstock production”. Anadolu Tarım Bilimleri Dergisi 32(3), 309-315, 2017.
  • Seo YH, Lee I, Jeon SH, Han JI. “Efficient conversion from cheese whey to lipid using Cryptococcus curvatus”. Biochemical Engineering Journal, 90, 149-153, 2014..
  • Tsolcha ON, Tekerlekopoulou AG, Akratos CS, Bellou S, Aggelis G, Katsiapi M, Moustaka MG, Vayenas DV, Chem J. “Treatment of second cheese whey effluents using a Choricystis-based system with simultaneous lipid production”. Journal of Chemical Technology and Biotechnology, 91(8), 2349-2359, 2016.
  • Ahluwalia SS, Goyal D. “Microbial and plant derived biomass for removal of heavy metals from wastewater”. Bioresource Technology, 98(12), 2243-2257, 2007.
  • de-Bashan LE, Bashan Y. “Immobilized microalgae for removing pollutants: review of practical aspects”. Bioresource Technology, 101(6), 1611-1627, 2010.
  • Mallick N. “Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review”. BioMetals 15, 377-390, 2002.
  • Lam MK, Lee KT, Mohamed AR. “Review Current status and challenges on microalgae-based carbon capture”. International Journal of Greenhouse Gas Control, 10, 456-469, 2012.
  • Slade R, Bauen A. “Micro-algae cultivation for biofuels: Cost, energy balance, environmental impacts and future prospects”. Biomass and Bioenergy, 53, 29-38, 2013.
  • Xin C, Addy MM, Zhao J, Cheng Y, Cheng S, Mud D, Liu Y, Ding R, Chen P, Ruan R. “Comprehensive techno-economic analysis of wastewater-based algal biofuel production: A case study”. Bioresource Technology, 211, 584-593, 2016.
  • Min M, Wang L, Li Y, Mohr MJ, Hu B, Zhou W, Chen P, Ruan R, “Cultivating Chlorella sp. in a pilot-scale photobioreactor using centrate wastewater for microalgae biomass production and wastewater nutrient Removal”. Applied Biochemistry and Biotechnology 165(1), 123-137, 2011.
  • Mata TM, Mendes AM, Caetano NS, Martins AA. “Sustainability and economic evaluation of microalgae grown in brewery wastewater.” Bioresource Technology. 168, 151-158, 2014.
  • Davis RE, Fishman DB, Frank ED, Johnson MC, Jones SB, Kinchin CM, Skaggs RL, Venteris ER, Wigmosta MS. 2014. “Integrated evaluation of cost, emissions, and resource potential for algal biofuels at the national scale.” Environmental Science & Technology, 48(10), 6035-6042.
  • Ventura JRS, Yang B, Lee YW, Lee K, Jahng D. “Life cycle analyses of CO2, energy, and cost for four different routes of microalgal bioenergy conversion”. Bioresource Technology, 137, 302-310, 2013.
  • Nagarajan A, Chou SK, Cao S, Wub C, Zhou Z. “An updated comprehensive techno-economic analysis of algae biodiesel”. Bioresource Technology, 145, 150-156, 2013.
  • Thilakaratne R, Wright MM, Brown RC. “A techno-economic analysis of microalgae remnant catalytic pyrolysis and upgrading to fuels.” Fuel, 128, 104-112. 2014.
  • Orfield ND, Keoleian GA, Love NG. “A GIS based national assessment of algal bio-oil production potential through flue gas and wastewater coutilization”. Biomass Bioenergy, 63, 76-85. 2014.
  • Lundquist TJ, Woertz IC, Quinn NWT, Benemann JR. “A realistic technology and engineering assessment of algae biofuel production 2010”. Energy Biosciences Institute, University of California, Berkeley.
  • EERE, 2008. Algae biofuels. In: E.E.R.E. U.S. Department of Energy (Ed.), Growing America’s Energy Future. Alternative Fuels Data Center, Washington, DC, USA.
  • Elmoraghy M, Farag I. “Bio-jet Fuel from Microalgae Reducing Water and Energy Requirements for Algae Growth”. International Journal of Engineering and Science 1(2):22-30, 2012.
  • Brutyan MM, “Foresight of Microalgae Usage for the Production of Third-Generation Biofuel”, Indian Journal of Science and Technology, 10(16), 2016.
  • Harun R, Davidson M, Doyle M, Gopiraj R, Danquah M, Forde G. “Technoeconomic analysis of an integrated microalgae photobioreactor, biodiesel and biogas production facility.” Biomass & Bioenerg,y 35(1), 741-747, 2011.
  • Amer L, Adhikari B, Pellegrino J. “Technoeconomic analysis of fivemicroalgae-to-biofuels processes of varying complexity”. Bioresource Technology, 102 (20), 9350-9359. 2011.
  • Delrue F, Setier PA, Sahut C, Cournac L, Roubaud A, Peltier G, Froment AK. “An economic, sustainability, and energetic model of biodiesel production from microalgae”. Bioresource Technology, 111, 191-200. 2012.
  • Richardson JW, Johnson MD, Zhang X, Zemke P, Chen W, Hu Q. “A financial assessment of two alternative cultivation systems and their contributions to algae biofuel economic viability”. Algal Research, 4, 96-104, 2014.
  • Park JBK, Craggs RJ, Shilton AN. “Wastewater treatment high rate algal ponds for biofuel production”. Bioresource Technology, 102, 35-42, 2011.
  • Usher PK, Ross AB, Camargo-Valero MA, Tomlin AS, Gale WF. “An overview of the potential environmental impacts of largescale microalgae cultivation”. Biofuels, 5(3), 331-349, 2014.
  • Defense Advanced Research Projects Agency. “Biofuels (Archived)”. https://www.darpa.mil/program/biofuels (10.04.2018).
  • Quinn JC, Catton K, Wagner N, Bradley TH, “Current Large-Scale US Biofuel Potential from Microalgae Cultivated in Photobioreactors”, Bioenergy Research, 5, 49-60, 2012.
  • Business Wire. “Hawaiian Algae Biofuel Companies, Military Customers Featured at BIO’s 2010 Pacific Rim Summit” https://www.businesswire.com/news/home/20101202006322/en/Hawaiian-Algae-Biofuel-Companies-Military-Customers-Featured (10.04.2018).
  • Berner K. “Commercializing algal biofuels”. Paper presented at the Pacific Rim Summit on Industrial Biotechnology & Bioenergy, Honolulu, HI, 11-14 December 2010.
  • Cyanotech. “Welcome to Cyanotech”. http://www.cyanotech. com/index.html (10.04.2018).
  • Asia Biomass Energy Cooperation Promotion Office. “Initiatives for the Large-Scale Outdoor Cultivation of Microalgae”. https://www.asiabiomass.jp/english/topics/1505_04.html (10.04.2018).
Toplam 164 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Derleme
Yazarlar

Sevil Çalışkan Eleren

Burak Öner

Yayımlanma Tarihi 28 Haziran 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 25 Sayı: 3

Kaynak Göster

APA Çalışkan Eleren, S., & Öner, B. (2019). Sürdürülebilir ve çevre dostu biyoyakıt hammaddesi: Mikroalgler. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25(3), 304-319.
AMA Çalışkan Eleren S, Öner B. Sürdürülebilir ve çevre dostu biyoyakıt hammaddesi: Mikroalgler. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Haziran 2019;25(3):304-319.
Chicago Çalışkan Eleren, Sevil, ve Burak Öner. “Sürdürülebilir Ve çevre Dostu biyoyakıt Hammaddesi: Mikroalgler”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 25, sy. 3 (Haziran 2019): 304-19.
EndNote Çalışkan Eleren S, Öner B (01 Haziran 2019) Sürdürülebilir ve çevre dostu biyoyakıt hammaddesi: Mikroalgler. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 25 3 304–319.
IEEE S. Çalışkan Eleren ve B. Öner, “Sürdürülebilir ve çevre dostu biyoyakıt hammaddesi: Mikroalgler”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 25, sy. 3, ss. 304–319, 2019.
ISNAD Çalışkan Eleren, Sevil - Öner, Burak. “Sürdürülebilir Ve çevre Dostu biyoyakıt Hammaddesi: Mikroalgler”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 25/3 (Haziran 2019), 304-319.
JAMA Çalışkan Eleren S, Öner B. Sürdürülebilir ve çevre dostu biyoyakıt hammaddesi: Mikroalgler. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2019;25:304–319.
MLA Çalışkan Eleren, Sevil ve Burak Öner. “Sürdürülebilir Ve çevre Dostu biyoyakıt Hammaddesi: Mikroalgler”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 25, sy. 3, 2019, ss. 304-19.
Vancouver Çalışkan Eleren S, Öner B. Sürdürülebilir ve çevre dostu biyoyakıt hammaddesi: Mikroalgler. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2019;25(3):304-19.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.