Araştırma Makalesi
BibTex RIS Kaynak Göster

Midye kabuğu/epoksi parçacık takviyeli kompozitin mode-I kırılma tokluğunun deneysel olarak incelenmesi

Yıl 2020, Cilt: 26 Sayı: 4, 599 - 604, 20.08.2020

Öz

Bu çalışmada, atık midye kabuklarının geri dönüşümü ile vakum takviyeli reçine infüzyon kalıplama (VARIM) yöntemi kullanılarak üretilmiş midye kabuğu/epoksi parçacık takviyeli kompozit malzemenin mode-I kırılma tokluğu deneysel olarak incelenmiştir. Atık malzemenin üretime sokulması hem üretim maliyetinin düşürülmesi hem de çevresel kirliliğin önlenmesi açısından çalışmanın amacını oluşturmaktadır. Bu çalışmada uygulanan kompozit üretim yöntemi lif takviyeli kompozit üretimde kullanılıp parçacık takviyeli kompozit üretiminde daha önce uygulanmamıştır. Bu bakımdan seçilen takviye malzemesi ve üretim yöntemi çalışmanın iki yeniliğidir. Kırılma tokluğunu incelemek için tek tarafı çentikli eğme numunesi ile ASTM D 5045 standardına uygun olarak üç nokta eğme deneyleri yapılmış ve güvenilirlik açısından altı numune test edilmiştir. Deney sonuçlarına göre midye kabuğu/epoksi parçacık takviyeli kompozit malzemenin mode-I kırılma tokluğu 2.44 MPa∙m1/2 olarak elde edilmiştir. Çalışmanın sonuç bölümünde hasarlı numunelerin içyapıları taramalı elektron mikroskobu (SEM) ile incelenmiş, deney sonuçları grafikler ile verilmiş ve elde edilen sonuçlar tartışma bölümünde literatürdeki diğer kompozit malzemeler ile karşılaştırılarak yeni malzemenin durumu belirlenmiştir.

Kaynakça

  • Kocaman S. “Farklı kimyasallarla modifiye edilen doğal atık takviyeli epoksi reçine matrisli kompozitlerin hazırlanması”. Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi, 11(1), 77-86, 2019.
  • Balcıoğlu HE. “Flexural behaviors of sandwich composites produced using recycled and natural material”. Mugla Journal of Science and Technology, 4(1), 64-73, 2018.
  • Büyükkaya K. “Examining the breaking and bending behaviors of the polymethylmetacrylate composites reinforced with hazelnut shell powder”. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 20(2), 1-8, 2019.
  • John MJ, Thomas S. “Biofibers and biocomposites”. Carbohydrate Polymers, 71(3), 343-364, 2008.
  • Ashori A, Nourbakhsh A. “Bio-based composites from waste agricultural residues”. Waste Management, 30(4), 680-684, 2010.
  • Panneerdhass R, Gnanavelbabu A, Rajkumar K. “Mechanical properties of luffa fiber and ground nut reinforced epoxy polymer hybrid composites”. Procedia Engineering, 97, 2042-2051, 2014.
  • Sarki J, Hassan SB, Aigbodion VS, Oghenevweta JE. “Potential of using coconut shell particle fillers in eco-composite materials”. Journal of alloys and compounds, 509(5), 2381-2385, 2011.
  • Agayev S, Ozdemir O. “Fabrication of high density polyethylene composites reinforced with pine cone powder: mechanical and low velocity impact performances”. Material research express, 6(4), 045312, 2019.
  • Rao DK, Gope PC. “Fracture toughness of walnut particles (Juglans regia L.) and coconut fiber-reinforced hybrid biocomposite”. Polymer composites, 36(1),167-173, 2015.
  • Singh VK. “Mechanical behavior of walnut (Juglans L.) shell particles reinforced bio-composite”. Science and Engineering of Composite Materials, 22(4), 383-390, 2015.
  • Müller M, Valasek P, Linda M, Petrasek S. “Exploitation of hazelnut (corylus avellana) shell waste in the form of polymer-particle biocomposite”. Scientia agriculturae bohemica, 49(1), 53-59, 2018.
  • Pirayesh H, Khazaeian A. “Using almond (prunus amygdalus l.) shell as a bio-waste resource in wood based composite”. Composites: Part B, 43(3), 1475-1479, 2012.
  • Kumar D, Boopathy SR, Sangeetha D, Bharathiraja G. “Investigation of mechanical properties of horn powder-filled epoxy composites”. Journal of Mechanical Engineering, 63(2), 138-147, 2017.
  • Toro P, Quijada R, Arias JL, Pedram MY. “Mechanical and morphological studies of poly(propylene)-filled eggshell composites”. Macromolecular Materials and Enginnering, 292(9), 1027-1034, 2007.
  • Toro P, Quijada R, Pedram MY, Arias JL. “Eggshell, a new bio-filler for polypropylene composites”. Materials Letters, 61(22), 4347-4350, 2007.
  • Hamester MRR, Balzer PS, Becker D. “Characterization of calcium carbonate obtained from oyster and mussel shells and incorporation in polypropylene”. Materials Research, 15(2), 204-208, 2012.
  • Lv J, Jiang Y, Zhang D. “Structural and mechanical characterization of Atrina Pectinata and freshwater mussel shells”. Journal of Bionic Engineering, 12(2), 276-284, 2015.
  • Abeynaike A, Wang L, Jones MI, Patterson DA. “Pyrolysed powered mussel shells for eutrophication control: effect of particle size and powder concentration on the mechanism and extent of phosphate removal”. Asia-Pacisif Journal of Chemical Engineering, 6(2), 231-243, 2011.
  • Li YH, Tan QY, Zhang L, Zhang YX, Song YH, Ye Y, Xia MS. “Bio-filler from waste shellfish shell: preparation, characterization, and its effect on the mechanical properties on polypropylene composites”. Journal of Hazardous Materials, 217-218, 256-262, 2012.
  • Shavandi A, Bekhit AEDA, Ali A, Sun Z, Ratnayake JT. “Microwave-assited synthesis of high purity β-tricalcium phosphate crystalline powder from the waste of green mussel shells (perna canalisulus)”. Powder Thecnology, 273, 33-39, 2015.
  • Garcia CG, Fonteboa BG, Abella FM, Lopez DC. “Performance of mussel shell as aggregate in plain concrete”. Construction and Building Materials, 139, 570-583, 2017.
  • Norazlina H, Fahmi ARM, Hafizuddin WM. “CaCO3 from seashells as a reinforcing filler for natural rubber”. Journal of Mechanical Engineering and Sciences, 8, 1481-1488, 2015.
  • Kochan C. “Mechanical properties of waste mussel shell particles reinforced epoxy composites”. Materials Testing, 61(2), 149-154, 2019.
  • Silva TH, Guimaraes JM, Henrigues B, Silva FS, Fredel MC. “The potential use of oyster shell waste in new value-added by-product”. Resources, 8(1), 1-15, 2019.
  • Ji G, Zhu H, Jiang X, Qi C, Zhang XM. “Mechanical strengths of epoxy resin composites reinforced by calcined pearl shell powders”. Journal of Applied Polymer Science, 114(5), 3168-3176, 2009.
  • Monfort MC. “The European market for mussels”. Globefish Research Programme, 115, Food and Agriculture organization of United Nations, Rome, Italy, 2014. (Used with permission).
  • Fondo AQ, Coelho GF, Nunez RP, Munoz JCN, Estevez MA, Sanjurjo MJF, Rodriguez EA, Delgado AN. “Promoting sustainability in the mussel industry: mussel shell recycling to fight fluoride pollution”. Journal of cleaner production, 131, 485-490, 2016.
  • Gerdeen JC, Rorrer RAL. Engineering Design with Polymers and Composites. 2nd ed. Boca Raton, FL, USA, CRC Press, 2012.
  • Jones RM. Mechanics of Composite Materials. 2nd ed. Philadelphia, PA, USA, Taylor & Francis, 1999.
  • ASTM D 5045-14. “Plane strain fracture toughness and strain energy release rate of plastic materials”. ASTM International, PA, USA, International Standard, 10, 2014.
  • Ayatollahi MR, Alishahi E, Doagou RE, Shadlou S. “Tribological and mechanical properties of low content nanodiamond/epoxy nanocomposites”. Composites: Part B, 43(8), 3425-3430, 2012.
  • Adachi T, Araki W, Nakahara T, Yamaji A, Gamou M. “Fracture toughness of silica particulate-filled epoxy composite”. Journal of Applied Polymer Science, 86(9), 2261-2265, 2002.
  • Kwon SC, Adachi T, Araki W, Yamaji A. “Effect of composing particles of two sizes on mechanical properties of spherical silica-particulate-reinforced epoxy composites”. Composites: Part B, 39(4), 740-746, 2008.
  • Ahmed S, Jones FR. “A review of particulate reinforcement theories for polymer composites”. Journal of Materials Science, 25, 4933-4942, 1990.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makale
Yazarlar

Cemal Koçhan Bu kişi benim

Yayımlanma Tarihi 20 Ağustos 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 26 Sayı: 4

Kaynak Göster

APA Koçhan, C. (2020). Midye kabuğu/epoksi parçacık takviyeli kompozitin mode-I kırılma tokluğunun deneysel olarak incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(4), 599-604.
AMA Koçhan C. Midye kabuğu/epoksi parçacık takviyeli kompozitin mode-I kırılma tokluğunun deneysel olarak incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Ağustos 2020;26(4):599-604.
Chicago Koçhan, Cemal. “Midye kabuğu/Epoksi parçacık Takviyeli Kompozitin Mode-I kırılma tokluğunun Deneysel Olarak Incelenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 26, sy. 4 (Ağustos 2020): 599-604.
EndNote Koçhan C (01 Ağustos 2020) Midye kabuğu/epoksi parçacık takviyeli kompozitin mode-I kırılma tokluğunun deneysel olarak incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 26 4 599–604.
IEEE C. Koçhan, “Midye kabuğu/epoksi parçacık takviyeli kompozitin mode-I kırılma tokluğunun deneysel olarak incelenmesi”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 26, sy. 4, ss. 599–604, 2020.
ISNAD Koçhan, Cemal. “Midye kabuğu/Epoksi parçacık Takviyeli Kompozitin Mode-I kırılma tokluğunun Deneysel Olarak Incelenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 26/4 (Ağustos 2020), 599-604.
JAMA Koçhan C. Midye kabuğu/epoksi parçacık takviyeli kompozitin mode-I kırılma tokluğunun deneysel olarak incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2020;26:599–604.
MLA Koçhan, Cemal. “Midye kabuğu/Epoksi parçacık Takviyeli Kompozitin Mode-I kırılma tokluğunun Deneysel Olarak Incelenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 26, sy. 4, 2020, ss. 599-04.
Vancouver Koçhan C. Midye kabuğu/epoksi parçacık takviyeli kompozitin mode-I kırılma tokluğunun deneysel olarak incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2020;26(4):599-604.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.