Araştırma Makalesi
BibTex RIS Kaynak Göster

Sayısal modülasyonların η-µ/gamma karma sönümlenmeli ortamlardaki hata olasılığı üzerine bir çalışma

Yıl 2020, Cilt: 26 Sayı: 2, 347 - 351, 07.04.2020

Öz

Bu çalışmada, evre uyumlu olmayan frekans kaydırmalı anahtarlama ve farksal faz kaydırmalı anahtarlama sayısal modülasyon türlerini kullanan haberleşme sistemlerinin η-µ/Gamma karma sönümlenmeli kanallardaki başarım analizi verilmiştir. Yapılan analiz olasılık yoğunluk fonksiyonu tabanlı olup, matematiksel olarak temel fonksiyonlar içermektedir. Bu sebeple, sunulan analiz matematiksel açıdan oldukça kolay ve anlaşılabilirdir. Yapılan analizler sonucunda kapalı formda ortalama hata ifadesi türetilmiştir. Türetilen hata ifadesi kullanılarak elde edilen nümerik sonuçlar ile simülasyon sonuçları kıyaslamalı olarak verilerek türetilen ifadenin doğruluğu gösterilmiştir.

Kaynakça

  • Nakagami M. The M-Distribution, a General Formula of Intensity Distribution of Rapid Fading. Pergamon, England, Oxford, 1960.
  • de Souza RA, Yacoub MD, Rabelo GS. “Bivariate hoyt (Nakagami-q) distribution”. IEEE Transactions on Communications, 60(3), 714-723, 2012.
  • Yacoub MD. “The κ-μ distribution and the η-μ distribution”. IEEE Antennas and Propagation Magazine, 49(1), 68-81, 2007.
  • Ermolova NY. “Useful integrals for performance evaluation of communication systems in generalized η-μ and κ-μ fading channels”. IET Communications, 3(2), 303-308, 2009.
  • Bhargav N, da Silva CRN, Chun YJ, Leonardo ÉJ, Cotton SL, Yacoub MD. “On the product of two κ-μ random variables and its application to double and composite fading channels”. IEEE Transactions on Wireless Communications, 17(4), 2457-2470, 2018.
  • Kumar S, Chandrasekaran G, Kalyani S. “Analysis of outage probability and capacity for κ-μ/η-μ faded channel”.IEEE Communications Letters, 19(2), 211-214, 2015.
  • Villavicencio MAG, de Souza RAA, de Souza GC, Yacoub MD. “A bivariate κ-μ distribution”. IEEE Transactions on Vehicular Technology, 65(7), 5737-5743, 2016.
  • Moreno PL, Martinez FJL, Paris JF, Naya EM. “The κ–μ shadowed fading model: unifying the κ–μ and η–μ distributions”. IEEE Transactions on Vehicular Technology, 65(12), 9630-9641, 2016.
  • Rabelo GS, Yacoub MD. “The 𝜅-𝜇 Extreme Distribution”. IEEE Transactions on Communications, 59(10), 2776-2785, 2011.
  • Magableh AM, Matalgah MM. “Moment generating function of the generalized α−μ distribution with applications”. IEEE Communications Letters, 13(6), 411-413, 2009.
  • Leonardo ÉJ, Yacoub MD. “Product of α–μ variates”.IEEE Wireless Communications Letters, 4(6), 637-640, 2015.
  • da Silva CRN, Leonardo ÉJ, Yacoub MD. “Product of two envelopes taken from α−μ, 𝜅-𝜇, and η-μ distributions”. IEEE Transactions on Communications, 66(3), 1284-1295, 2018.
  • Badarneh OS, Aloqlah MS. “Performance analysis of digital communication systems over α−η−μ fading channels”. IEEE Transactions on Vehicular Technology, 65(10), 7972-7981, 2016.
  • Kapucu N, Bilim M, Develi I. “Outage performance of cooperative DS-CDMA systems with best path selection over α−η−μ fading channels”. IET Electronics Letters, 53(11), 752–754, 2017.
  • Yacoub MD. “The α-η-κ-μ fading model”.IEEE Transactions on Antennas and Propagation, 64(8), 3597-3610, 2016.
  • Al-Hmood H, Al-Raweshidy HS. “Unified modeling of composite κ−μ/gamma, η−μ/gamma, and α−μ/gamma fading channels using a mixture gamma distribution with applications to energy detection”. IEEE Antennas and Wireless Propagation Letters, 16, 104-108, 2017.
  • Zhang J, Matthaious M, Tan Z, Wang H. “Performance analysis of digital communication system over composite η−μ/gamma fading channels”. IEEE Transactions on Vehicular Technology, 61(7), 3114-3124, 2012.
  • Gradshteyn IS, Rzyhik IM. Table of Integrals, Series and Products. London, UK, Academic Press, 2007.
  • Simon MK, Alouini MS. Digital Communication Over Fading Channels. USA, John Wiley & Sons, 2000.

A study on the error probability of digital modulations over η-µ/gamma mixed fading environments

Yıl 2020, Cilt: 26 Sayı: 2, 347 - 351, 07.04.2020

Öz

In this study, performance analysis of η-μ/Gamma mixed fading channels of communication systems using noncoherent frequency shift keying and differential phase shift keying digital modulation types is presented. The analysis is based on probability density function and contains mathematically basic functions. For this reason, the proposed analysis is quite simple and understandable from a mathematical point of view. As a result of the analyzes, the closed form average error probability expression is derived. The numerical results obtained by using the derived error expression are compared with the simulation results and the accuracy of the derived expression is shown.

Kaynakça

  • Nakagami M. The M-Distribution, a General Formula of Intensity Distribution of Rapid Fading. Pergamon, England, Oxford, 1960.
  • de Souza RA, Yacoub MD, Rabelo GS. “Bivariate hoyt (Nakagami-q) distribution”. IEEE Transactions on Communications, 60(3), 714-723, 2012.
  • Yacoub MD. “The κ-μ distribution and the η-μ distribution”. IEEE Antennas and Propagation Magazine, 49(1), 68-81, 2007.
  • Ermolova NY. “Useful integrals for performance evaluation of communication systems in generalized η-μ and κ-μ fading channels”. IET Communications, 3(2), 303-308, 2009.
  • Bhargav N, da Silva CRN, Chun YJ, Leonardo ÉJ, Cotton SL, Yacoub MD. “On the product of two κ-μ random variables and its application to double and composite fading channels”. IEEE Transactions on Wireless Communications, 17(4), 2457-2470, 2018.
  • Kumar S, Chandrasekaran G, Kalyani S. “Analysis of outage probability and capacity for κ-μ/η-μ faded channel”.IEEE Communications Letters, 19(2), 211-214, 2015.
  • Villavicencio MAG, de Souza RAA, de Souza GC, Yacoub MD. “A bivariate κ-μ distribution”. IEEE Transactions on Vehicular Technology, 65(7), 5737-5743, 2016.
  • Moreno PL, Martinez FJL, Paris JF, Naya EM. “The κ–μ shadowed fading model: unifying the κ–μ and η–μ distributions”. IEEE Transactions on Vehicular Technology, 65(12), 9630-9641, 2016.
  • Rabelo GS, Yacoub MD. “The 𝜅-𝜇 Extreme Distribution”. IEEE Transactions on Communications, 59(10), 2776-2785, 2011.
  • Magableh AM, Matalgah MM. “Moment generating function of the generalized α−μ distribution with applications”. IEEE Communications Letters, 13(6), 411-413, 2009.
  • Leonardo ÉJ, Yacoub MD. “Product of α–μ variates”.IEEE Wireless Communications Letters, 4(6), 637-640, 2015.
  • da Silva CRN, Leonardo ÉJ, Yacoub MD. “Product of two envelopes taken from α−μ, 𝜅-𝜇, and η-μ distributions”. IEEE Transactions on Communications, 66(3), 1284-1295, 2018.
  • Badarneh OS, Aloqlah MS. “Performance analysis of digital communication systems over α−η−μ fading channels”. IEEE Transactions on Vehicular Technology, 65(10), 7972-7981, 2016.
  • Kapucu N, Bilim M, Develi I. “Outage performance of cooperative DS-CDMA systems with best path selection over α−η−μ fading channels”. IET Electronics Letters, 53(11), 752–754, 2017.
  • Yacoub MD. “The α-η-κ-μ fading model”.IEEE Transactions on Antennas and Propagation, 64(8), 3597-3610, 2016.
  • Al-Hmood H, Al-Raweshidy HS. “Unified modeling of composite κ−μ/gamma, η−μ/gamma, and α−μ/gamma fading channels using a mixture gamma distribution with applications to energy detection”. IEEE Antennas and Wireless Propagation Letters, 16, 104-108, 2017.
  • Zhang J, Matthaious M, Tan Z, Wang H. “Performance analysis of digital communication system over composite η−μ/gamma fading channels”. IEEE Transactions on Vehicular Technology, 61(7), 3114-3124, 2012.
  • Gradshteyn IS, Rzyhik IM. Table of Integrals, Series and Products. London, UK, Academic Press, 2007.
  • Simon MK, Alouini MS. Digital Communication Over Fading Channels. USA, John Wiley & Sons, 2000.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makale
Yazarlar

Mehmet Bilim

Yayımlanma Tarihi 7 Nisan 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 26 Sayı: 2

Kaynak Göster

APA Bilim, M. (2020). Sayısal modülasyonların η-µ/gamma karma sönümlenmeli ortamlardaki hata olasılığı üzerine bir çalışma. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(2), 347-351.
AMA Bilim M. Sayısal modülasyonların η-µ/gamma karma sönümlenmeli ortamlardaki hata olasılığı üzerine bir çalışma. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Nisan 2020;26(2):347-351.
Chicago Bilim, Mehmet. “Sayısal modülasyonların η-µ/Gamma Karma sönümlenmeli Ortamlardaki Hata olasılığı üzerine Bir çalışma”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 26, sy. 2 (Nisan 2020): 347-51.
EndNote Bilim M (01 Nisan 2020) Sayısal modülasyonların η-µ/gamma karma sönümlenmeli ortamlardaki hata olasılığı üzerine bir çalışma. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 26 2 347–351.
IEEE M. Bilim, “Sayısal modülasyonların η-µ/gamma karma sönümlenmeli ortamlardaki hata olasılığı üzerine bir çalışma”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 26, sy. 2, ss. 347–351, 2020.
ISNAD Bilim, Mehmet. “Sayısal modülasyonların η-µ/Gamma Karma sönümlenmeli Ortamlardaki Hata olasılığı üzerine Bir çalışma”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 26/2 (Nisan 2020), 347-351.
JAMA Bilim M. Sayısal modülasyonların η-µ/gamma karma sönümlenmeli ortamlardaki hata olasılığı üzerine bir çalışma. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2020;26:347–351.
MLA Bilim, Mehmet. “Sayısal modülasyonların η-µ/Gamma Karma sönümlenmeli Ortamlardaki Hata olasılığı üzerine Bir çalışma”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 26, sy. 2, 2020, ss. 347-51.
Vancouver Bilim M. Sayısal modülasyonların η-µ/gamma karma sönümlenmeli ortamlardaki hata olasılığı üzerine bir çalışma. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2020;26(2):347-51.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.