Yıl 2019, Cilt 25 , Sayı 4, Sayfalar 454 - 461 2019-08-28

Gelişigüzel doğal lif takviyeli kompozitlerin elastiklik modülü tahmin yöntemleri: Sonlu elemanlar analizi ve analitik modeller
Young’s modulus estimation techniques for the randomly oriented natural fiber reinforced composites: Finite element analysis and analytical models

Mehmet Safa Bodur [1] , Mustafa Bakkal [2]


Çalışmada sentetik lif takviyeli kompozitlere alternatif olarak düşünülen doğal lif takviyeli kompozitlerin elastisite modülü tahmin yöntemleri incelenmiştir. Yöntem olarak sonlu elemanlar analizi ve sentetik lif takviyeli kompozitler için kullanılan matematiksel modellerin uygunlukları araştırılmıştır. Çalışma boyunca ele alınan kompozitlerhacimce farklı oranlarda gelişigüzel pamuk lifi takviyeli olup çekme test sonuçları deneysel olarak bulunmuştur. Deneysel veriler sonlu elemanlar yöntemi ve mevcut analitik modeller kullanılarak elde edilen veriler ile kıyaslanmıştır. Özellikle düşük lif takviyeli kompozit numunelerde analitik modellerden elde edilen veriler deneysel verilere yaklaşık olarak %2-4 arasında yaklaşmıştır. Diğer yandan sonlu elemanlar yöntemiyle yapılan analizlerde ise yüksek şekil değiştirme oranlarına doğru gidildikçe deneysel sonuçlarla aradaki farkın açıldığı gözlenmiştir. Çalışma neticesinde en uygunan alitik modeller bulunmuş ve bu tarz kompozitler için önerilmiştir. Ayrıca sonlu elemanlar yöntemiyle kompozitlerin davranışları taklit edilebilmiş ve deneysel değerler ile yakın (%17-23) sonuçlar ortaya çıkarılmıştır.

In the study, elastic modulus estimation methods of natural fiber reinforced composites considered as alternatives to synthetic fiber reinforced composites have been investigated. Finite element analysis (FEA) and some mathematical models which are used for synthetic fiber reinforced composites were preferred. During the study, randomly oriented cotton fiber reinforced composites at different fiber ratio by volume were investigated and the tensile test results were found experimentally. Experimental data were compared with data obtained using finite element method and current analytical models. Particularly in low fiber reinforced composite samples, the data obtained from the analytical models approximated between 2-4% of the experimental data. On the other hand, in the analysis by the finite element method, it is observed that the difference with the experimental results is opened as the high deformations are occurred. The most suitable analytical models have been found in the study and have been proposed for such composites. Moreover, the behavior of composites can be simulated by finite element methods and closed results (17-23%) are revealed in this respect.

  • Whitcomb JD. “Three-dimensional stress analysis of plain weave composites”. Composite Materials: Fatigue and Stresses, 3, 16-39,1990.
  • Guedes JM, Kikuchi N. “Preprocessing and post processing for materials based on the homogenization method with adaptive finite element methods”. Computer Method in Applied Mechanics and Engineering, 83(2), 143-198, 1990.
  • Chapman C, Whitcomb J. “Effect of assumed tow architecture on predicted moduli and stresses in plain weave composites”. Journal of Composite Materials, 29(16), 2134-2159, 1995.
  • Ng SP, Tse PC, Lau KJ. “Numerical and experimental determination of in plane elastic properties of 2/2 twill weave fabric composites”. Composites Part B, 29B, 735-744, 1998.
  • Dasgupta A, Agarwal RK, Bhandarkar SM. “Three-dimensional modelling of woven-fabric composites for effective thermo mechanical and thermal properties”. Composites Science and Technology, 56, 209-223,1996.
  • Karkkainen RL, Sankar BV. “A direct micromechanics method for analysis of failure initiation of plain weave textile composites”. Composite Science and Technology, 66, 137-150, 2006.
  • Kim HJ, Swan CC. “Voxel-based meshing and unit-cell analysis of textile composites”. International Journal for Numerical Methods in Engineering, 56, 977-1006, 2003.
  • Lomov SV, Belov EB, Bischoff T. “Carbon composites based on multiaxial multiply stitched preforms. Part I-Geometry of the preform”. Composites Part A, 33, 1171-1183, 2002.
  • Takano N, Uetsuji Y,Kashiwagi Y, Zako M. “Hierarchical modelling of textile composite materials and structures by the homogenization method”. Modelling and Simulation in Materials Science and Engineering, 7, 207-231,1999.
  • Lomov SV, Ivanov DS, Verpoest I, Zako M. “Meso-FEModelling of Textile Composites: Road map. data flow and algorithms”. Composites Science and Technology, 67, 1870-1891, 2007.
  • Sih GC, Carpinteri A, Surace G. Advanced Technology For Design and Fabrication of Composite Materials and Structures. 1st ed. Dordrecht, Netherlands, Kluwer Academic Publishers, 1995.
  • Cox HL. “The elasticity and strength of paper and other fibrous materials”. British Journal of Applied Physics, 3, 72-79, 1952.
  • Halpin JC. “Stiffness and expansion estimates. for oriented short fiber composites”. Journal of Composite Materials, 3, 720-724, 1969.
  • Halpin JC, Pagano NJ. “The laminate approximation for randomly oriented fibrous composites”. Journal of Composite Materials, 3, 720-724,1969.
  • Nielson LE. Mechanical Properties of Polymer and Composites. 1 ed. New York, USA, Marcel Dekker, 1974.
  • Christensen RM, Waals FM. “effective stiffness of randomly oriented fiber composites”. Journal of Composite Materials, 6, 518-532, 1972.
  • Lee LH. “Strength-composition relationships of random short glassfiber-thermoplastics composites”. Polymer Engineering and Science, 9, 213-219,1969.
  • Manera M. “Elastic properties of randomly oriented short fiberglass composites”. Journal of Composite Materials, 11, 235-247,1977.
  • Pan N. “The elastic constants of randomly oriented fiber composite: A new approach to prediction”. Science and Engineering of composite materials, 5, 63-72, 1996.
  • Hirsch TJ. “Modulus of elasticity of concrete affected by elastic moduli of cement paste matrix and aggregate”. Journal of American Concrete Institute, 59, 427-451, 1962.
  • Brody H, Ward IM. “Modulus of short carbon and glass fiber reinforced composites”. Polymer Engineering Science, 11, 139-151,1971.
  • Chou TW, Nomura S. “Fiber orientation effects of the thermoplasticproperties of short fiber composites”. Fibre Scienceand Technology, 14, 279-291,1981.
  • Fu SY, Lauke B. “Strength anisotropy of misaligned short-fiberreinforced polymers”. Composite Scienceand Technology, 59, 699-708, 1999.
  • Hine PJ, Davidson N, Duckett RA, Ward IM. “Measuring thefiber orientation and modelling the elastic properties of injectionmoulded long-glass-fiberreinforced nylon”. Composite Science and Technology, 53, 125-131, 1995.
  • Ji-Zhao L. “Predictions of tensile strength of short inorganic fibrereinforced polymer composites”. Polymer Testing, 30, 749-752,2011.
  • Piggott MR. “Short fibre polymer composites: A fracture-based theoryof fibre reinforcement”. Journal of Composite Materials, 28, 588-606,1994.
  • Epaarachchi J, Ku H, Gohel K. “Simplified empirical model forprediction of mechanical properties of random short fibre/vinylestercomposites”. Journal of Composite Materials, 44(6), 779-788, 2010.
  • Biagiotti J, Fiori S, Torre L, Lopez-Manchado MA, Kenny JM. “Mechanical properties of polypropylene matrix compositesreinforced with natural fibres: A statistical approach”. PolymerComposites, 25(1), 26-36,2004.
  • Angelo GF, Mark TK, Ning Y. “Predicting the elastic modulus ofnatural fibre reinforced thermoplastics”. Composites: Part A, 37, 1660-1671, 2006.
  • Zeronian SH. “The mechanical properties of cotton fibers”. Journal of Applied Polymer Science, 47, 445-461, 1991.
  • Mazumdar SK. Composites Manufacturing Materials, Product and Process Engineering. 1st ed. United States, CRC Press, 2002.
  • Bakkal M, Bodur MS, Berkalp OB, Yilmaz S. “The effect of reprocessing on the mechanical properties of the waste fabric reinforced composites”. Journal of Materials Processing Technology, 212, 2541-2548, 2012.
  • Zárate CN, Aranguen MI, Reboredo MM. “Resol-vegetable fibers composites”. Journal of Applied Polymer Science, 77, 1832-1840, 2000.
  • Halpin JC. “Stiffness and expansion estimates, for oriented short fiber composites”. Journal of Composite Materials, 3, 720-724, 1969.
  • Halpin JC, Pagano NJ. “The laminate approximation for randomly oriented fibrous composites”. Journal Compos Mater, 3, 720-724, 1969.
  • Nielson LE, Landel RF. Mechanical properties of polymer and composites. 2nd ed. NewYork: Marcel Dekker, 1974.
  • Christensen RM, Waals FM. “Effective stiffness of randomly oriented fiber composites”. Journal of Composite Materials, 6, 518-532, 1972.
  • Lee LH. “Strength-Composition relationships of random short glassfiber-thermoplastics composites”. Polymer Engineering and Science, 9, 213-219, 1969.
  • Tsai SW, Pagano NJ. Composite Materials Workshop. 1 ed. Stamford, USA, Technomic Publishing Co., 1968.
  • Manera M. “Elastic properties of randomly oriented short fiber-glass composites”. Journal of Composite Materials, 11, 235-247, 1977.
  • Pan N. “The elastic constants of randomly oriented fiber composite: A new approach to prediction”. Science and Engineering of composite materials, 5(962), 63-72, 1996.
  • Tucker CL, Liang E. “Stiffness prediction for unidirectional short-fiber composites: Review and evaluation”. Composites Science and Technology, 59, 655-671, 1999.
Birincil Dil en
Konular Mühendislik
Bölüm Makale
Yazarlar

Yazar: Mehmet Safa Bodur

Yazar: Mustafa Bakkal

Tarihler

Yayımlanma Tarihi : 28 Ağustos 2019

Bibtex @araştırma makalesi { pajes612057, journal = {Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi}, issn = {1300-7009}, eissn = {2147-5881}, address = {}, publisher = {Pamukkale Üniversitesi}, year = {2019}, volume = {25}, pages = {454 - 461}, doi = {}, title = {Young’s modulus estimation techniques for the randomly oriented natural fiber reinforced composites: Finite element analysis and analytical models}, key = {cite}, author = {Bodur, Mehmet Safa and Bakkal, Mustafa} }
APA Bodur, M , Bakkal, M . (2019). Young’s modulus estimation techniques for the randomly oriented natural fiber reinforced composites: Finite element analysis and analytical models. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi , 25 (4) , 454-461 . Retrieved from https://dergipark.org.tr/tr/pub/pajes/issue/47732/612057
MLA Bodur, M , Bakkal, M . "Young’s modulus estimation techniques for the randomly oriented natural fiber reinforced composites: Finite element analysis and analytical models". Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 25 (2019 ): 454-461 <https://dergipark.org.tr/tr/pub/pajes/issue/47732/612057>
Chicago Bodur, M , Bakkal, M . "Young’s modulus estimation techniques for the randomly oriented natural fiber reinforced composites: Finite element analysis and analytical models". Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 25 (2019 ): 454-461
RIS TY - JOUR T1 - Young’s modulus estimation techniques for the randomly oriented natural fiber reinforced composites: Finite element analysis and analytical models AU - Mehmet Safa Bodur , Mustafa Bakkal Y1 - 2019 PY - 2019 N1 - DO - T2 - Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi JF - Journal JO - JOR SP - 454 EP - 461 VL - 25 IS - 4 SN - 1300-7009-2147-5881 M3 - UR - Y2 - 2019 ER -
EndNote %0 Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Young’s modulus estimation techniques for the randomly oriented natural fiber reinforced composites: Finite element analysis and analytical models %A Mehmet Safa Bodur , Mustafa Bakkal %T Young’s modulus estimation techniques for the randomly oriented natural fiber reinforced composites: Finite element analysis and analytical models %D 2019 %J Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi %P 1300-7009-2147-5881 %V 25 %N 4 %R %U
ISNAD Bodur, Mehmet Safa , Bakkal, Mustafa . "Young’s modulus estimation techniques for the randomly oriented natural fiber reinforced composites: Finite element analysis and analytical models". Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 25 / 4 (Ağustos 2019): 454-461 .
AMA Bodur M , Bakkal M . Young’s modulus estimation techniques for the randomly oriented natural fiber reinforced composites: Finite element analysis and analytical models. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2019; 25(4): 454-461.
Vancouver Bodur M , Bakkal M . Young’s modulus estimation techniques for the randomly oriented natural fiber reinforced composites: Finite element analysis and analytical models. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2019; 25(4): 461-454.