Araştırma Makalesi
BibTex RIS Kaynak Göster

Modeling irrigation with nitrate contaminated groundwater

Yıl 2020, Cilt: 26 Sayı: 3, 468 - 480, 08.06.2020

Öz

An alternative method to treat the nitrate-contaminated groundwater under the agricultural fields while providing economic benefit is called pump and fertilize. Pump and fertilize, while removing the nitrate in the groundwater, can reduce nitrate and pesticide requirement. However, up to date, there are no studies evaluating the effect of this application under different soil/climate conditions. In order to apply this technology in the field and to determine its effect, a feasibility study needs to be performed. Therefore, we constructed unsaturated zone groundwater models via HYDRUS 1D for one-hectare corn field in prevalent soils and under Eskişehir, Adana, Şanlıurfa, Düzce climates in Turkey. Our results indicated that even groundwater with 50 mg/L nitrate contamination could provide economic benefit to the agriculture especially where climates and soil types are similar to Şanlıurfa. In this climate using pump and fertilize technique saves 97 kg N/year in a 1-hectare farm. The technique was especially effective for fluvisol, vertisol soils as nitrate leaching are very low, and for cambisol soils since very high nitrogen use efficiency was seen for the climates present in Turkey. Our results indicated that in general the pump and treat efficiency is less effective in wet and cold climates, like in Düzce. As a general result of our study, we concluded that dry and warm climates with relatively permeable soils are more promising for the pump and fertilize application.

Kaynakça

  • Food and Agricultural Organization. “Chapter 1: Introduction to Agricultural Water Pollution” http://www.fao.org/docrep/w2598e/w2598e04.htm#agricultural%20impacts%20on%20water%20quality (15.11.2018).
  • Parris K. “Impact of agriculture on water pollution in OECD countries: Recent trends and future prospects”. International Journal of Water Resources Development, 27 (1), 33-52, 2011.
  • Górski J, Dragon K, Kaczmarek PMJ. “Nitrate pollution in the Warta River (Poland) between 1958 and 2016: Trends and causes”. Environmental Science and Pollution Research, 23 (2), 1-9, 2017.
  • Reynolds-Vargas J, Fraile-Merino J, Hirata R. “Trends in nitrate concentrations and determination of its origin using stable isotopes (18O and 15N) in groundwater of the Western Central Valley, Costa Rica”. Ambio, 35(5), 229-236, 2006.
  • Czekaj J, Jakóbczyk-Karpierz S, Rubin H, Sitek S, Witkowski AJ. “Identification of nitrate sources in groundwater and potential impact on drinking water reservoir (Goczałkowice reservoir, Poland)”. Physics and Chemistry of the Earth, 94 (1), 35-46, 2016.
  • Hansen B, Thorling L, Schullehner J, Termansen M, Dalgaard T. “Groundwater nitrate response to sustainable nitrogen management”. Scientific Reports, 7(1), 8566-72, 2017.
  • Commoner B. Threats to the Integrity of the Nitrogen Cycle: Nitrogen Compounds in Soil, Water, Atmosphere and Precipitation, 70-95, Dordrecht, Netherlands, Springer 1970.
  • Gilbert N. “One-third of Our Greenhouse Gas Emissions Come From Agriculture” Nature, https://www.nature.com/news/one-third-of-our-greenhouse-gas-emissions-come-from-agriculture-1.11708 (15.11.2018).
  • Luo J-H, Chen H, Yuan Z, Guo J. "Methane-supported nitrate removal from groundwater in a membrane biofilm reactor”. Water Research, 132 (1), 71-78, 2018.
  • Yu X, Huang BC, Xing LJ, Xu ZJ, Wang XM. "Effect of environmental conditions on nitrate removal from groundwater using biodenitrification supported by biodegradable snack ware”. Advanced Materials Research, 113(116), 1349-1352, 2010.
  • Mohseni-Bandpi A, Elliott DJ. "Nitrate removal from groundwater using an anoxicaerobic rotating biological contactor”. Water Science and Technology, 34(1), 323-330, 1996.
  • Kim Y-S, Nakano K, Lee T-J, Kanchanatawee S, Matsumura M. "On-site nitrate removal of groundwater by an immobilized psychrophilic denitrifier using soluble starch as a carbon source”. Journal of Bioscience and Bioengineering, 93 (3), 303-308, 2002.
  • Zhao L, Yang YS. Study on Highly Efficient Denitrifer and İnvestigation On Nitrate Removal in Groundwater. 1st ed. New York, USA, Elsevier, 2002.
  • Zhang B, Liu Y, Tong S, Zheng M, Zhao Y, Tian C, Liu H, Feng C. "Enhancement of bacterial denitrification for nitrate removal in groundwater with electrical stimulation from microbial fuel cells”. Journal of Power Sources, 268(1), 423-429, 2014.
  • Herzberg M, Dosoretz CG, Tarre S, Michael B, Dror M, Green M. "Simultaneous removal of atrazine and nitrate using a biological granulated activated carbon (BGAC) reactor”. Journal of Chemical Technology & Biotechnology, 79(6), 626-631, 2004.
  • Raghu Prasad PK, Nisha Priya M, Palanivelu K. "Nitrate removal from groundwater using electrolytic reduction method”. Indian Journal of Chemical Technology, 12 (1), 164-169, 2005.
  • Mueller NC, Braun J, Bruns J, Černík M, Rissing P, Rickerby D, Nowack B. "Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe”. Environmental Science and Pollution Research, 19(2), 550-558, 2012.
  • Liu H, Guo M, Zhang Y. "Nitrate removal by Fe0/Pd/Cu nano-composite in groundwater”. Environmental Technology, 35(7), 917-924, 2014.
  • Mosneag SC, Popescu V, Dinescu A, Borodi G. "Utilization of granular activated carbon adsorber for nitrates removal from groundwater of the Cluj region”. Journal of environmental science and health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 48(8), 918-924, 2013.
  • De Heredia JB, Domínguez JR, Cano Y, Jiménez I. "Nitrate removal from groundwater using Amberlite IRN-78: Modelling the system”. Applied Surface Science, 252(17), 6031-6035, 2006.
  • Hu Q, Westerhoff P, Vermaas W. "Removal of Nitrate from Groundwater by Cyanobacteria: Quantitative Assessment of Factors Influencing Nitrate Uptake”. Applied and Environmental Microbiology, 66 (1), 133-139, 2000.
  • Ayyasamy PM, Rajakumar S, Sathishkumar M, Swaminathan K, Shanthi K, Lakshmanaperumalsamy P, Lee S. "Nitrate removal from synthetic medium and groundwater with aquatic macrophytes”. Desalination, 242(1), 286-296, 2009.
  • King A, Jensen V, Fogg GE, Harter T. “Groundwater Remediation and Management for Nitrate”. Center for Watershed Sciences. University of California, Davis, California, USA, Technical Report, 2012.
  • Martin DL, Watts DG, Mielke LN, Frank KD, Eisenhauer DE. "Evaluation of nitrogen and ırrigation management for corn production using water high in nitrate1". Soil Science Society of America Journal, 46(5), 1056-1062, 1982.
  • Francis DD, Schepers JS. “Nitrogen uptake efficiency in maize production using irrigation water high in nitrate”. Fertilizer Research, 39(3), 239-244, 1994.
  • Liang H, Qi Z, Hu K, Prasher SO, Zhang Y. “Can nitrate contaminated groundwater be remediated by optimizing flood irrigation rate with high nitrate water in a desert oasis using the WHCNS model?”. Journal of Environmental Management, 181 (1), 16-25, 2016.
  • Libutti A, Monteleone M. “Soil vs. groundwater: The quality dilemma. Managing nitrogen leaching and salinity control under irrigated agriculture in Mediterranean conditions”. Agricultural Water Management, 186 (1), 40-50, 2017.
  • USDA. “World Agricultural Production”. http://usda.mannlib.cornell.edu/usda/fas/worldag-production//2010s/2018/worldag-production-01-12-2018.pdf (27.07.2018).
  • Doerge, TA, Roth, RL, Gardner, BR. “Nitrogen Fertilizer Management in Arizona”. 1910-25, Arizona, USA, University of Arizona College of Agriculture, 1991.
  • Bos MG, Kselik RAL, Allen RG, Molden DJ. Water Requirements for Irrigation and the Environment. 1st143-165, Dordrecht, Netherlands, Springer, 2009.
  • Šimůnek J, Šejna M, Saito H, Sakai M, Genuchten MTv. “The Hydrus-1D Software Package for Simulating the Movement of Water, Heat, and Multiple Solutes in Variably Saturated Media, Version 4.0, HYDRUS Software Series 3”. Department of Environmental Sciences, University of California Riverside, Riverside, California, USA, 315, 2008.
  • Stolbovoi V. “Soil atlas of Europe”. In: Soil Atlas of Europe. European Commission: Soil Bureau, New York, USA, Scientific Report, 1, 2005.
  • FAO. “Set #4 Mineral Soils conditioned by Topography”. http://www.fao.org/docrep/003/y1899e/y1899e07.htm (27.07.2018).
  • Fricke K. Analysis and Modelling of Water Supply and Demand Under Climate Change, Land Use Transformation and Socio-Economic Development. 1st ed. Switzerland, Springer, 2014.
  • USDA Soil Survey Staff. Soil Taxonomy A Basic System of Soil Classification for Making and Interpreting Soil Surveys. 2nd ed. North Carolina, USA, USDA, 1999.
  • Department of Earth and Environmental Sciences, KU LEUVEN. “Reference soil Indonesia 42: Fluvisol”. https://ees.kuleuven.be/africa-in-profile/dig-deeper/profile-database/Reference soil Indonesia 42.pdf (15.06.2018).
  • Owens PN, Collins AJ. Soil Erosion and Sediment Redistribution in River Catchments: Measurement, Modelling and Management, 1st ed. New York, USA, CABI Pub., 2006.
  • USDA Natural Resources Conservation Service Soils. “Soil Texture Calculator”. https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/?cid=nrcs142p2_054167 (27.07.2018)
  • CenUSA Bioenergy Online Peer Network. “Soils-Part 2: Physical Properties of Soil and Soil Water”. https://passel.unl.edu/communities/index.php?idinformationmodule=1130447039&topicorder=10&maxto=10&minto=1&idcollectionmodule=1130274197 (15.11.2018)
  • Department of Geoscience. (n.d.). “Lecture 9/29/04”. http://www.geology.wisc.edu/courses/g627/l9_29.html (02.06.2018).
  • Genuchten MTv. "A closed-form equation for predicting the hydraulic conductivity of unsaturated soils”. Soil Science Society of America Journal, 44 (5), 892-898, 1980.
  • Vanderborght J, Vereecken, H. “Review of Dispersivity Lengths for Transport Modeling in Soils”. http://www.geo.uu.nl/~wwwhydro/sumschool/fieldscale/paperdispreviewtablenoendnote.pdf (27.07.2018)
  • Öztürk MZ, Çetinkaya, G, Aydın S. “Climate types of TurkeyAccording to Köppen-Geiger Climate Classification”. Journal of Geography, 35 (1), 17-27, 2017.
  • MGM. T.C. Tarım ve Orman Bakanlığı. “Eskişehir”. https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=H&m=ESKISEHIR (12.06.2018)
  • MGM. T.C. Tarım ve Orman Bakanlığı. “Adana”. https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=H&m=ADANA (12.06.2018)
  • MGM. T.C. Tarım ve Orman Bakanlığı. “Şanlıurfa”. https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=H&m=SANLIURFA (12.06.2018).
  • MGM. T.C. Tarım ve Orman Bakanlığı. “Düzce”. https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=H&m=DUZCE (12.06.2018)
  • MGM. T.C. Tarım ve Orman Bakanlığı. “Rize”. https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=H&m=RIZE (12.06.2018)
  • Meteoblue. “Meteorlogical Archive Eskişehir”. https://www.meteoblue.com/tr/hava/tahmin/archive/eskişehir_türkiye_315202?fcstlength=1m&year=2017&month=1 (12.06.2018)
  • Meteoblue. “Meteorlogical Archive Adana”. https://www.meteoblue.com/tr/hava/tahmin/archive/36.970N35.314E?fcstlength=1m&year=2017&month=1 (12.06.2018).
  • Meteoblue. “Meteorlogical Archive Şanlıurfa”. https://www.meteoblue.com/tr/hava/tahmin/archive/%C5%9Eanl%C4%B1urfa_t%C3%BCrkiye_298333?fcstlength=1m&year=2017&month=1 (12.06.2018).
  • Meteoblue. “Meteorlogical Archive Düzce”. https://www.meteoblue.com/tr/hava/tahmin/archive/d%C3%BCzce_t%C3%BCrkiye_747764?fcstlength=1m&year=2017&month=1 (12.06.2018).
  • Meteoblue. “Meteorlogical Archive Rize”. https://www.meteoblue.com/tr/hava/tahmin/archive/rize_t%C3%BCrkiye_740483?fcstlength=1m&year=2017&month=1 (12.06.2018).
  • Feddes RA, Kowalik PJ, Zaradny H. "Simulation of field water use and crop yield”. 1st ed. Wageningen, Germany, Centre for agricultural publishing and documentation, 1978.
  • Wesseling J. "Meerjarige simulaties van grondwateronttrekking voor verschillende bodemprofielen, grondwatertrappen en gewassen met het model SWATRE”. SC-DLO Reports, 152(1) , 1-17, 1991.
  • Dash Ch J, Sarangi A, Adhikary Partha P, Singh DK. "Simulation of nitrate leaching under maize–wheat cropping system in a semiarid ırrigated area of the ındo-gangetic plain, India". Journal of Irrigation and Drainage Engineering, 142 (2), 15053-15059, 2016.
  • Peoples MB, Freney JR, Mosier AR. Minimizing gaseous losses of nitrogen. 1st ed. New York, USA, Marcel Dekker Inc, 1995.
  • Cahn M, Smith R, Murphy L, Hartz T. "Field trials show the fertilizer value of nitrogen in irrigation water”. California Agriculture, 71(2), 62-67, 2017.
  • Sönmez B, Özbahçe A, Keçeci M, Akgül S, Aksoy E, Madenoğlu S, Karabulut Aloe A, İncirkuş V, Görgisen C, Tuncay T, Beernaerts I, Vargas R. “Turkey’s national geospatial soil organic carbon information system”. http://www.fao.org/3/a-br972e.pdf (15.11.2018).
  • Liang BC, MacKenzie AF. "Corn yield, nitrogen uptake and nitrogen use efficiency as influenced by nitrogen fertilization”. Canadian Journal of Soil Science, 74(2), 235-240, 1994.
  • Reddy GB, Reddy KR. “Fate of Nitrogen-15 enriched ammonium nitrate applied to corn”. Soil Science Society of America Journal, 57(1), 111-115, 1993.
  • Yong TW, Chen P, Dong Q, Du Q, Yang F, Wang XC, Liu WG, Yang WY. "Optimized nitrogen application methods to improve nitrogen use efficiency and nodule nitrogen fixation in a maize-soybean relay intercropping system", Journal of Integrative Agriculture, 17(3), 664-676, 2018.
  • Cambouris AN, Ziadi N, Perron I, Alotaibi KD, St. Luce M, Tremblay N. “Corn yield components response to nitrogen fertilizer as a function of soil texture”. Canadian Journal of Soil Science, 96(4), 386-399, 2016.
  • Liang BC, MacKenzie AF. "Seasonal denitrification rates under corn (Zea mays L.) in two Quebec soils". Canadian Journal of Soil Science, 77(1), 21-25, 1997.
  • Smid AE, Beauchamp EG. “Effects of temperature and organic matter on denitrification in soil”. Canadian Journal of Soil Science, 56(4), 385-391, 1976.
  • Burford JR, Bremner JM. “Relationships between the denitrification capacities of soils and total, water-soluble and readily decomposable soil organic matter”. Soil Biology and Biochemistry, 7(6), 389-394, 1975.
  • Azad N, Behmanesh J, Rezaverdinejad V, Abbasi F, Navabian M. “Developing an optimization model in drip fertigation management to consider environmental issues and supply plant requirements”. Agricultural Water Management, 208(1), 344-356, 2018.
  • Singandhupe RB, Rao GGSN, Patil NG, Brahmanand PS. “Fertigation studies and irrigation scheduling in drip irrigation system in tomato crop (Lycopersiconesculentum L.)”. European Journal of Agronomy, 19(2), 327-340, 2003.
  • Ngouajio M, Wang G, Goldy RG. “Timing of Drip Irrigation Initiation Affects Irrigation Water Use Efficiency and Yield of Bell Pepper under Plastic Mulch”. HortTechnology, 18(3), 397-402, 2008.
  • Ferrari THJ, Vermeulen FHB. “Soil heterogeneity and soil testing”. Netherlands Journal of Agricultural Science, 3(4), 265-275, 1955
  • FAO, IIASA, ISRIC, Institute of Soil Science, ISSCAS, IRC. “Harmonized World Soil Database v1.2: Download Viewer and Data:”. FAO. http://www.fao.org/nr/land/sols/harmonized-world-soil-database/fr (30.01.2019)
  • Goodroad LL, Jellum MD. “Effect of N fertilizer rate and soil pH on N efficiency in corn”. Plant and Soil, 106(1), 85-89, 1988.
  • Wang D, Li G, Mo Y, Cai M, Bian X. "Evaluation of optimal nitrogen rate for corn production under mulched drip fertigation and economic benefits". Field Crops Research, 216(1), 225-233, 2018.
  • Hůnová I, Kurfürst P, Stráník V, Modlík M. “Nitrogen deposition to forest ecosystems with focus on its different forms”. Science of The Total Environment, 575(1), 791-798, 2017.
  • Kaya G, Tuncel G. “Trace element and major ion composition of wet and dry depositon in Ankara, Turkey”. Atmospheric Environment, 31(23), 3985-3998, 1997.
  • Demir FT, Kılıçer YÇ, Yenisoy-Karakaş S. “Yarı şehirsel istasyonda toplanan yağmur suyunun iyon kompozisyonunun belirlenmesi ve asitlik”. VII Ulusal Hava Kirliliği ve Kontrolü Sempozyumu, Antalya, Türkiye, 27-30 Temmuz 2017.
  • Benbi DK, Prihar SS, Cheema HS. “A model to predict changes in soil moisture, NO3-N content and N uptake by wheat”. Fertilizer Research, 28(1), 73-84, 1991.
  • Mahbod M, Zand-Parsa S, Sepaskhah AR. “Modification of maize simulation model for predicting growth and yield of winter wheat under different applied water and nitrogen”. Agricultural Water Management, 150(1), 18-34, 2015.
  • Richardson T, Kern A. “Sprinkler Irrigation As A VOC Separation and Disposal Method”. Environmental Protection Agency. Site Document/Report. EPA/540/R-98/502, 1998.
  • Salahdin TS, El-Naggar AM, Al-Sayed ALS, Mahmoud HI, Abd El Sabour KS. “Assessment of heavy metals removal from ırrigation water by charcoal using laser ınduced breakdown spectroscopy (LIBS)”. Journal of Arid Land Studies, 26(3), 139-142, 2016.
  • Kahraman N. Harran Ovası Serbest Akiferinde Nitrat Kirlenmesinin Araştırılması. Yüksek Lisans Tezi, Harran Üniversitesi, Şanlıurfa, Türkiye, 2015.
  • Güçdemir İ. “Türkiye Gübre ve Gübreleme Rehberi”. Turkey, Toprak Gübre ve Su Kaynakları Merkez Araştırma Enstitüsü Müdürlüğü, Ankara, Türkiye, 2006.
  • ÇED, İzin ve Denetim Genel Müdürlüğü. “İl Çevre Durum Raporları”. http://ced.csb.gov.tr/il-cevre-durum-raporlari-i-82671 (19.11.2018).

Sulamada nitratla kirlenmiş yeraltısuyu kullanımının modellenmesi

Yıl 2020, Cilt: 26 Sayı: 3, 468 - 480, 08.06.2020

Öz

Tarım alanlarının altında bulunan nitratla kirlenmiş yeraltısuyunu temizlemenin ekonomik yarar amaçlı alternatif bir yolu pompala ve gübrele yöntemidir. Pompala ve gübrele yöntemi hem yeraltısuyunu kirlilikten arındırırken hem de nitrat, pestisit gibi gereksinimleri azaltabilir. Buna ragmen bugüne kadar bu prosesin değişik iklim ve toprak koşullarında ne düzeyde etkili olduğunu dair bir değerlendirme bulunmamaktadır. Bu tekniği arazide uygulayabilmek için öncesinde bir fizibilite çalışması gerekmektedir. Bu nedenle HYDRUS 1D ile doymamış bölgelerde 1 hektar mısır tarlasına karşılık gelecek yeraltısuyu modelleri yaparak Türkiye’de yaygın olan toprak tiplerinin hidrolojik özelliklerini derleyip Eskişehir, Adana, Şanlıurfa ve Düzce benzeri iklimlerde, pompala ve gübrele yöntemi için en çok gelecek vadeden koşulları bulduk. Çalışmamız bu teknolojinin Şanlıurfa benzeri çok daha kuru ve sıcak iklimlerde 50 mg/L nitrat değerinde bile oldukça karlı olduğunu ortaya koydu. Bu teknikle birlikte bu iklimde 1 hektar tarlada 97 kg N/yıl telafi edilebileceği görüldü. Aynı zamanda fluvisol ve vertisol toprak tiplerinde nitrat sızıntısı en düşükken, cambisol tipi topraklarda nitrojen kullanım verimi bütün iklimler için en yüksek düzeyde bulundu. Düzce gibi oldukça nemli ve soğuk iklimler için ise, bu yöntemin düşük azot kullanım verimleri ve yüksek nitrat sızıntıları nedeniyle uygun olmadığı görülmüştür. Sonuç olarak görece kuru iklimler ve geçirgen topraklar pompala ve gübrele yöntemi için uygun bulundu.

Kaynakça

  • Food and Agricultural Organization. “Chapter 1: Introduction to Agricultural Water Pollution” http://www.fao.org/docrep/w2598e/w2598e04.htm#agricultural%20impacts%20on%20water%20quality (15.11.2018).
  • Parris K. “Impact of agriculture on water pollution in OECD countries: Recent trends and future prospects”. International Journal of Water Resources Development, 27 (1), 33-52, 2011.
  • Górski J, Dragon K, Kaczmarek PMJ. “Nitrate pollution in the Warta River (Poland) between 1958 and 2016: Trends and causes”. Environmental Science and Pollution Research, 23 (2), 1-9, 2017.
  • Reynolds-Vargas J, Fraile-Merino J, Hirata R. “Trends in nitrate concentrations and determination of its origin using stable isotopes (18O and 15N) in groundwater of the Western Central Valley, Costa Rica”. Ambio, 35(5), 229-236, 2006.
  • Czekaj J, Jakóbczyk-Karpierz S, Rubin H, Sitek S, Witkowski AJ. “Identification of nitrate sources in groundwater and potential impact on drinking water reservoir (Goczałkowice reservoir, Poland)”. Physics and Chemistry of the Earth, 94 (1), 35-46, 2016.
  • Hansen B, Thorling L, Schullehner J, Termansen M, Dalgaard T. “Groundwater nitrate response to sustainable nitrogen management”. Scientific Reports, 7(1), 8566-72, 2017.
  • Commoner B. Threats to the Integrity of the Nitrogen Cycle: Nitrogen Compounds in Soil, Water, Atmosphere and Precipitation, 70-95, Dordrecht, Netherlands, Springer 1970.
  • Gilbert N. “One-third of Our Greenhouse Gas Emissions Come From Agriculture” Nature, https://www.nature.com/news/one-third-of-our-greenhouse-gas-emissions-come-from-agriculture-1.11708 (15.11.2018).
  • Luo J-H, Chen H, Yuan Z, Guo J. "Methane-supported nitrate removal from groundwater in a membrane biofilm reactor”. Water Research, 132 (1), 71-78, 2018.
  • Yu X, Huang BC, Xing LJ, Xu ZJ, Wang XM. "Effect of environmental conditions on nitrate removal from groundwater using biodenitrification supported by biodegradable snack ware”. Advanced Materials Research, 113(116), 1349-1352, 2010.
  • Mohseni-Bandpi A, Elliott DJ. "Nitrate removal from groundwater using an anoxicaerobic rotating biological contactor”. Water Science and Technology, 34(1), 323-330, 1996.
  • Kim Y-S, Nakano K, Lee T-J, Kanchanatawee S, Matsumura M. "On-site nitrate removal of groundwater by an immobilized psychrophilic denitrifier using soluble starch as a carbon source”. Journal of Bioscience and Bioengineering, 93 (3), 303-308, 2002.
  • Zhao L, Yang YS. Study on Highly Efficient Denitrifer and İnvestigation On Nitrate Removal in Groundwater. 1st ed. New York, USA, Elsevier, 2002.
  • Zhang B, Liu Y, Tong S, Zheng M, Zhao Y, Tian C, Liu H, Feng C. "Enhancement of bacterial denitrification for nitrate removal in groundwater with electrical stimulation from microbial fuel cells”. Journal of Power Sources, 268(1), 423-429, 2014.
  • Herzberg M, Dosoretz CG, Tarre S, Michael B, Dror M, Green M. "Simultaneous removal of atrazine and nitrate using a biological granulated activated carbon (BGAC) reactor”. Journal of Chemical Technology & Biotechnology, 79(6), 626-631, 2004.
  • Raghu Prasad PK, Nisha Priya M, Palanivelu K. "Nitrate removal from groundwater using electrolytic reduction method”. Indian Journal of Chemical Technology, 12 (1), 164-169, 2005.
  • Mueller NC, Braun J, Bruns J, Černík M, Rissing P, Rickerby D, Nowack B. "Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe”. Environmental Science and Pollution Research, 19(2), 550-558, 2012.
  • Liu H, Guo M, Zhang Y. "Nitrate removal by Fe0/Pd/Cu nano-composite in groundwater”. Environmental Technology, 35(7), 917-924, 2014.
  • Mosneag SC, Popescu V, Dinescu A, Borodi G. "Utilization of granular activated carbon adsorber for nitrates removal from groundwater of the Cluj region”. Journal of environmental science and health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 48(8), 918-924, 2013.
  • De Heredia JB, Domínguez JR, Cano Y, Jiménez I. "Nitrate removal from groundwater using Amberlite IRN-78: Modelling the system”. Applied Surface Science, 252(17), 6031-6035, 2006.
  • Hu Q, Westerhoff P, Vermaas W. "Removal of Nitrate from Groundwater by Cyanobacteria: Quantitative Assessment of Factors Influencing Nitrate Uptake”. Applied and Environmental Microbiology, 66 (1), 133-139, 2000.
  • Ayyasamy PM, Rajakumar S, Sathishkumar M, Swaminathan K, Shanthi K, Lakshmanaperumalsamy P, Lee S. "Nitrate removal from synthetic medium and groundwater with aquatic macrophytes”. Desalination, 242(1), 286-296, 2009.
  • King A, Jensen V, Fogg GE, Harter T. “Groundwater Remediation and Management for Nitrate”. Center for Watershed Sciences. University of California, Davis, California, USA, Technical Report, 2012.
  • Martin DL, Watts DG, Mielke LN, Frank KD, Eisenhauer DE. "Evaluation of nitrogen and ırrigation management for corn production using water high in nitrate1". Soil Science Society of America Journal, 46(5), 1056-1062, 1982.
  • Francis DD, Schepers JS. “Nitrogen uptake efficiency in maize production using irrigation water high in nitrate”. Fertilizer Research, 39(3), 239-244, 1994.
  • Liang H, Qi Z, Hu K, Prasher SO, Zhang Y. “Can nitrate contaminated groundwater be remediated by optimizing flood irrigation rate with high nitrate water in a desert oasis using the WHCNS model?”. Journal of Environmental Management, 181 (1), 16-25, 2016.
  • Libutti A, Monteleone M. “Soil vs. groundwater: The quality dilemma. Managing nitrogen leaching and salinity control under irrigated agriculture in Mediterranean conditions”. Agricultural Water Management, 186 (1), 40-50, 2017.
  • USDA. “World Agricultural Production”. http://usda.mannlib.cornell.edu/usda/fas/worldag-production//2010s/2018/worldag-production-01-12-2018.pdf (27.07.2018).
  • Doerge, TA, Roth, RL, Gardner, BR. “Nitrogen Fertilizer Management in Arizona”. 1910-25, Arizona, USA, University of Arizona College of Agriculture, 1991.
  • Bos MG, Kselik RAL, Allen RG, Molden DJ. Water Requirements for Irrigation and the Environment. 1st143-165, Dordrecht, Netherlands, Springer, 2009.
  • Šimůnek J, Šejna M, Saito H, Sakai M, Genuchten MTv. “The Hydrus-1D Software Package for Simulating the Movement of Water, Heat, and Multiple Solutes in Variably Saturated Media, Version 4.0, HYDRUS Software Series 3”. Department of Environmental Sciences, University of California Riverside, Riverside, California, USA, 315, 2008.
  • Stolbovoi V. “Soil atlas of Europe”. In: Soil Atlas of Europe. European Commission: Soil Bureau, New York, USA, Scientific Report, 1, 2005.
  • FAO. “Set #4 Mineral Soils conditioned by Topography”. http://www.fao.org/docrep/003/y1899e/y1899e07.htm (27.07.2018).
  • Fricke K. Analysis and Modelling of Water Supply and Demand Under Climate Change, Land Use Transformation and Socio-Economic Development. 1st ed. Switzerland, Springer, 2014.
  • USDA Soil Survey Staff. Soil Taxonomy A Basic System of Soil Classification for Making and Interpreting Soil Surveys. 2nd ed. North Carolina, USA, USDA, 1999.
  • Department of Earth and Environmental Sciences, KU LEUVEN. “Reference soil Indonesia 42: Fluvisol”. https://ees.kuleuven.be/africa-in-profile/dig-deeper/profile-database/Reference soil Indonesia 42.pdf (15.06.2018).
  • Owens PN, Collins AJ. Soil Erosion and Sediment Redistribution in River Catchments: Measurement, Modelling and Management, 1st ed. New York, USA, CABI Pub., 2006.
  • USDA Natural Resources Conservation Service Soils. “Soil Texture Calculator”. https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/?cid=nrcs142p2_054167 (27.07.2018)
  • CenUSA Bioenergy Online Peer Network. “Soils-Part 2: Physical Properties of Soil and Soil Water”. https://passel.unl.edu/communities/index.php?idinformationmodule=1130447039&topicorder=10&maxto=10&minto=1&idcollectionmodule=1130274197 (15.11.2018)
  • Department of Geoscience. (n.d.). “Lecture 9/29/04”. http://www.geology.wisc.edu/courses/g627/l9_29.html (02.06.2018).
  • Genuchten MTv. "A closed-form equation for predicting the hydraulic conductivity of unsaturated soils”. Soil Science Society of America Journal, 44 (5), 892-898, 1980.
  • Vanderborght J, Vereecken, H. “Review of Dispersivity Lengths for Transport Modeling in Soils”. http://www.geo.uu.nl/~wwwhydro/sumschool/fieldscale/paperdispreviewtablenoendnote.pdf (27.07.2018)
  • Öztürk MZ, Çetinkaya, G, Aydın S. “Climate types of TurkeyAccording to Köppen-Geiger Climate Classification”. Journal of Geography, 35 (1), 17-27, 2017.
  • MGM. T.C. Tarım ve Orman Bakanlığı. “Eskişehir”. https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=H&m=ESKISEHIR (12.06.2018)
  • MGM. T.C. Tarım ve Orman Bakanlığı. “Adana”. https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=H&m=ADANA (12.06.2018)
  • MGM. T.C. Tarım ve Orman Bakanlığı. “Şanlıurfa”. https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=H&m=SANLIURFA (12.06.2018).
  • MGM. T.C. Tarım ve Orman Bakanlığı. “Düzce”. https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=H&m=DUZCE (12.06.2018)
  • MGM. T.C. Tarım ve Orman Bakanlığı. “Rize”. https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=H&m=RIZE (12.06.2018)
  • Meteoblue. “Meteorlogical Archive Eskişehir”. https://www.meteoblue.com/tr/hava/tahmin/archive/eskişehir_türkiye_315202?fcstlength=1m&year=2017&month=1 (12.06.2018)
  • Meteoblue. “Meteorlogical Archive Adana”. https://www.meteoblue.com/tr/hava/tahmin/archive/36.970N35.314E?fcstlength=1m&year=2017&month=1 (12.06.2018).
  • Meteoblue. “Meteorlogical Archive Şanlıurfa”. https://www.meteoblue.com/tr/hava/tahmin/archive/%C5%9Eanl%C4%B1urfa_t%C3%BCrkiye_298333?fcstlength=1m&year=2017&month=1 (12.06.2018).
  • Meteoblue. “Meteorlogical Archive Düzce”. https://www.meteoblue.com/tr/hava/tahmin/archive/d%C3%BCzce_t%C3%BCrkiye_747764?fcstlength=1m&year=2017&month=1 (12.06.2018).
  • Meteoblue. “Meteorlogical Archive Rize”. https://www.meteoblue.com/tr/hava/tahmin/archive/rize_t%C3%BCrkiye_740483?fcstlength=1m&year=2017&month=1 (12.06.2018).
  • Feddes RA, Kowalik PJ, Zaradny H. "Simulation of field water use and crop yield”. 1st ed. Wageningen, Germany, Centre for agricultural publishing and documentation, 1978.
  • Wesseling J. "Meerjarige simulaties van grondwateronttrekking voor verschillende bodemprofielen, grondwatertrappen en gewassen met het model SWATRE”. SC-DLO Reports, 152(1) , 1-17, 1991.
  • Dash Ch J, Sarangi A, Adhikary Partha P, Singh DK. "Simulation of nitrate leaching under maize–wheat cropping system in a semiarid ırrigated area of the ındo-gangetic plain, India". Journal of Irrigation and Drainage Engineering, 142 (2), 15053-15059, 2016.
  • Peoples MB, Freney JR, Mosier AR. Minimizing gaseous losses of nitrogen. 1st ed. New York, USA, Marcel Dekker Inc, 1995.
  • Cahn M, Smith R, Murphy L, Hartz T. "Field trials show the fertilizer value of nitrogen in irrigation water”. California Agriculture, 71(2), 62-67, 2017.
  • Sönmez B, Özbahçe A, Keçeci M, Akgül S, Aksoy E, Madenoğlu S, Karabulut Aloe A, İncirkuş V, Görgisen C, Tuncay T, Beernaerts I, Vargas R. “Turkey’s national geospatial soil organic carbon information system”. http://www.fao.org/3/a-br972e.pdf (15.11.2018).
  • Liang BC, MacKenzie AF. "Corn yield, nitrogen uptake and nitrogen use efficiency as influenced by nitrogen fertilization”. Canadian Journal of Soil Science, 74(2), 235-240, 1994.
  • Reddy GB, Reddy KR. “Fate of Nitrogen-15 enriched ammonium nitrate applied to corn”. Soil Science Society of America Journal, 57(1), 111-115, 1993.
  • Yong TW, Chen P, Dong Q, Du Q, Yang F, Wang XC, Liu WG, Yang WY. "Optimized nitrogen application methods to improve nitrogen use efficiency and nodule nitrogen fixation in a maize-soybean relay intercropping system", Journal of Integrative Agriculture, 17(3), 664-676, 2018.
  • Cambouris AN, Ziadi N, Perron I, Alotaibi KD, St. Luce M, Tremblay N. “Corn yield components response to nitrogen fertilizer as a function of soil texture”. Canadian Journal of Soil Science, 96(4), 386-399, 2016.
  • Liang BC, MacKenzie AF. "Seasonal denitrification rates under corn (Zea mays L.) in two Quebec soils". Canadian Journal of Soil Science, 77(1), 21-25, 1997.
  • Smid AE, Beauchamp EG. “Effects of temperature and organic matter on denitrification in soil”. Canadian Journal of Soil Science, 56(4), 385-391, 1976.
  • Burford JR, Bremner JM. “Relationships between the denitrification capacities of soils and total, water-soluble and readily decomposable soil organic matter”. Soil Biology and Biochemistry, 7(6), 389-394, 1975.
  • Azad N, Behmanesh J, Rezaverdinejad V, Abbasi F, Navabian M. “Developing an optimization model in drip fertigation management to consider environmental issues and supply plant requirements”. Agricultural Water Management, 208(1), 344-356, 2018.
  • Singandhupe RB, Rao GGSN, Patil NG, Brahmanand PS. “Fertigation studies and irrigation scheduling in drip irrigation system in tomato crop (Lycopersiconesculentum L.)”. European Journal of Agronomy, 19(2), 327-340, 2003.
  • Ngouajio M, Wang G, Goldy RG. “Timing of Drip Irrigation Initiation Affects Irrigation Water Use Efficiency and Yield of Bell Pepper under Plastic Mulch”. HortTechnology, 18(3), 397-402, 2008.
  • Ferrari THJ, Vermeulen FHB. “Soil heterogeneity and soil testing”. Netherlands Journal of Agricultural Science, 3(4), 265-275, 1955
  • FAO, IIASA, ISRIC, Institute of Soil Science, ISSCAS, IRC. “Harmonized World Soil Database v1.2: Download Viewer and Data:”. FAO. http://www.fao.org/nr/land/sols/harmonized-world-soil-database/fr (30.01.2019)
  • Goodroad LL, Jellum MD. “Effect of N fertilizer rate and soil pH on N efficiency in corn”. Plant and Soil, 106(1), 85-89, 1988.
  • Wang D, Li G, Mo Y, Cai M, Bian X. "Evaluation of optimal nitrogen rate for corn production under mulched drip fertigation and economic benefits". Field Crops Research, 216(1), 225-233, 2018.
  • Hůnová I, Kurfürst P, Stráník V, Modlík M. “Nitrogen deposition to forest ecosystems with focus on its different forms”. Science of The Total Environment, 575(1), 791-798, 2017.
  • Kaya G, Tuncel G. “Trace element and major ion composition of wet and dry depositon in Ankara, Turkey”. Atmospheric Environment, 31(23), 3985-3998, 1997.
  • Demir FT, Kılıçer YÇ, Yenisoy-Karakaş S. “Yarı şehirsel istasyonda toplanan yağmur suyunun iyon kompozisyonunun belirlenmesi ve asitlik”. VII Ulusal Hava Kirliliği ve Kontrolü Sempozyumu, Antalya, Türkiye, 27-30 Temmuz 2017.
  • Benbi DK, Prihar SS, Cheema HS. “A model to predict changes in soil moisture, NO3-N content and N uptake by wheat”. Fertilizer Research, 28(1), 73-84, 1991.
  • Mahbod M, Zand-Parsa S, Sepaskhah AR. “Modification of maize simulation model for predicting growth and yield of winter wheat under different applied water and nitrogen”. Agricultural Water Management, 150(1), 18-34, 2015.
  • Richardson T, Kern A. “Sprinkler Irrigation As A VOC Separation and Disposal Method”. Environmental Protection Agency. Site Document/Report. EPA/540/R-98/502, 1998.
  • Salahdin TS, El-Naggar AM, Al-Sayed ALS, Mahmoud HI, Abd El Sabour KS. “Assessment of heavy metals removal from ırrigation water by charcoal using laser ınduced breakdown spectroscopy (LIBS)”. Journal of Arid Land Studies, 26(3), 139-142, 2016.
  • Kahraman N. Harran Ovası Serbest Akiferinde Nitrat Kirlenmesinin Araştırılması. Yüksek Lisans Tezi, Harran Üniversitesi, Şanlıurfa, Türkiye, 2015.
  • Güçdemir İ. “Türkiye Gübre ve Gübreleme Rehberi”. Turkey, Toprak Gübre ve Su Kaynakları Merkez Araştırma Enstitüsü Müdürlüğü, Ankara, Türkiye, 2006.
  • ÇED, İzin ve Denetim Genel Müdürlüğü. “İl Çevre Durum Raporları”. http://ced.csb.gov.tr/il-cevre-durum-raporlari-i-82671 (19.11.2018).
Toplam 83 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makale
Yazarlar

Güray Hatipoğlu Bu kişi benim

Zöhre Kurt Bu kişi benim

Yayımlanma Tarihi 8 Haziran 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 26 Sayı: 3

Kaynak Göster

APA Hatipoğlu, G., & Kurt, Z. (2020). Sulamada nitratla kirlenmiş yeraltısuyu kullanımının modellenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(3), 468-480.
AMA Hatipoğlu G, Kurt Z. Sulamada nitratla kirlenmiş yeraltısuyu kullanımının modellenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Haziran 2020;26(3):468-480.
Chicago Hatipoğlu, Güray, ve Zöhre Kurt. “Sulamada Nitratla Kirlenmiş yeraltısuyu kullanımının Modellenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 26, sy. 3 (Haziran 2020): 468-80.
EndNote Hatipoğlu G, Kurt Z (01 Haziran 2020) Sulamada nitratla kirlenmiş yeraltısuyu kullanımının modellenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 26 3 468–480.
IEEE G. Hatipoğlu ve Z. Kurt, “Sulamada nitratla kirlenmiş yeraltısuyu kullanımının modellenmesi”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 26, sy. 3, ss. 468–480, 2020.
ISNAD Hatipoğlu, Güray - Kurt, Zöhre. “Sulamada Nitratla Kirlenmiş yeraltısuyu kullanımının Modellenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 26/3 (Haziran 2020), 468-480.
JAMA Hatipoğlu G, Kurt Z. Sulamada nitratla kirlenmiş yeraltısuyu kullanımının modellenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2020;26:468–480.
MLA Hatipoğlu, Güray ve Zöhre Kurt. “Sulamada Nitratla Kirlenmiş yeraltısuyu kullanımının Modellenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 26, sy. 3, 2020, ss. 468-80.
Vancouver Hatipoğlu G, Kurt Z. Sulamada nitratla kirlenmiş yeraltısuyu kullanımının modellenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2020;26(3):468-80.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.