Araştırma Makalesi
BibTex RIS Kaynak Göster

Helikopter pali aşınma kalkanındaki katı partikül erozyon davranışının incelenmesi

Yıl 2020, Cilt: 26 Sayı: 1, 68 - 74, 20.02.2020

Öz

Bu çalışmada, AISI 1020 çelik ve Ti-6Al-4V titanyum alaşım malzemelerinin katı partikül (parçacık) erozyon davranışları deneysel ve sayısal olarak incelenmiştir. Deneyler ve sayısal simülasyonlar, farklı partikül çarpma hızları (100, 127, 170, 210, 250 m/s) ve açıları (20, 30, 45, 60, 90°) için gerçekleştirilmiştir. Bununla birlikte, aynı malzemelerin bir helikopter pali aşınma kalkanındaki erozyon performansları, 0° hücum açısı ve 230 m/s çarpma hızı şartlarında MIL-STD-3033 standartına göre yapılmışken sayısal erozyon analizleri Eulerian-Lagrangian yaklaşımlı ayrık faz metodu ve ampirik erozyon eşitliği kullanan ticari ANSYS_Fluent 15.0 paket programı ile gerçekleştirilmiştir. Çalışmadan elde edilen sonuçlara göre, sayısal sonuçlar deneysel veriyle iyi derecede uyumlu ve AISI 1020 çeliğinin kalkan yüzeyindeki erozyon performansı Ti-6Al-4V alaşım malzemesinden daha iyi elde edilmiştir.

Kaynakça

  • Amezcua AC, Munoz AG, Romero CA, Czerwiec ZM, Amezcua RC. “Numerical investigation of the solid particle erosion rate in a steam turbine nozzle”. Applied Thermal Engineering, 27(14-15), 2394-2403, 2007.
  • Arabnejad H, Mansouri A, Shirazi S A, McLaury BS. “Development of mechanistic erosion equation for solid particles”. Wear, 332-333 (1), 1044-1050, 2015.
  • ASTM International. “Standard test method for conducting erosion tests by solid particle impingement using gas jets”. Scientific Report, G 76-04, Pennsylvania, USA 2004.
  • ASTM International. “Standard test method for dust erosion resistance of optical and infrared transparent materials and coatings”. Scientific Report, F1864 - 05, Pennsylvania, USA 2010.
  • Budur Aİ. Katı Parçacıkların Metalik Yüzeylerde Oluşturduğu Erozyonun Deneysel ve Sayısal Olarak İncelenmesi. Yüksek Lisans Tezi, Karadeniz Teknik Üniversitesi, Trabzon, Türkiye, 2018.
  • Det Norske Veritas. “Erosive wear in piping systems”. Scientific Report, R0501, Høvik, Norway, 2011.
  • Finnie I. “Erosion of surfaces by solid particles”. Wear, 3 (1), 87-103, 1960.
  • ANSYS Fluent 12.0 User’s Guide. ANSYS Inc, Canonsburg, USA, 2009.
  • Grant G, Tabakoff, W. “Erosion prediction in turbomachinery resulting from environmental solid particles”. Journal Aircraft 12 (5), 471-478, 1975.
  • Hutchings IM, Winter RE, Field JE. “Solid particle erosion of metals: the removal of surface material by spherical projectiles”. Procedings of the Royal Society. 348(1), 379-392, 1976.
  • Kim JH, Joo HG, Lee KY. “Simulation of solid particle erosion in WC-Ni coated wall using CFD”. Journal of Materials Processing Technology, 224 (1), 240-245, 2015.
  • Mansouri A, Arabnejad H, Karimi S, Shirazi S, McLaury B “Improved CFD modeling and validation of erosion damage due to fine sand particles”. Wear, (1), 339-350, 2015.
  • Mansouri A, Arabnejad H, Shirazi S, McLaury B. “A combined CFD/experimental methodology for erosion prediction”. Wear, 332-333 (1), 1090-1097, 2015.
  • Menter FR, Kuntz M, Langtry R. “Ten years of industrial experience with the SST turbulence model. Turbulence”. Heat and Mass Transfer 4, Begell House, 3, 2003. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.460.2814&rep=rep1&type=pdf (15.08.2018)
  • Military Standart. “Particle/sand Erosion Testing of Rotor Blade Protective Materials”. Scientific Report, MIL-STD-3033, Virginia, USA, 2010.
  • Neilson JH, Gilchrist A. “Erosion by a stream of solid particles”. Wear, 11(2), 111-122, 1968.
  • Oka YI, Okamura K, Yoshida T. “Practical estimation of erosion damage caused by solid particle impact: Part 1: effects of impact parameters on a predictive equation.” Wear, 259(1-6), 95-101, 2005.
  • Özen, İ ve Gedikli, H. “Solid particle erosion on shield surface of a helicopter rotor blade using computational fluid dynamics”. Journal of Aerospace Engineering, 32(1), 1-14, 2019.
  • Parsi M, Agrawal M, Srinivasan V, Vieira RE, Torres CF, Brenton S, McLauryd SB, Shirazi SA. “CFD simulation of sand particle erosion in gas-dominant multiphase flow”. Journal of Natural Gas Science and Engineering, 27, 706-718, 2015.
  • Rodriguez C. “CFD analysis on the main-rotor blade of a scale helicopter model using overset Meshing”. MSc Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2012.
  • Shin BG. “Prediction od Sand Particle Trajectories And Sand Erosion Damage On Helicopter Rotor Blades”. PhD Thesis, The Pennsylvania State University, Pennsylvania, USA, 2010.
  • Taslim ME, Khanicheh A, Spring S. “A numerical study of sand separation applicable to engine inlet particle separator systems”. Journal of The American Helicopter Society, 54 (4), 42001-420010, 2009.
  • Zhang Y, Reuterfors EP, McLaury BS, Shirazi SA, Rybicki ER. “Comparison of computed and measured particle velocities and erosion in water and air flows”. Wear, 263(1-6), 330-338, 2007.

Investigation of solid particle erosion behaviour on erosion shield of a helicopter rotor blade

Yıl 2020, Cilt: 26 Sayı: 1, 68 - 74, 20.02.2020

Öz

In this paper, solid particle erosion behaviors of AISI 1020 steel and Ti-6Al-4V titanium alloy materials were experimentally and numerically investigated. Experiments and numerical simulations were carried out for the conditions of different particle impact velocities (100, 127, 170, 210, 250 m/s) and angles (20, 30, 45, 60, 90°). Moreover, erosion performances on the erosion shield of a helicopter rotor blade of aforementioned materials were numerically determined for the condition of angle of attack of 0⁰ and impact velocity of 230 m/s. Numerical erosion analyzes were performed with ANSYS_Fluent 15.0 package program using discrete phase method with Eulerian-Lagrangian approach and an empirical erosion equation while experimental erosion tests were conducted by MIL-STD-3033 standard. As a result, numerical results were in good agreement with the experimental data, and it was obtained that erosion performance on the shield surface of AISI 1020 steel material is better than Ti-6Al-4V titanium alloy material.

Kaynakça

  • Amezcua AC, Munoz AG, Romero CA, Czerwiec ZM, Amezcua RC. “Numerical investigation of the solid particle erosion rate in a steam turbine nozzle”. Applied Thermal Engineering, 27(14-15), 2394-2403, 2007.
  • Arabnejad H, Mansouri A, Shirazi S A, McLaury BS. “Development of mechanistic erosion equation for solid particles”. Wear, 332-333 (1), 1044-1050, 2015.
  • ASTM International. “Standard test method for conducting erosion tests by solid particle impingement using gas jets”. Scientific Report, G 76-04, Pennsylvania, USA 2004.
  • ASTM International. “Standard test method for dust erosion resistance of optical and infrared transparent materials and coatings”. Scientific Report, F1864 - 05, Pennsylvania, USA 2010.
  • Budur Aİ. Katı Parçacıkların Metalik Yüzeylerde Oluşturduğu Erozyonun Deneysel ve Sayısal Olarak İncelenmesi. Yüksek Lisans Tezi, Karadeniz Teknik Üniversitesi, Trabzon, Türkiye, 2018.
  • Det Norske Veritas. “Erosive wear in piping systems”. Scientific Report, R0501, Høvik, Norway, 2011.
  • Finnie I. “Erosion of surfaces by solid particles”. Wear, 3 (1), 87-103, 1960.
  • ANSYS Fluent 12.0 User’s Guide. ANSYS Inc, Canonsburg, USA, 2009.
  • Grant G, Tabakoff, W. “Erosion prediction in turbomachinery resulting from environmental solid particles”. Journal Aircraft 12 (5), 471-478, 1975.
  • Hutchings IM, Winter RE, Field JE. “Solid particle erosion of metals: the removal of surface material by spherical projectiles”. Procedings of the Royal Society. 348(1), 379-392, 1976.
  • Kim JH, Joo HG, Lee KY. “Simulation of solid particle erosion in WC-Ni coated wall using CFD”. Journal of Materials Processing Technology, 224 (1), 240-245, 2015.
  • Mansouri A, Arabnejad H, Karimi S, Shirazi S, McLaury B “Improved CFD modeling and validation of erosion damage due to fine sand particles”. Wear, (1), 339-350, 2015.
  • Mansouri A, Arabnejad H, Shirazi S, McLaury B. “A combined CFD/experimental methodology for erosion prediction”. Wear, 332-333 (1), 1090-1097, 2015.
  • Menter FR, Kuntz M, Langtry R. “Ten years of industrial experience with the SST turbulence model. Turbulence”. Heat and Mass Transfer 4, Begell House, 3, 2003. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.460.2814&rep=rep1&type=pdf (15.08.2018)
  • Military Standart. “Particle/sand Erosion Testing of Rotor Blade Protective Materials”. Scientific Report, MIL-STD-3033, Virginia, USA, 2010.
  • Neilson JH, Gilchrist A. “Erosion by a stream of solid particles”. Wear, 11(2), 111-122, 1968.
  • Oka YI, Okamura K, Yoshida T. “Practical estimation of erosion damage caused by solid particle impact: Part 1: effects of impact parameters on a predictive equation.” Wear, 259(1-6), 95-101, 2005.
  • Özen, İ ve Gedikli, H. “Solid particle erosion on shield surface of a helicopter rotor blade using computational fluid dynamics”. Journal of Aerospace Engineering, 32(1), 1-14, 2019.
  • Parsi M, Agrawal M, Srinivasan V, Vieira RE, Torres CF, Brenton S, McLauryd SB, Shirazi SA. “CFD simulation of sand particle erosion in gas-dominant multiphase flow”. Journal of Natural Gas Science and Engineering, 27, 706-718, 2015.
  • Rodriguez C. “CFD analysis on the main-rotor blade of a scale helicopter model using overset Meshing”. MSc Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2012.
  • Shin BG. “Prediction od Sand Particle Trajectories And Sand Erosion Damage On Helicopter Rotor Blades”. PhD Thesis, The Pennsylvania State University, Pennsylvania, USA, 2010.
  • Taslim ME, Khanicheh A, Spring S. “A numerical study of sand separation applicable to engine inlet particle separator systems”. Journal of The American Helicopter Society, 54 (4), 42001-420010, 2009.
  • Zhang Y, Reuterfors EP, McLaury BS, Shirazi SA, Rybicki ER. “Comparison of computed and measured particle velocities and erosion in water and air flows”. Wear, 263(1-6), 330-338, 2007.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makale
Yazarlar

Hasan Gedikli Bu kişi benim

İsmail Özen Bu kişi benim

Yayımlanma Tarihi 20 Şubat 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 26 Sayı: 1

Kaynak Göster

APA Gedikli, H., & Özen, İ. (2020). Helikopter pali aşınma kalkanındaki katı partikül erozyon davranışının incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(1), 68-74.
AMA Gedikli H, Özen İ. Helikopter pali aşınma kalkanındaki katı partikül erozyon davranışının incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Şubat 2020;26(1):68-74.
Chicago Gedikli, Hasan, ve İsmail Özen. “Helikopter Pali aşınma kalkanındaki Katı partikül Erozyon davranışının Incelenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 26, sy. 1 (Şubat 2020): 68-74.
EndNote Gedikli H, Özen İ (01 Şubat 2020) Helikopter pali aşınma kalkanındaki katı partikül erozyon davranışının incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 26 1 68–74.
IEEE H. Gedikli ve İ. Özen, “Helikopter pali aşınma kalkanındaki katı partikül erozyon davranışının incelenmesi”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 26, sy. 1, ss. 68–74, 2020.
ISNAD Gedikli, Hasan - Özen, İsmail. “Helikopter Pali aşınma kalkanındaki Katı partikül Erozyon davranışının Incelenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 26/1 (Şubat 2020), 68-74.
JAMA Gedikli H, Özen İ. Helikopter pali aşınma kalkanındaki katı partikül erozyon davranışının incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2020;26:68–74.
MLA Gedikli, Hasan ve İsmail Özen. “Helikopter Pali aşınma kalkanındaki Katı partikül Erozyon davranışının Incelenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 26, sy. 1, 2020, ss. 68-74.
Vancouver Gedikli H, Özen İ. Helikopter pali aşınma kalkanındaki katı partikül erozyon davranışının incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2020;26(1):68-74.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.