Araştırma Makalesi
BibTex RIS Kaynak Göster

Performance comparison of plate heat exchangers designed using Taguchi method and computational fluid dynamics

Yıl 2019, Cilt: 25 Sayı: 4, 373 - 386, 28.08.2019

Öz

In
this study, thermal and hydraulic performances of cross flow plate heat
exchangers, designed using Taguchi method and Computational Fluid Dynamics, in
a small capacity (50-200 m3/h) air to air heat recovery device were
compared. The plate heat exchangers, which are designed to have high flow
effectiveness and sensible effectiveness, number of sub-channel, channel
height, average air velocity and sheet material variables were determined. The
equations for flow effectiveness and recovered thermal power, including
variables and second order interactions of variables, were derived by multiple
regression analysis for flow effective and thermally effective plate heat
exchangers. The performances of 3-dimensional plate heat exchangers using
finite volume based ANSYS/Fluent were compared in different volumetric flow
rates. The channel height and average air velocity were determined as the most
influential variables in the design of plate heat exchanger. It was found that
on average 50% more heat was recovered and thermal effectiveness was on average
35% higher in the thermal effective model, while pressure drop was on average
2.5 times less and flow effectiveness was on average 10% higher in the flow
effective model. When the recovered thermal power at the fresh side and flow
effectiveness are evaluated together, the optimum average flow velocities for
both models was determined to be range of 1.5-2 m/s (
~90 ÷ ~110 m3/h).

Kaynakça

  • Mardiana-Idayua A, Riffat SB. “An experimental study on the performance of enthalpy recovery system for building applications”. Energy and Buildings, 43(9), 2533-2538, 2011.
  • Zeng C, Liu S, Shukla A. “A review on the air-to-air heat and mass exchanger technologies for building applications”. Renewable and Sustainable Energy Reviews, 75, 753-774, 2017.
  • Cuce M, Riffat S. “A comprehensive review of heat recovery systems for building applications”. Renewable and Sustainable Energy Reviews, 47, 665-682, 2015.
  • El Fouiha Y, Stabatb P, Rivièreb P, Hoanga P, Archambaulta V. “Adequacy of air-to-air heat recovery ventilation system applied in low energy buildings”. Energy and Buildings, 54, 29-39, 2012.
  • Mardiana-Idayua A, Riffat SB. “Review on physical and performance parameters of heat recovery systems for building applications”. Renewable and Sustainable Energy Reviews, 28, 174-190, 2013.
  • Junghans L, Widerin P, “Thermal comfort and indoor air quality of the “Concept 22/26” a new high performance building standard”. Energy and Buildings, 149, 114-122, 2017.
  • Wang, Y, Kuckelkorn J, Zhao FY, Spliethoff H, Lang W. “A state of art of review on interactions between energy performance and indoor environment quality in Passive House buildings”. Renewable and Sustainable Energy Reviews, 72, 1303-1319, 2017.
  • Wang Y, Kuckelkorn J, Liu Y. “A state of art review on methodologies for control strategies in low energy buildings in the period from 2006 to 2016”. Energy and Buildings, 147, 27-40, 2017.
  • European Commission. “Joint Research Centre, Indoor Air Quality and the Use of Energy in Buildings, (Report No 17), European Commission, Joint Research Centre-Environment Institute”. Office for Official Publications of the European Communities, Luxembourg, Italy, 1996.
  • Dodoo A, Gustavsson L, Sathre R. “Primary energy implications of ventilation heat recovery in residential buildings”. Energy and Buildings, 43 (7), 1566-1572, 2011.
  • Evola G, Gagliano A, Marletta L, Nocera F. “Controlled mechanical ventilation systems in residential buildings: Primary energy balances and financial issues”. Journal of Building Engineering, 11, 96-107, 2017.
  • Kim MK, Baldini L. “Energy analysis of a decentralized ventilation system compared with centralized ventilation systems in European climates: Based on review of analyses”. Energy and Buildings, 111, 424-433, 2016.
  • Merzkirch A, Maas S, Scholzen F, Waldmann D. “Field tests of centralized and decentralized ventilation units in residential buildings-Specific fan power, heat recovery efficiency, shortcuts and volume flow unbalances”. Energy and Buildings, 116, 376-383, 2016.
  • Manz H, Huber H, Schalin A, Weber A, Ferrazzini M, Studer M. “Performance of single room ventilation units with recuperative or regenerative heat recovery”. Energy and Buildings, 31(1), 37-47, 2000.
  • Zhang LZ. Conjugate Heat and Mass Transfer in Heat Mass Exchanger Ducts. USA, Academic Press, 2013.
  • Liang CH. “Experiments investigation of the parallel-plates enthalpy exchangers”. Energy Procedia, 61, 2699-2703, 2014.
  • Zhang LZ, Liang CH, Pei LX. “Heat and moisture transfer in application scale parallel-plates enthalpy exchangers with novel membrane materials”. Journal of Membrane Science, 325(2), 672-682, 2008.
  • Min J, Su M. “Performance analysis of a membrane-based energy recovery ventilator: Effects of membrane spacing and thickness on the ventilator performance”. Applied Thermal Engineering, 30(8-9), 991-997, 2010.
  • Zhang LZ. “Heat and mass transfer in plate-fin enthalpy exchangers with different plate and fin materials”. International Journal of Heat and Mass Transfer, 52(11-12), 2704-2713, 2009.
  • Beattie C, Fazio P, Zmeureanu R, Rao J. “A preliminary study of the performance of sensible and latent heat exchanger cores at the frosting limit for use in Arctic housing”. Energy Procedia, 78, 2596-2601, 2015.
  • Liu P, Nasr MR, Ge G, Alonso MJ, Mathisen HM, Fathieh F, Simonson C. “A theoretical model to predict frosting limits in cross-flow air-to-airflat plate heat/energy exchangers”. Energy and Buildings, 110, 404-414, 2016.
  • Zhang LZ. “Progress on heat and moisture recovery with membranes: From Fundamentals to engineering applications”. Energy Conversion and Management, 63, 173-195, 2012.
  • T’Joena C, Park Y, Wang Q, Sommers A, Han X, Jacobi A. “A review on polymer heat exchangers for HVAC&R applications”. International Journal of Refrigeration, 32(5), 763-779, 2009.
  • Cevallos JG, Bergles AE, Bar-Cohen A, Rodgers P, Gupta S. K. “Polymer Heat Exchangers-History, Opportunities, and Challenges”. Heat Transfer Engineering, 33(13), 1075-1093, 2012.
  • Ansys Inc. ANSYS/Fluent Theory Guide. Version 15. USA, SAS IP, Inc., 2013.
  • Çengel Y. Introduction to Thermodynamics and Heat Transfer. 2nd ed. USA, McGraw-Hill, 2007.
  • Wen J, Li Y, Zhou A, Zhang K. “An experimental and numerical investigation of flow patterns in the entrance of plate-fin heat exchanger”. International Journal of Heat and Mass Transfer, 49(9-10), 667-1678, 2006.
  • Wen J, Li Y. “Study of flow distribution and its improvement on the header of plate-fin heat exchanger”. Cryogenics, 44(11), 823-831, 2004.
  • Wasewar KL, Hargunani S, Atluri P, Kumar N. “CFD simulation of flow distribution in the header of plate-fin heat exchangers”. Chemical Engineering Technology, 30(10), 1340-1346, 2007.
  • Ismail LS, Ranganayakulu C, Shah RK. “Numerical study of flow patterns of compact plate-fin heat exchangers and generation of design data for offset and wavy fins”. International Journal of Heat and Mass Transfer, 52(17-18), 3972-3983, 2009.
  • Zhang Z, Li Y, “CFD simulation on inlet configuration of plate-fin heat exchangers”. Cryogenics, 43(12), 673-678, 2003.
  • Lalot S, Florent P, Lang SK, Bergles AE. “Flow maldistribution in heat exchangers”. Applied Thermal Engineering, 19(8), 847-863, 1999.
  • Ansys Inc. ANSYS/Fluent User’s Guide. Version 15. USA, SAS IP, Inc., 2013.
  • Bejan A. Advanced Engineering Thermodynamics. 4th ed. USA, Wiley, 2016.
  • Kakaç S, Liu H, Pramuanjaroenkij A, Heat Exchangers, Selection, Rating and Thermal Design. 3rd ed. USA, CRC Press, 2012.
  • Çengel YA, Cimbala JM, Fluid Mechanics, Fundamentals and Applications. 3rd ed. USA, McGraw-Hill, 2014.
  • Park K, Ahn JH. “Design of experiment considering two-way interactions and its application to injection molding processes with numerical analysis”. Journal of Materials Processing Technology, 146(2), 221-227, 2004.
  • Farkas K, Hossmann T, Plattner B, Ruf L. “NWC: node weight computation in MANETs”. 16th International Conference on Computer Communications and Networks, ICCCN 2007, USA, 13-16 August 2007.
  • Rao RS, Kumar CG, Prakasham RS, Hobbs PJ. “The Taguchi methodology as a statistical tool for biotechnological applications: a critical appraisal”. Biotechnology Journal, 3(4), 510-523, 2008.
  • Kim JW, Kim BT, Kwon B. “Optimal stator slot design of inverter-fed induction motor in consideration of harmonic losses”. IEEE Transactions on Magnetics, 41(5), 2012-2015, 2005.
  • Kamaruddin S, Khan ZA, Foong SH. “Application of Taguchi method in the optimization of injection moulding parameters for manufacturing products from plastic blend”. International Journal of Web Engineering and Technology, 6, 574-580, 2010.
  • Georgilakis PS. “Taguchi method for the optimization of transformer cores annealing process”. Journal of optoelectronics and advanced materials, 10(5), 1169-1177, 2000.
  • Montgomery DC. Design and Analysis of Experiments. 4th ed. New York, USA, John Wiley, 1997.
  • Nelson PR, Wludyka PS, Copeland KAF. The Analysis of Means, Society for Industrial and Applied Mathematics. Philadelphia, Pennsylvania, SIAM Series, 2005.
  • Montgomery DC, Runger GC. Applied Statistics and Probability for Engineers. 5th ed. Hoboken, USA, John Wiley & Sons, Inc., 2011.
  • Phadke MS. Quality Engineering Using Robust Design. 1th ed. New Jersey, USA, Prentice Hall, 1989.

Taguchi yöntemi ve hesaplamalı akışkanlar dinamiği kullanılarak tasarlanan levhalı ısı değiştiricilerin performanslarının karşılaştırılması

Yıl 2019, Cilt: 25 Sayı: 4, 373 - 386, 28.08.2019

Öz

Bu
çalışmada Taguchi yöntemi ve Hesaplamalı Akışkanlar Dinamiği kullanılarak
tasarlanan, havadan havaya, küçük kapasiteli (50-200 m3/h) bir ısı geri
kazanım cihazındaki, çapraz akışlı levhalı ısı değiştiricilerin ısıl ve
hidrolik performansları karşılaştırılmıştır. Akış etkenliği ve duyulur ısıl
etkenliği yüksek olacak şekilde tasarlanan levhalı ısı değiştiricilerin; alt
kanal sayısı, kanal yüksekliği, ortalama hava akış hızı ve levha malzemesi
değişkenleri belirlenmiştir. Akış etken ve ısıl etken levhalı ısı
değiştiricilerde, değişkenler ve değişkenlerin ikinci dereceden etkileşimlerinin
dahil edildiği akış etkenliği ve geri kazanılan ısıl güç için denklemler çoklu
regresyon analizi ile türetilmiştir. 3-boyutlu levhalı ısı değiştiricilerin
farklı hacimsel debilerdeki performansları, sonlu hacimler tabanlı ANSYS/Fluent
kullanılarak karşılaştırılmıştır. Levhalı ısı değiştirici tasarımında en etkili
değişkenlerin; kanal yüksekliği ve ortalama hava akış hızı olduğu
belirlenmiştir. Isıl etken modelde, ortalama %50 daha fazla ısının geri
kazanıldığı ve ısıl etkenliğin ortalama %35 daha yüksek olduğu; akış etken
modelde ise ortalama 2.5 kat daha az basınç düşümü ve akış etkenliğinin
ortalama %10 daha yüksek olduğu görülmüştür. Geri kazanılan ısıl güç ve akış
etkenliği birlikte değerlendirildiğinde her iki model için en uygun ortalama
akış hızlarının 1.5-2 m/s (
~90÷~110 m3/h) aralığında olduğu belirlenmiştir.

Kaynakça

  • Mardiana-Idayua A, Riffat SB. “An experimental study on the performance of enthalpy recovery system for building applications”. Energy and Buildings, 43(9), 2533-2538, 2011.
  • Zeng C, Liu S, Shukla A. “A review on the air-to-air heat and mass exchanger technologies for building applications”. Renewable and Sustainable Energy Reviews, 75, 753-774, 2017.
  • Cuce M, Riffat S. “A comprehensive review of heat recovery systems for building applications”. Renewable and Sustainable Energy Reviews, 47, 665-682, 2015.
  • El Fouiha Y, Stabatb P, Rivièreb P, Hoanga P, Archambaulta V. “Adequacy of air-to-air heat recovery ventilation system applied in low energy buildings”. Energy and Buildings, 54, 29-39, 2012.
  • Mardiana-Idayua A, Riffat SB. “Review on physical and performance parameters of heat recovery systems for building applications”. Renewable and Sustainable Energy Reviews, 28, 174-190, 2013.
  • Junghans L, Widerin P, “Thermal comfort and indoor air quality of the “Concept 22/26” a new high performance building standard”. Energy and Buildings, 149, 114-122, 2017.
  • Wang, Y, Kuckelkorn J, Zhao FY, Spliethoff H, Lang W. “A state of art of review on interactions between energy performance and indoor environment quality in Passive House buildings”. Renewable and Sustainable Energy Reviews, 72, 1303-1319, 2017.
  • Wang Y, Kuckelkorn J, Liu Y. “A state of art review on methodologies for control strategies in low energy buildings in the period from 2006 to 2016”. Energy and Buildings, 147, 27-40, 2017.
  • European Commission. “Joint Research Centre, Indoor Air Quality and the Use of Energy in Buildings, (Report No 17), European Commission, Joint Research Centre-Environment Institute”. Office for Official Publications of the European Communities, Luxembourg, Italy, 1996.
  • Dodoo A, Gustavsson L, Sathre R. “Primary energy implications of ventilation heat recovery in residential buildings”. Energy and Buildings, 43 (7), 1566-1572, 2011.
  • Evola G, Gagliano A, Marletta L, Nocera F. “Controlled mechanical ventilation systems in residential buildings: Primary energy balances and financial issues”. Journal of Building Engineering, 11, 96-107, 2017.
  • Kim MK, Baldini L. “Energy analysis of a decentralized ventilation system compared with centralized ventilation systems in European climates: Based on review of analyses”. Energy and Buildings, 111, 424-433, 2016.
  • Merzkirch A, Maas S, Scholzen F, Waldmann D. “Field tests of centralized and decentralized ventilation units in residential buildings-Specific fan power, heat recovery efficiency, shortcuts and volume flow unbalances”. Energy and Buildings, 116, 376-383, 2016.
  • Manz H, Huber H, Schalin A, Weber A, Ferrazzini M, Studer M. “Performance of single room ventilation units with recuperative or regenerative heat recovery”. Energy and Buildings, 31(1), 37-47, 2000.
  • Zhang LZ. Conjugate Heat and Mass Transfer in Heat Mass Exchanger Ducts. USA, Academic Press, 2013.
  • Liang CH. “Experiments investigation of the parallel-plates enthalpy exchangers”. Energy Procedia, 61, 2699-2703, 2014.
  • Zhang LZ, Liang CH, Pei LX. “Heat and moisture transfer in application scale parallel-plates enthalpy exchangers with novel membrane materials”. Journal of Membrane Science, 325(2), 672-682, 2008.
  • Min J, Su M. “Performance analysis of a membrane-based energy recovery ventilator: Effects of membrane spacing and thickness on the ventilator performance”. Applied Thermal Engineering, 30(8-9), 991-997, 2010.
  • Zhang LZ. “Heat and mass transfer in plate-fin enthalpy exchangers with different plate and fin materials”. International Journal of Heat and Mass Transfer, 52(11-12), 2704-2713, 2009.
  • Beattie C, Fazio P, Zmeureanu R, Rao J. “A preliminary study of the performance of sensible and latent heat exchanger cores at the frosting limit for use in Arctic housing”. Energy Procedia, 78, 2596-2601, 2015.
  • Liu P, Nasr MR, Ge G, Alonso MJ, Mathisen HM, Fathieh F, Simonson C. “A theoretical model to predict frosting limits in cross-flow air-to-airflat plate heat/energy exchangers”. Energy and Buildings, 110, 404-414, 2016.
  • Zhang LZ. “Progress on heat and moisture recovery with membranes: From Fundamentals to engineering applications”. Energy Conversion and Management, 63, 173-195, 2012.
  • T’Joena C, Park Y, Wang Q, Sommers A, Han X, Jacobi A. “A review on polymer heat exchangers for HVAC&R applications”. International Journal of Refrigeration, 32(5), 763-779, 2009.
  • Cevallos JG, Bergles AE, Bar-Cohen A, Rodgers P, Gupta S. K. “Polymer Heat Exchangers-History, Opportunities, and Challenges”. Heat Transfer Engineering, 33(13), 1075-1093, 2012.
  • Ansys Inc. ANSYS/Fluent Theory Guide. Version 15. USA, SAS IP, Inc., 2013.
  • Çengel Y. Introduction to Thermodynamics and Heat Transfer. 2nd ed. USA, McGraw-Hill, 2007.
  • Wen J, Li Y, Zhou A, Zhang K. “An experimental and numerical investigation of flow patterns in the entrance of plate-fin heat exchanger”. International Journal of Heat and Mass Transfer, 49(9-10), 667-1678, 2006.
  • Wen J, Li Y. “Study of flow distribution and its improvement on the header of plate-fin heat exchanger”. Cryogenics, 44(11), 823-831, 2004.
  • Wasewar KL, Hargunani S, Atluri P, Kumar N. “CFD simulation of flow distribution in the header of plate-fin heat exchangers”. Chemical Engineering Technology, 30(10), 1340-1346, 2007.
  • Ismail LS, Ranganayakulu C, Shah RK. “Numerical study of flow patterns of compact plate-fin heat exchangers and generation of design data for offset and wavy fins”. International Journal of Heat and Mass Transfer, 52(17-18), 3972-3983, 2009.
  • Zhang Z, Li Y, “CFD simulation on inlet configuration of plate-fin heat exchangers”. Cryogenics, 43(12), 673-678, 2003.
  • Lalot S, Florent P, Lang SK, Bergles AE. “Flow maldistribution in heat exchangers”. Applied Thermal Engineering, 19(8), 847-863, 1999.
  • Ansys Inc. ANSYS/Fluent User’s Guide. Version 15. USA, SAS IP, Inc., 2013.
  • Bejan A. Advanced Engineering Thermodynamics. 4th ed. USA, Wiley, 2016.
  • Kakaç S, Liu H, Pramuanjaroenkij A, Heat Exchangers, Selection, Rating and Thermal Design. 3rd ed. USA, CRC Press, 2012.
  • Çengel YA, Cimbala JM, Fluid Mechanics, Fundamentals and Applications. 3rd ed. USA, McGraw-Hill, 2014.
  • Park K, Ahn JH. “Design of experiment considering two-way interactions and its application to injection molding processes with numerical analysis”. Journal of Materials Processing Technology, 146(2), 221-227, 2004.
  • Farkas K, Hossmann T, Plattner B, Ruf L. “NWC: node weight computation in MANETs”. 16th International Conference on Computer Communications and Networks, ICCCN 2007, USA, 13-16 August 2007.
  • Rao RS, Kumar CG, Prakasham RS, Hobbs PJ. “The Taguchi methodology as a statistical tool for biotechnological applications: a critical appraisal”. Biotechnology Journal, 3(4), 510-523, 2008.
  • Kim JW, Kim BT, Kwon B. “Optimal stator slot design of inverter-fed induction motor in consideration of harmonic losses”. IEEE Transactions on Magnetics, 41(5), 2012-2015, 2005.
  • Kamaruddin S, Khan ZA, Foong SH. “Application of Taguchi method in the optimization of injection moulding parameters for manufacturing products from plastic blend”. International Journal of Web Engineering and Technology, 6, 574-580, 2010.
  • Georgilakis PS. “Taguchi method for the optimization of transformer cores annealing process”. Journal of optoelectronics and advanced materials, 10(5), 1169-1177, 2000.
  • Montgomery DC. Design and Analysis of Experiments. 4th ed. New York, USA, John Wiley, 1997.
  • Nelson PR, Wludyka PS, Copeland KAF. The Analysis of Means, Society for Industrial and Applied Mathematics. Philadelphia, Pennsylvania, SIAM Series, 2005.
  • Montgomery DC, Runger GC. Applied Statistics and Probability for Engineers. 5th ed. Hoboken, USA, John Wiley & Sons, Inc., 2011.
  • Phadke MS. Quality Engineering Using Robust Design. 1th ed. New Jersey, USA, Prentice Hall, 1989.
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makale
Yazarlar

Murat Ünverdi

Hasan Küçük

Yayımlanma Tarihi 28 Ağustos 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 25 Sayı: 4

Kaynak Göster

APA Ünverdi, M., & Küçük, H. (2019). Taguchi yöntemi ve hesaplamalı akışkanlar dinamiği kullanılarak tasarlanan levhalı ısı değiştiricilerin performanslarının karşılaştırılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25(4), 373-386.
AMA Ünverdi M, Küçük H. Taguchi yöntemi ve hesaplamalı akışkanlar dinamiği kullanılarak tasarlanan levhalı ısı değiştiricilerin performanslarının karşılaştırılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Ağustos 2019;25(4):373-386.
Chicago Ünverdi, Murat, ve Hasan Küçük. “Taguchi yöntemi Ve Hesaplamalı akışkanlar dinamiği kullanılarak Tasarlanan Levhalı ısı değiştiricilerin performanslarının karşılaştırılması”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 25, sy. 4 (Ağustos 2019): 373-86.
EndNote Ünverdi M, Küçük H (01 Ağustos 2019) Taguchi yöntemi ve hesaplamalı akışkanlar dinamiği kullanılarak tasarlanan levhalı ısı değiştiricilerin performanslarının karşılaştırılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 25 4 373–386.
IEEE M. Ünverdi ve H. Küçük, “Taguchi yöntemi ve hesaplamalı akışkanlar dinamiği kullanılarak tasarlanan levhalı ısı değiştiricilerin performanslarının karşılaştırılması”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 25, sy. 4, ss. 373–386, 2019.
ISNAD Ünverdi, Murat - Küçük, Hasan. “Taguchi yöntemi Ve Hesaplamalı akışkanlar dinamiği kullanılarak Tasarlanan Levhalı ısı değiştiricilerin performanslarının karşılaştırılması”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 25/4 (Ağustos 2019), 373-386.
JAMA Ünverdi M, Küçük H. Taguchi yöntemi ve hesaplamalı akışkanlar dinamiği kullanılarak tasarlanan levhalı ısı değiştiricilerin performanslarının karşılaştırılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2019;25:373–386.
MLA Ünverdi, Murat ve Hasan Küçük. “Taguchi yöntemi Ve Hesaplamalı akışkanlar dinamiği kullanılarak Tasarlanan Levhalı ısı değiştiricilerin performanslarının karşılaştırılması”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 25, sy. 4, 2019, ss. 373-86.
Vancouver Ünverdi M, Küçük H. Taguchi yöntemi ve hesaplamalı akışkanlar dinamiği kullanılarak tasarlanan levhalı ısı değiştiricilerin performanslarının karşılaştırılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2019;25(4):373-86.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.