Araştırma Makalesi
BibTex RIS Kaynak Göster

Application of biochar derived from industrial tea waste into the fuel cell-a novel approach

Yıl 2020, Cilt: 26 Sayı: 1, 122 - 126, 20.02.2020

Öz

Fuel cells play an important role in clean and efficient energy technologies. The proton exchange membrane (PEM) fuel cell, which uses hydrogen as fuel and operates at lower temperatures than other types, is important for portable electrical systems. Carbon material is used in the most of the fuel cell parts. In this study, the effect of biomass derived biochar-the carbonized material- on fuel cell efficiency has been investigated as an alternative, clean, inexpensive and sustainable carbon material in the membrane electrode assembly. Especially the sulphated biochar, the use of catalyst was reduced by half, results in higher fuel-cell voltage. A 0.56 V voltage was obtained with a half-catalyzed fuel cell, while a 0.78 V voltage was measured when sulfated biochar was used in the same cell.

Kaynakça

  • Jones GA, Warner KJ. "The 21st century population-energy-climate nexus". Energy Policy, 93, 206-212, 2016.
  • Abas N, Kalair A, Khan N. "Review of fossil fuels and future energy technologies". Futures, 69, 31-49, 2015.
  • Alaswad A, Baroutaji A, Achour H, Carton J, Makky AA, Olabi AG. "Developments in fuel cell technologies in the transport sector". International Journal of Hydrogen Energy, 41(37), 16499-16508, 2016.
  • Peighambardoust SJ, Rowshanzamir S, Amjadi M. "Review of the proton exchange membranes for fuel cell applications". International Journal of Hydrogen Energy, 35, 9349-9384, 2010.
  • Du L, Shao Y, Sun J, Yin G, Liu J, Wang Y. "Advanced catalyst supports for PEM fuel cell cathodes". Nano Energy, 29, 314-322, 2016.
  • Hermann A, Chaudhuri T, Spagnol P. "Bipolar plates for PEM fuel cells: A review". International Journal of Hydrogen Energy, 30, 1297-1302, 2005.
  • Dicks AL. "The role of carbon in fuel cells". Journal of Power Sources, 156, 128-141, 2006.
  • Wilberforce T, Alaswad A, Palumbo A, Dassisti M, Olabi AG. "Advances in stationary and portable fuel cell applications". International Journal of Hydrogen Energy, 41, 16509–16522, 2016.
  • Liu WJ, Jiang H, Yu HQ. "Development of biochar-based functional materials: Toward a sustainable platform carbon material". Chemical Reviews, 115, 12251–12285, 2015.
  • Wang J, Nie P, Ding B, Dong S, Hao X, Dou H, Zhang X. "Biomass derived carbon for energy storage devices". Journal of Materials Chemistry A, 5, 2411–2428, 2017.
  • Chowdhury ZZ, Karim MZ, Ashraf MA, Khalid K. "Influence of carbonization temperature on physicochemical properties of biochar derived from slow pyrolysis of durian wood (Durio zibethinus) sawdust". BioResources, 11(2), 3356–3372, 2016.
  • Goldfarb JL, Dou G, Salari M. "Biomass-based fuels and activated carbon electrode materials: An integrated approach to green energy systems". ACS Sustainable Chemical Engineering, 5, 3046-3054, 2017.
  • Lee, HW, Kim YM, Kim S, Ryu C, Park SH, Park YK. "Review of the use of activated biochar for energy and environmental applications". Carbon Letters, 26, 1-10 2018.
  • Klüpfel L, Keiluweit M, Kleber M, Sander M. "Redox Properties of Plant Biomass-Derived Black Carbon (Biochar)". Environmental Science and Technology, 48, 5601-5611, 2014.
  • Hurley P. Build Your own Fuel Cells. Wheeloch VT, USA Good Idea Creative Service, 2002.
  • Dehkhoda AM, West AH, Ellis N. "Biochar based solid acid catalyst for biodiesel production". Applied Catalysis A : General, 382, 197-204, 2010.
  • Kastner JR, Miller J, Geller DP, Locklin J, Keith LH, Jhonson T. "Catalytic esterification of fatty acids using solid acid catalysts generated from biochar and activated carbon". Catalysis Today, 190, 122-132, 2012.
  • Dong T, Gao D, Miao C, Yu X, Degan C, Garcia-Pérez M, Rasco B, Sablani SS, Chen S. "Two-step microalgal biodiesel production using acidic catalyst generated from pyrolysis-derived biochar". Energy Conversion and Managment, 105, 1389–1396, 2015.
  • Akgül G, Sözer S, Culfa M. "A novel biochar catalyst for biodiesel production from waste cooking oil". TÜBAV Bilim, 10 (4), 29-38, 2017.
  • Gabhi RS, Kirk DW, Jia CQ. "Preliminary investigation of electrical conductivity of monolithic biochar". Carbon, 116, 435-442, 2017.
  • Akgül G, Ates A, Yasar G, Hatipoglu H. "Production and characterisation of biochar from tea waste and its nickel removal capacity from aqueous solutions". Progress in Industrial Ecology-An International Journal, 11(2), 105-117, 2017.
  • Lu Y, Du, S, Steinberger-Wilckens R. "One-dimensional nanostructured electrocatalysts for polymer electrolyte membrane fuel cells-a review". Applied Catalysis B Environmental, 199, 292–314, 2016.
  • Quartarone E, Angioni S, Mustarelli P. "Polymer and composite membranes for proton-conducting, high-temperature fuel cells: A critical review". Materials, 10, 687, 1-17, 2017.
  • Matsumoto T, Komatsu T, Arai K, Yamazaki T, Kijima M, Shimizu H, Takasawa Y, Nakamura J. "Reduction of Pt usage in fuel cell electrocatalysts with carbon nanotube electrodes". Chemical Communications, 840-841, 2004.
  • Lobato J, Zamora H, Plaza J, Cañizares P, Rodrigo MA. "Enhancement of high temperature PEMFC stability using catalysts based on Pt supported on SiC based materials". Applied Catalysis B : Environmental, 198, 516-524, 2016.
  • Akgül G, Maden TB, Diaz E, Jiménez EM. "Modification of tea biochar with Mg, Fe, Mn and Al salts for efficient sorption of PO43- and Cd2+ from aqueous solutions". Journal of Water Reuse and Desalination, 9(1), 57-66, 2018.

Endüstriyel çay atıklarından üretilen biyokömürün yakıt pillerinde uygulanması-yenilikçi bir yaklaşım

Yıl 2020, Cilt: 26 Sayı: 1, 122 - 126, 20.02.2020

Öz

Yakıt pilleri, temiz ve etkin enerji teknolojileri içinde önemli bir rol oynamaktadır. Hidrojeni yakıt olarak kullanan ve diğer türlerine göre daha düşük sıcaklıklarda çalışan proton değişim membran (PEM) yakıt pili, taşınabilir elektrik sistemleri için önemlidir. Yakıt pillerinin çoğu kısmında malzeme olarak karbon malzeme kullanılmaktadır. Bu çalışmada biyokütleden elde edilen karbonize materyal olan biyokömürün (biochar), alternatif, temiz, ucuz ve sürdürülebilir bir karbon malzeme olarak membran elektrot kümesinde kullanımının yakıt pili verimine etkisi incelenmiştir. Özellikle sülfolanmış biyokömür kullanımı ile katalizör kullanımı yarı yarıya azaltılırken daha yüksek yakıt pili voltaj gerilimi de elde edilmiştir. Yarı yarıya azaltılan katalizörlü yakıt pili ile 0.56 V gerilim elde edilirken, aynı hücrede sülfolanmış biyokömür kullanıldığında 0.78 V gerilim ölçülmüştür.

Kaynakça

  • Jones GA, Warner KJ. "The 21st century population-energy-climate nexus". Energy Policy, 93, 206-212, 2016.
  • Abas N, Kalair A, Khan N. "Review of fossil fuels and future energy technologies". Futures, 69, 31-49, 2015.
  • Alaswad A, Baroutaji A, Achour H, Carton J, Makky AA, Olabi AG. "Developments in fuel cell technologies in the transport sector". International Journal of Hydrogen Energy, 41(37), 16499-16508, 2016.
  • Peighambardoust SJ, Rowshanzamir S, Amjadi M. "Review of the proton exchange membranes for fuel cell applications". International Journal of Hydrogen Energy, 35, 9349-9384, 2010.
  • Du L, Shao Y, Sun J, Yin G, Liu J, Wang Y. "Advanced catalyst supports for PEM fuel cell cathodes". Nano Energy, 29, 314-322, 2016.
  • Hermann A, Chaudhuri T, Spagnol P. "Bipolar plates for PEM fuel cells: A review". International Journal of Hydrogen Energy, 30, 1297-1302, 2005.
  • Dicks AL. "The role of carbon in fuel cells". Journal of Power Sources, 156, 128-141, 2006.
  • Wilberforce T, Alaswad A, Palumbo A, Dassisti M, Olabi AG. "Advances in stationary and portable fuel cell applications". International Journal of Hydrogen Energy, 41, 16509–16522, 2016.
  • Liu WJ, Jiang H, Yu HQ. "Development of biochar-based functional materials: Toward a sustainable platform carbon material". Chemical Reviews, 115, 12251–12285, 2015.
  • Wang J, Nie P, Ding B, Dong S, Hao X, Dou H, Zhang X. "Biomass derived carbon for energy storage devices". Journal of Materials Chemistry A, 5, 2411–2428, 2017.
  • Chowdhury ZZ, Karim MZ, Ashraf MA, Khalid K. "Influence of carbonization temperature on physicochemical properties of biochar derived from slow pyrolysis of durian wood (Durio zibethinus) sawdust". BioResources, 11(2), 3356–3372, 2016.
  • Goldfarb JL, Dou G, Salari M. "Biomass-based fuels and activated carbon electrode materials: An integrated approach to green energy systems". ACS Sustainable Chemical Engineering, 5, 3046-3054, 2017.
  • Lee, HW, Kim YM, Kim S, Ryu C, Park SH, Park YK. "Review of the use of activated biochar for energy and environmental applications". Carbon Letters, 26, 1-10 2018.
  • Klüpfel L, Keiluweit M, Kleber M, Sander M. "Redox Properties of Plant Biomass-Derived Black Carbon (Biochar)". Environmental Science and Technology, 48, 5601-5611, 2014.
  • Hurley P. Build Your own Fuel Cells. Wheeloch VT, USA Good Idea Creative Service, 2002.
  • Dehkhoda AM, West AH, Ellis N. "Biochar based solid acid catalyst for biodiesel production". Applied Catalysis A : General, 382, 197-204, 2010.
  • Kastner JR, Miller J, Geller DP, Locklin J, Keith LH, Jhonson T. "Catalytic esterification of fatty acids using solid acid catalysts generated from biochar and activated carbon". Catalysis Today, 190, 122-132, 2012.
  • Dong T, Gao D, Miao C, Yu X, Degan C, Garcia-Pérez M, Rasco B, Sablani SS, Chen S. "Two-step microalgal biodiesel production using acidic catalyst generated from pyrolysis-derived biochar". Energy Conversion and Managment, 105, 1389–1396, 2015.
  • Akgül G, Sözer S, Culfa M. "A novel biochar catalyst for biodiesel production from waste cooking oil". TÜBAV Bilim, 10 (4), 29-38, 2017.
  • Gabhi RS, Kirk DW, Jia CQ. "Preliminary investigation of electrical conductivity of monolithic biochar". Carbon, 116, 435-442, 2017.
  • Akgül G, Ates A, Yasar G, Hatipoglu H. "Production and characterisation of biochar from tea waste and its nickel removal capacity from aqueous solutions". Progress in Industrial Ecology-An International Journal, 11(2), 105-117, 2017.
  • Lu Y, Du, S, Steinberger-Wilckens R. "One-dimensional nanostructured electrocatalysts for polymer electrolyte membrane fuel cells-a review". Applied Catalysis B Environmental, 199, 292–314, 2016.
  • Quartarone E, Angioni S, Mustarelli P. "Polymer and composite membranes for proton-conducting, high-temperature fuel cells: A critical review". Materials, 10, 687, 1-17, 2017.
  • Matsumoto T, Komatsu T, Arai K, Yamazaki T, Kijima M, Shimizu H, Takasawa Y, Nakamura J. "Reduction of Pt usage in fuel cell electrocatalysts with carbon nanotube electrodes". Chemical Communications, 840-841, 2004.
  • Lobato J, Zamora H, Plaza J, Cañizares P, Rodrigo MA. "Enhancement of high temperature PEMFC stability using catalysts based on Pt supported on SiC based materials". Applied Catalysis B : Environmental, 198, 516-524, 2016.
  • Akgül G, Maden TB, Diaz E, Jiménez EM. "Modification of tea biochar with Mg, Fe, Mn and Al salts for efficient sorption of PO43- and Cd2+ from aqueous solutions". Journal of Water Reuse and Desalination, 9(1), 57-66, 2018.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makale
Yazarlar

Gökçen Akgül Bu kişi benim

Zehra Turan Bu kişi benim

Yayımlanma Tarihi 20 Şubat 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 26 Sayı: 1

Kaynak Göster

APA Akgül, G., & Turan, Z. (2020). Endüstriyel çay atıklarından üretilen biyokömürün yakıt pillerinde uygulanması-yenilikçi bir yaklaşım. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(1), 122-126.
AMA Akgül G, Turan Z. Endüstriyel çay atıklarından üretilen biyokömürün yakıt pillerinde uygulanması-yenilikçi bir yaklaşım. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Şubat 2020;26(1):122-126.
Chicago Akgül, Gökçen, ve Zehra Turan. “Endüstriyel çay atıklarından üretilen biyokömürün yakıt Pillerinde Uygulanması-yenilikçi Bir yaklaşım”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 26, sy. 1 (Şubat 2020): 122-26.
EndNote Akgül G, Turan Z (01 Şubat 2020) Endüstriyel çay atıklarından üretilen biyokömürün yakıt pillerinde uygulanması-yenilikçi bir yaklaşım. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 26 1 122–126.
IEEE G. Akgül ve Z. Turan, “Endüstriyel çay atıklarından üretilen biyokömürün yakıt pillerinde uygulanması-yenilikçi bir yaklaşım”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 26, sy. 1, ss. 122–126, 2020.
ISNAD Akgül, Gökçen - Turan, Zehra. “Endüstriyel çay atıklarından üretilen biyokömürün yakıt Pillerinde Uygulanması-yenilikçi Bir yaklaşım”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 26/1 (Şubat 2020), 122-126.
JAMA Akgül G, Turan Z. Endüstriyel çay atıklarından üretilen biyokömürün yakıt pillerinde uygulanması-yenilikçi bir yaklaşım. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2020;26:122–126.
MLA Akgül, Gökçen ve Zehra Turan. “Endüstriyel çay atıklarından üretilen biyokömürün yakıt Pillerinde Uygulanması-yenilikçi Bir yaklaşım”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 26, sy. 1, 2020, ss. 122-6.
Vancouver Akgül G, Turan Z. Endüstriyel çay atıklarından üretilen biyokömürün yakıt pillerinde uygulanması-yenilikçi bir yaklaşım. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2020;26(1):122-6.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.