Derleme
BibTex RIS Kaynak Göster

Karbondioksit yakalama uygulamaları için silika aerojeller üzerine derleme

Yıl 2019, Cilt: 25 Sayı: 7, 907 - 913, 26.12.2019

Öz

Son yıllarda, başta CO2 olmak üzere sera gazları olarak bilinen CH4, N2O, O3, CFC türü gazlar; yanma, endüstriyel emisyon veya anaeorobik bozunma gibi faaliyetlerle atmosfere salınmakta, yüksek ısı tutma kapasiteleri nedeniyle de yeryüzü sıcaklığının artmasına ve küresel iklim değişikliklerine neden olmaktadırlar. Dünya ülkelerinin CO2 salınımının azaltılması konularını öncelikli hedefleri olarak belirlemesiyle birlikte, bu konudaki gerek politik gerekse bilimsel çalışmalar büyük bir hız kazanmıştır Küresel karbon salınımlarının azaltılması için geliştirilen yöntemler; karbon yakalama ve depolama (carbon capture and storage) CCS teknolojileri olarak anılmaktadır. Bu yöntemler; yakma öncesi, yakma sonrası ve yakıtı oksitlendirme olmak üzere üç ana başlık altında toplanabilir. Adsorpsiyon, fiziksel ve/veya kimyasal absorpsiyon, membran ve kriyojenik (cryogenic) ayırma yöntemleri en yaygın kullanılan yanma sonrası CCS yaklaşımlarının başında gelmektedir. Gözenekli malzemeler de yanma sonrası akımlardan CO2’in fiziksel adsorpsiyon ile tutulmasında kullanılmaktadır. Ancak bu sistemlerin gerek seçimlilik gerekse döngüsel kullanım açısından zafiyetleri olduğu da bilinmektedir. Bu nedenle gözenekli malzemelerin CO2 ilgisi yüksek aminli gruplar ile modifiye edilmesi son yıllarda üzerinde çalışılan bir konu olmuştur. Hazırlanan bu derleme ile silika aerojellerin karbon tutma uygulamalarına yönelik güncel bilimsel çalışmalar taranmıştır. Derleme, silika arojellerin hazırlanması ve modifiye edilmesi, CO2 tutma başarımlarına yönelik yapılmış literatür çalışmaları ve gelecek uygulamaları olmak üzere başlıca üç kısımdan oluşmuştur. Sonuç olarak amin modifiye silika aerojellerin sahip oldukları üstün özelliklerle yanma sonrası süreçleri için ümit vaat eden malzemeler olduğu sonucuna varılmıştır.

Kaynakça

  • Albo A, Luis P, Irabin A. “Carbon dioxide capture from flue gases using a cross-flow membrane contactor and the ıonic liquid 1-Ethyl-3-methylimidazolium ethyl sulfate”. Industrial & Engineering Chemistry Research, 49(21), 11045-11051, 2010.
  • Sreenivasulu B, Gayatri D, Sreedhar I, Raghavan K. “A journey into the process and engineering aspects of carbon capture technologies”. Renewable and Sustainable Energy Review, 41, 1324-1350, 2015.
  • Cuccia L, Dugay J, Bontemps D, Louis-Louisy M, Vial J, “Analytical methods for the monitoring of post-combustion CO2 capture process using amine solvents: A review”. International Journal of Greenhouse Gas Control, 72, 138-151, 2018.
  • Littel RJ, Versteeg GF, Van S. “Physical absorption into non-aqueous solutions in a stirred cell reactor”. Chemical Engineering Science, 46(12), 3308-3313, 1991.
  • Chiesa P, Consonni SP. “Shift reactors and physical absorption for Low-CO2 emission IGCCs”. Journal of Engineering for Gas Turbines and Power, 121(2), 295-305, 1999.
  • Aroonwilas A, Veawab A. “Characterization and comparison of the CO2 absorption performance into single and blended alkanolamines in a packed column”. Industrial & Engineering Chemistry Research, 43(9), 2228-2237, 2004.
  • Bishnoi S, Rochelle GT. “Absorption of carbon dioxide into aqueous piperazine: reaction kinetics, mass transfer and solubility”. Chemical Engineering Science, 55(22), 5531–5543, 2000.
  • Powell CE, Qiao GG. “Polymeric CO2/N2 Gas separation membranes for the capture carbon dioxide from power plant flue gases”. Journal of Membrane Science, 279(1-2), 1-49, 2006.
  • Chang FY, Chao KJ, Cheng HH, Tan CS. “Adsorption of CO2 onto amine-grafted mesoporous silicas”. Separation and Purification Technology, 70(1), 87-95, 2009.
  • Harlick PJE, Tezel FH. “Equilibrium analysis of cyclic adsorption processes: CO2 working capacities with NaY”. Separation Science and Technology, 40(13), 2569-2591, 2005.
  • Salaudeen S, Acharya B, Dutta A. “CaO-based CO2 sorbents: A review on screening, enhancement, cyclic stability, regeneration and kinetics modelling”. Journal of CO2 Utilization, 23, 179-199, 2018.
  • Peng J, Iruretagoyena D, Chadwick D. “Hydrotalcite/SBA15 composites for pre-combustion CO2 capture: CO2 adsorption characteristics”. Journal of CO2 Utilization, 24, 73-80, 2018.
  • Grande C, Roussanaly S, Anantharaman R, Lindqvist K, Singh P, Kemper J. “CO2 capture in natural gas production by adsorption processes”. Energy Procedia, 114, 2259-2264, 2017.
  • Plaza M, Duran I, Rubiera F, Pevida C. “Adsorption-based process modelling for post-combustion CO2 capture”. Energy Procedia, 114 2353-2361, 2017.
  • Wawrzynczak D, Majchrzak-Kuceba I, Srokosz K, Kozak M, Nowak W, Zded J, Smotka W, Zajchowski A. “The pilot dual-reflux vacuum pressure swing adsorption unit for CO2 capture from flue gas”. Separation and Purification Technology, 209, 560-570, 2019.
  • Castro-Munoz R, Fila V, Martin-Gil V, Muller C. “Enhanced CO2 permeability in Matrimid® 5218 mixed matrix membranes for separating binary CO2/CH4 mixtures”. Separation and Purification Technology, 210, 553-562, 2019.
  • Yong W, Chung T, Weber M, Maletzko C. “New polyethersulfone (PESU) hollow fiber membranes for CO2 capture”. Journal of Membrane Science, 552, 305-314, 2018.
  • Song C, Liu Q, Ji N, Deng S, Zhao J, Kitamura Y. “Advanced cryogenic CO2 capture process based on Stirling coolers by heat integration”. Applied Thermal Engineering, 114, 887-895, 2017.
  • Knapik E, Kosowski P, Stopa J. “Cryogenic liquefaction and separation of CO2 using nitrogen removal unit cold energy”. Chemical Engineering Research and Design, 131, 66-79, 2018.
  • Song C, Liu Q, Ji N, Deng S, Zhao J, Li Y, Song Y, Li H. “Alternative pathways for efficient CO2 capture by hybrid processes-a review”. Renewable and Sustainable Energy Reviews, 82, 215-231, 2018.
  • Rochelle GT. “Amine scrubbing for CO2 capture”. Science, 325(5948), 1652–1654, 2009.
  • Deiana P, Bassano C, Cali G, Miraglia P, Maggio E. “CO2 capture and amine solvent regeneration in sotacarbo pilot plant”. Fuel, 207, 663-670, 2017.
  • Wu X, Yu Y, Qin Z, Zhang Z. “The advances of post-combustion CO2 capture with chemical solvents: Review and Guidelines”. Energy Procedia, 63 1339-1346, 2014.
  • Gunasekaran P, Veawab A, Aroonwilas A. “Corrosivity of amine-based absorbents for CO2 capture”. Energy Procedia, 114, 2047-2054, 2017.
  • Modak A., Jadak S. “Advancement in porous adsorbents for post-combustion CO2 capture”. Microporous and Mesoporous Materials, 276, 107-132, 2019.
  • Ünveren E, Monkul B, Sarıoğlan Ş, Karademir N, Alper E. “Solid amine sorbents for CO2 capture by chemical adsorption: A review”. Petroleum, 3 (1) 37-50, 2017.
  • Chakravartula Srivatsa S, Bhattacharya S. “Amine-based CO2 capture sorbents: a potential CO2 hydrogenation catalyst”. Journal of CO2 Utilization, 26, 397-407, 2018.
  • Lin Y, Lin Y, Lee C, Lin K Chung T, Tung K. “Synthesis of mechanically robust epoxy cross-linked silica aerogel membranes for CO2 capture”. Journal of the Taiwan Institute of Chemical Engineers, 87, 117-122, 2018.
  • Chen Y Shao G Kong Y Shen X Cui S. “Facile preparation of cross-linked polyimide aerogels with carboxylic functionalization for CO2 capture” Chemical Engineering Journal, 322, 1-9, 2017.
  • Kong Y, Shen X, Fan M, Yang M, Cui S. “Dynamic capture of low-concentration CO2 on amine hybrid silsesquioxane aerogel”. Chemical Engineering Journal, 283 1059-1068, 2016.
  • Minju N, Nair B, Peer Mohamed A, Ananthakumar S. “Surface engineered silica mesospheres-a promising adsorbent for CO2 capture”. Separation and Purification Technology, 181, 192-200, 2017.
  • Kishor R, Ghoshal A. “Aqueous aminosilane solution grafted three dimensional mesoporous silica for CO2/N2 separation”. Microporous and Mesoporous Materials, 246 137-146, 2017.
  • Kaithwas A, Prasad M, Kulshreshtha A, Verma S. “Industrial wastes derived solid adsorbents for CO2 capture: A mini review”. Chemical Engineering Research and Design, 90(10), 1632-1641, 2012.
  • Tursiloadi S, Imai H, Hirashima H. “Preparation and characterization of mesoporous titania-alumina ceramic by modified sol-gel method”. Journal of Non-Crystalline Solids, 350, 271–276, 2004.
  • Matsuda H, Kobayashi N, Kobayashi T, Miyazawa K, Kuwabara M. “Room-temperature synthesis of crystalline barium titanate thin films by high-concentration sol-gel method”. Journal of Non-Crystalline Solids, 271(1), 162–166, 2000.
  • Wikimedia Commons contributors. "File:Sol-Gel Technology Scheme.png". https://commons.wikimedia.org/w/index.php?title=File:Sol-Gel_Technology_Scheme.png&oldid=256233764 (15.01.2018).
  • Maruszewskı K, Strek W, Jasıorskı M. “Technology and applications of sol-gel materials”. Radiation Effects & Defects in Solids, 158, 439-450, 2003.
  • Siouffi AM. “Silica gel-based monoliths prepared by the sol-gel method: facts and figures”. Journal of Chromatography A, 1000, 801-818, 2003.
  • Flory PJ. Principal of Polymer Chemistry. Ithaca, NY, USA, Cornell University Press, 1953.
  • Hench LL., Ulrich DR., Science of Ceramic Chemical Processing. 1st ed. New York, USA, Wiley&Sons, 1986.
  • Kistler SS. “Coherent expanded aerogels”. Journal of Physical Chemistry, 36(1), 52-64, 1932.
  • Brinker CJ, Scherer W. “Sol-gel sciences: n The Processing and the Chemistry of Sol-Gel Processing, San Diego, CA, USA, Academic Press, 1990.
  • Jyoti LG, Jung IK, Park HH, Kang ES, Nadargi DY. “Silica aerogel: Synthesis and applications”. Journal of Nanomaterials, 2010, 1-11, 2010.
  • Khatri RA, Chuang SSC, Soong Y, Gray M. “Carbon dioxide capture by diamine-grafted SBA-15: A combined fourier transform infrared and mass spectrometry study”. Industrial & Engineering Chemistry Research, 44(10), 3702-3708, 2005.
  • Choi S, Drese JH, Jones CW. “Adsorbent materials for carbon dioxide capture from large anthropogenic point sources”. ChemSusChem, 2(9), 796-854, 2009.
  • Sayari A, Belmabkhout Y. “Stabilization of amine-containing CO2 asorbents: Dramatic effect of water vapor”. Journal of the American Society, 132(18), 6312-6314, 2010.
  • Kong Y, Shen X, Cui S, Fan M. “Dynamic capture of low-concentration CO2 on amine hybrid silsesquioxane aerogel”. Chemical Engineering Journal, 283, 1059-1068, 2016.
  • Linneen N, Pfeffer R, Lin YS. “CO2 capture using particulate silica aerogel immobilized with tetraethylenepentamine”. Microporous Mesoporous Materials, 176, 123-131, 2013.
  • Wörmeyer K, Alnaief M, Smirnova I. “Amino functionalised silica-aerogels for CO2-adsorption at low partial pressure”. Adsorption, 18(3-4), 163-171, 2012.
  • Linneen N, Pfeffer R, Lin YS. “CO2 adsorption performance for amine grafted particulate silica aerogels”. Chemical Engineering Journal, 254, 190-197, 2014.
  • Fan H, Wu Z, Xu Q, Sun T. “Flexible, amine-modified silica aerogel with enhanced carbon dioxide capture performance”. Journal of Porous Materials, 23(1), 131-137, 2016.
  • Kong Y, Jiang G, Fan M, Shen X, Cui S, Russell AG. “A new aerogel based CO2 adsorbent developed using a simple sol-gel method along with supercritical drying”. Chemical Communications, 50(81), 12158-61, 2014.
  • Anthony JL, Anderson JL, Maginn EJ, Brennecke JF. “Anion effects on gas solubility in ionic liquids”. The Journal of Physical Chemistry, 109(13), 6366-6374, 2005.

A review on silica aerogels for CO2 capture applications

Yıl 2019, Cilt: 25 Sayı: 7, 907 - 913, 26.12.2019

Öz

In recent years, greenhouse gases known as, CH4, N2O, O3, CFC and especially CO2 are released into the atmosphere through activities such as combustion, industrial emission or anaerobic decomposition and they cause an increase in surface temperature and global climate changes due to their high heat absorption capacities. Both political and scientific studies gained momentum as the countries of the world set the priority for the reduction of CO2 emissions. Developing methods for reducing global carbon emissions; are known as carbon capture and storage are known as (CCS) technologies. They are mainly classified as pre-combustion, post- combustion and oxyfuel combustion processes. Adsorption, physical and/or chemical absorption, membrane and cryogenic process can be considered as the most common CCS technologies. Porous solid sorbents can be also used for the physical adsorption of carbon dioxide from flue gases, as well. However, these processes are also known to have weaknesses in terms of both selectivity and cyclic operation. More recently, modification of mesaporous materials with amine groups have been shown to be efficient solid adsorbents for CO2 capture. With this review, current scientific studies on the recent advances in carbon sorption applications of silica aerogels has been investigated. The review consists of three main sections: preparation and modification of silica aerogels, literature studies on CO2 sorption performances and future perspectives. As a result, it has been concluded that amine-modified silica aerogels are promising materials for the carbon capture for the post combustion processes with their superior properties.

Kaynakça

  • Albo A, Luis P, Irabin A. “Carbon dioxide capture from flue gases using a cross-flow membrane contactor and the ıonic liquid 1-Ethyl-3-methylimidazolium ethyl sulfate”. Industrial & Engineering Chemistry Research, 49(21), 11045-11051, 2010.
  • Sreenivasulu B, Gayatri D, Sreedhar I, Raghavan K. “A journey into the process and engineering aspects of carbon capture technologies”. Renewable and Sustainable Energy Review, 41, 1324-1350, 2015.
  • Cuccia L, Dugay J, Bontemps D, Louis-Louisy M, Vial J, “Analytical methods for the monitoring of post-combustion CO2 capture process using amine solvents: A review”. International Journal of Greenhouse Gas Control, 72, 138-151, 2018.
  • Littel RJ, Versteeg GF, Van S. “Physical absorption into non-aqueous solutions in a stirred cell reactor”. Chemical Engineering Science, 46(12), 3308-3313, 1991.
  • Chiesa P, Consonni SP. “Shift reactors and physical absorption for Low-CO2 emission IGCCs”. Journal of Engineering for Gas Turbines and Power, 121(2), 295-305, 1999.
  • Aroonwilas A, Veawab A. “Characterization and comparison of the CO2 absorption performance into single and blended alkanolamines in a packed column”. Industrial & Engineering Chemistry Research, 43(9), 2228-2237, 2004.
  • Bishnoi S, Rochelle GT. “Absorption of carbon dioxide into aqueous piperazine: reaction kinetics, mass transfer and solubility”. Chemical Engineering Science, 55(22), 5531–5543, 2000.
  • Powell CE, Qiao GG. “Polymeric CO2/N2 Gas separation membranes for the capture carbon dioxide from power plant flue gases”. Journal of Membrane Science, 279(1-2), 1-49, 2006.
  • Chang FY, Chao KJ, Cheng HH, Tan CS. “Adsorption of CO2 onto amine-grafted mesoporous silicas”. Separation and Purification Technology, 70(1), 87-95, 2009.
  • Harlick PJE, Tezel FH. “Equilibrium analysis of cyclic adsorption processes: CO2 working capacities with NaY”. Separation Science and Technology, 40(13), 2569-2591, 2005.
  • Salaudeen S, Acharya B, Dutta A. “CaO-based CO2 sorbents: A review on screening, enhancement, cyclic stability, regeneration and kinetics modelling”. Journal of CO2 Utilization, 23, 179-199, 2018.
  • Peng J, Iruretagoyena D, Chadwick D. “Hydrotalcite/SBA15 composites for pre-combustion CO2 capture: CO2 adsorption characteristics”. Journal of CO2 Utilization, 24, 73-80, 2018.
  • Grande C, Roussanaly S, Anantharaman R, Lindqvist K, Singh P, Kemper J. “CO2 capture in natural gas production by adsorption processes”. Energy Procedia, 114, 2259-2264, 2017.
  • Plaza M, Duran I, Rubiera F, Pevida C. “Adsorption-based process modelling for post-combustion CO2 capture”. Energy Procedia, 114 2353-2361, 2017.
  • Wawrzynczak D, Majchrzak-Kuceba I, Srokosz K, Kozak M, Nowak W, Zded J, Smotka W, Zajchowski A. “The pilot dual-reflux vacuum pressure swing adsorption unit for CO2 capture from flue gas”. Separation and Purification Technology, 209, 560-570, 2019.
  • Castro-Munoz R, Fila V, Martin-Gil V, Muller C. “Enhanced CO2 permeability in Matrimid® 5218 mixed matrix membranes for separating binary CO2/CH4 mixtures”. Separation and Purification Technology, 210, 553-562, 2019.
  • Yong W, Chung T, Weber M, Maletzko C. “New polyethersulfone (PESU) hollow fiber membranes for CO2 capture”. Journal of Membrane Science, 552, 305-314, 2018.
  • Song C, Liu Q, Ji N, Deng S, Zhao J, Kitamura Y. “Advanced cryogenic CO2 capture process based on Stirling coolers by heat integration”. Applied Thermal Engineering, 114, 887-895, 2017.
  • Knapik E, Kosowski P, Stopa J. “Cryogenic liquefaction and separation of CO2 using nitrogen removal unit cold energy”. Chemical Engineering Research and Design, 131, 66-79, 2018.
  • Song C, Liu Q, Ji N, Deng S, Zhao J, Li Y, Song Y, Li H. “Alternative pathways for efficient CO2 capture by hybrid processes-a review”. Renewable and Sustainable Energy Reviews, 82, 215-231, 2018.
  • Rochelle GT. “Amine scrubbing for CO2 capture”. Science, 325(5948), 1652–1654, 2009.
  • Deiana P, Bassano C, Cali G, Miraglia P, Maggio E. “CO2 capture and amine solvent regeneration in sotacarbo pilot plant”. Fuel, 207, 663-670, 2017.
  • Wu X, Yu Y, Qin Z, Zhang Z. “The advances of post-combustion CO2 capture with chemical solvents: Review and Guidelines”. Energy Procedia, 63 1339-1346, 2014.
  • Gunasekaran P, Veawab A, Aroonwilas A. “Corrosivity of amine-based absorbents for CO2 capture”. Energy Procedia, 114, 2047-2054, 2017.
  • Modak A., Jadak S. “Advancement in porous adsorbents for post-combustion CO2 capture”. Microporous and Mesoporous Materials, 276, 107-132, 2019.
  • Ünveren E, Monkul B, Sarıoğlan Ş, Karademir N, Alper E. “Solid amine sorbents for CO2 capture by chemical adsorption: A review”. Petroleum, 3 (1) 37-50, 2017.
  • Chakravartula Srivatsa S, Bhattacharya S. “Amine-based CO2 capture sorbents: a potential CO2 hydrogenation catalyst”. Journal of CO2 Utilization, 26, 397-407, 2018.
  • Lin Y, Lin Y, Lee C, Lin K Chung T, Tung K. “Synthesis of mechanically robust epoxy cross-linked silica aerogel membranes for CO2 capture”. Journal of the Taiwan Institute of Chemical Engineers, 87, 117-122, 2018.
  • Chen Y Shao G Kong Y Shen X Cui S. “Facile preparation of cross-linked polyimide aerogels with carboxylic functionalization for CO2 capture” Chemical Engineering Journal, 322, 1-9, 2017.
  • Kong Y, Shen X, Fan M, Yang M, Cui S. “Dynamic capture of low-concentration CO2 on amine hybrid silsesquioxane aerogel”. Chemical Engineering Journal, 283 1059-1068, 2016.
  • Minju N, Nair B, Peer Mohamed A, Ananthakumar S. “Surface engineered silica mesospheres-a promising adsorbent for CO2 capture”. Separation and Purification Technology, 181, 192-200, 2017.
  • Kishor R, Ghoshal A. “Aqueous aminosilane solution grafted three dimensional mesoporous silica for CO2/N2 separation”. Microporous and Mesoporous Materials, 246 137-146, 2017.
  • Kaithwas A, Prasad M, Kulshreshtha A, Verma S. “Industrial wastes derived solid adsorbents for CO2 capture: A mini review”. Chemical Engineering Research and Design, 90(10), 1632-1641, 2012.
  • Tursiloadi S, Imai H, Hirashima H. “Preparation and characterization of mesoporous titania-alumina ceramic by modified sol-gel method”. Journal of Non-Crystalline Solids, 350, 271–276, 2004.
  • Matsuda H, Kobayashi N, Kobayashi T, Miyazawa K, Kuwabara M. “Room-temperature synthesis of crystalline barium titanate thin films by high-concentration sol-gel method”. Journal of Non-Crystalline Solids, 271(1), 162–166, 2000.
  • Wikimedia Commons contributors. "File:Sol-Gel Technology Scheme.png". https://commons.wikimedia.org/w/index.php?title=File:Sol-Gel_Technology_Scheme.png&oldid=256233764 (15.01.2018).
  • Maruszewskı K, Strek W, Jasıorskı M. “Technology and applications of sol-gel materials”. Radiation Effects & Defects in Solids, 158, 439-450, 2003.
  • Siouffi AM. “Silica gel-based monoliths prepared by the sol-gel method: facts and figures”. Journal of Chromatography A, 1000, 801-818, 2003.
  • Flory PJ. Principal of Polymer Chemistry. Ithaca, NY, USA, Cornell University Press, 1953.
  • Hench LL., Ulrich DR., Science of Ceramic Chemical Processing. 1st ed. New York, USA, Wiley&Sons, 1986.
  • Kistler SS. “Coherent expanded aerogels”. Journal of Physical Chemistry, 36(1), 52-64, 1932.
  • Brinker CJ, Scherer W. “Sol-gel sciences: n The Processing and the Chemistry of Sol-Gel Processing, San Diego, CA, USA, Academic Press, 1990.
  • Jyoti LG, Jung IK, Park HH, Kang ES, Nadargi DY. “Silica aerogel: Synthesis and applications”. Journal of Nanomaterials, 2010, 1-11, 2010.
  • Khatri RA, Chuang SSC, Soong Y, Gray M. “Carbon dioxide capture by diamine-grafted SBA-15: A combined fourier transform infrared and mass spectrometry study”. Industrial & Engineering Chemistry Research, 44(10), 3702-3708, 2005.
  • Choi S, Drese JH, Jones CW. “Adsorbent materials for carbon dioxide capture from large anthropogenic point sources”. ChemSusChem, 2(9), 796-854, 2009.
  • Sayari A, Belmabkhout Y. “Stabilization of amine-containing CO2 asorbents: Dramatic effect of water vapor”. Journal of the American Society, 132(18), 6312-6314, 2010.
  • Kong Y, Shen X, Cui S, Fan M. “Dynamic capture of low-concentration CO2 on amine hybrid silsesquioxane aerogel”. Chemical Engineering Journal, 283, 1059-1068, 2016.
  • Linneen N, Pfeffer R, Lin YS. “CO2 capture using particulate silica aerogel immobilized with tetraethylenepentamine”. Microporous Mesoporous Materials, 176, 123-131, 2013.
  • Wörmeyer K, Alnaief M, Smirnova I. “Amino functionalised silica-aerogels for CO2-adsorption at low partial pressure”. Adsorption, 18(3-4), 163-171, 2012.
  • Linneen N, Pfeffer R, Lin YS. “CO2 adsorption performance for amine grafted particulate silica aerogels”. Chemical Engineering Journal, 254, 190-197, 2014.
  • Fan H, Wu Z, Xu Q, Sun T. “Flexible, amine-modified silica aerogel with enhanced carbon dioxide capture performance”. Journal of Porous Materials, 23(1), 131-137, 2016.
  • Kong Y, Jiang G, Fan M, Shen X, Cui S, Russell AG. “A new aerogel based CO2 adsorbent developed using a simple sol-gel method along with supercritical drying”. Chemical Communications, 50(81), 12158-61, 2014.
  • Anthony JL, Anderson JL, Maginn EJ, Brennecke JF. “Anion effects on gas solubility in ionic liquids”. The Journal of Physical Chemistry, 109(13), 6366-6374, 2005.
Toplam 53 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Derleme
Yazarlar

Bora Yay

Nilay Gizli

Yayımlanma Tarihi 26 Aralık 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 25 Sayı: 7

Kaynak Göster

APA Yay, B., & Gizli, N. (2019). A review on silica aerogels for CO2 capture applications. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25(7), 907-913.
AMA Yay B, Gizli N. A review on silica aerogels for CO2 capture applications. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Aralık 2019;25(7):907-913.
Chicago Yay, Bora, ve Nilay Gizli. “A Review on Silica Aerogels for CO2 Capture Applications”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 25, sy. 7 (Aralık 2019): 907-13.
EndNote Yay B, Gizli N (01 Aralık 2019) A review on silica aerogels for CO2 capture applications. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 25 7 907–913.
IEEE B. Yay ve N. Gizli, “A review on silica aerogels for CO2 capture applications”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 25, sy. 7, ss. 907–913, 2019.
ISNAD Yay, Bora - Gizli, Nilay. “A Review on Silica Aerogels for CO2 Capture Applications”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 25/7 (Aralık 2019), 907-913.
JAMA Yay B, Gizli N. A review on silica aerogels for CO2 capture applications. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2019;25:907–913.
MLA Yay, Bora ve Nilay Gizli. “A Review on Silica Aerogels for CO2 Capture Applications”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 25, sy. 7, 2019, ss. 907-13.
Vancouver Yay B, Gizli N. A review on silica aerogels for CO2 capture applications. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2019;25(7):907-13.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.