Araştırma Makalesi
BibTex RIS Kaynak Göster

Lifli betonlar için elastisite modülü tahmini

Yıl 2020, Cilt: 26 Sayı: 6, 1098 - 1109, 13.11.2020

Öz

Bu çalışmada, farklı ayrık lif tiplerinin betonun elastisite modülü üzerindeki etkileri araştırılmıştır. Bu amaçla 260 adet silindirik basınç deney numunesi derlenmiştir. Dikkate alınan lif tipleri çelik, PVA, polipropilen, polyolefin, bazalt ve olefindir. Çalışma sonuçları tüm lif tipleri için kaba agrega miktarının ince agrega miktarına oranının 1.5’i aşması durumunda beton basınç dayanımının azaldığını göstermiştir. Çelik lifli karışımların lif narinlik oranının 60’dan küçük ve eşit olduğu durumlarda elastisite modülü artış gösterirken 60’dan büyük değerler için elastisite modülünün azaldığı görülmüştür. Dikkate alınan tüm lif tipleri için geçerli olan bir elastisite modülü denklemi önerilmiştir. Önerilen denklem deney sonuçları ile ve literatürde yer alan diğer formüllerle karşılaştırılmış ve farklı durumlar için denklemlerin geçerlilikleri sorgulanmıştır.

Kaynakça

  • [1] Bentur A, Mindes S. Fibre Reinforced Cementitious Composites. 2nd Ed. London and New York, USA, Taylor & Francis Group, 1990.
  • [2] Mobasher B, Li CYB. “Effect of interfacial properties on the crack propagation in cementitious composites”. Advanced Cement Based Materials, 4(3), 93-105, 1996.
  • [3] ACI Committee 544.3R. “Guide for Specifying, Proportioning, Mixing, Placing and Finishing Steel Fiber Reinforced Concrete”. American Concrete Institute, Farmington Hills, Michigan, USA, 544.3R-9, 1993.
  • [4] Otter DE, Naaman AE. “Properties of steel fiber reinforced concrete under cyclic loading”. ACI Material Journal, 85(4), 254-261, 1988.
  • [5] Tokyay M, Ramyar K, Turanlı L. “Behaviour of polypropylene and steel fiber reinforced high strength concretes under compressive and flexural loads”. Second National Concrete Conference, Istanbul, Turkey, 27 May 1991.
  • [6] Zollo RF. “Fiber-reinforced concrete: An overview after 30 years of development”. Cement and Concrete Composites, 19(2), 107-122, 1997.
  • [7] Gao J, Sun W, Morino K. “Mechanical properties of steel fiber-reinforced, high-strength, lightweight concrete”. Cement and Concrete Composites, 19(4), 307-313, 1997.
  • [8] Qian CX, Stroeven P. “Development of hybrid polypropylene–steel fibre-reinforced concrete”. Cement and Concrete Research, 30(1), 63-69, 2000.
  • [9] Song PS, Wu JC, Hwang, S. “Mechanical properties of high-strength steel fiber-reinforced concrete”. Construction and Building Materials, 18(9), 669-673, 2004.
  • [10] Singh S, Shukla A, Brown R. “Pullout behaviour of polypropylene fibers from cementitious matrix”. Cement and Concrete Research, 34(10), 1919-1925, 2004.
  • [11] Kozak M. “Çelik lifli betonlar ve kullanım alanlarının araştırılması”. SDU Teknik Bilimler Dergisi, 3(5), 26-35, 2013.
  • [12] Wafa FF. “Properties and applications of fiber reinforced concrete”. Engineering Sciences, 2, 49-63, 1990.
  • [13] Bhargava P, Sharma UK, Kaushik SK. “Compressive stress-strain behavior of small scale steel fibre reinforced high strength concrete cylinders”. Journal of Advanced Concrete Technology, 4(1), 109-121, 2006.
  • [14] Bae, BI, Choi, HK, Lee, BS, Bang, CH. “Compressive behavior and mechanical characteristics and their application to stress-strain relationship of steel fiber-reinforced reactive powder concrete”. Advances in Materials Science and Engineering, 2016, 1-11, 2016.
  • [15] Postacıoğlu B. Beton, Cilt 2: Bağlayıcı Maddeler, Agregalar. 1. Baskı. İstanbul, Türkiye, Matbaa Teknisyenleri Basımevi, 1987.
  • [16] Ezeldin AS, Balaguru PN. “Normal- and high-strength fiber-reinforced concrete under compression”. Journal of Materials Civil Engineering, 4(4), 415-429, 1992.
  • [17] Alberti MG, Enfedaque A, Gálvez JC, Canovas MF, Osorio IR. “Polyolefin fiber-reinforced concrete enhanced with steel-hooked fibers in low properties”. Materials and Design, 60, 57-65, 2014.
  • [18] Alberti MG, Enfedaque A, Gálvez JC. “Improving the reinforcement of polyolefin fiber reinforced concrete for infrastructure applications”. Fibers, 3, 504-522, 2015.
  • [19] Yang KH. “Tests on concrete reinforced with hybrid or monolithic steel and polyvinyl alcohol fibers”. ACI Materials Journal, 108(6), 664-672, 2011.
  • [20] LaHucik J, Dahal S, Roesler J, Amirkhanian AN. “Mechanical properties of roller-compacted concrete with macro-fibers”. Construction and Building Materials, 135(2017), 440-446, 2017.
  • [21] Lee SC, Oh JH, Cho JY. “Compressive behavior of fiber-reinforced concrete with end-hooked steel fibers”. Materials (Basel), 8(4), 1442-1458, 2015.
  • [22] AD-771 908: Army Construction Engineering Research Laboratory. “Compression Characteristics and Structural Beam Design Analysis of Steel Fiber Reinforced Concrete”. National Technical Information Service, Department of Commerce, USA, 45, 1973.
  • [23] Ou YC, Tsai MS, Liu KY, Chang KC. “Compressive behavior of steel-fiber-reinforced concrete with a high reinforcing index”. Journal of Materials in Civil Engineering, 24(2), 207-215, 2012.
  • [24] Mansur MA, Chin MS, Wee TH. “Stress-strain relationship of high-strength fiber concrete in compression”. Journal of Materials Civil Engineering, 11(1), 21-29, 1999.
  • [25] Abbas S, Soliman AM, Nehdi ML. “Exploring mechanical and durability properties of ultra-high performance concrete incorporating various steel fiber lengths and dosages”. Construction and Building Materials, 75(2015), 429-441, 2014.
  • [26] Maruthachalam D, Padmanaban I, Vishnuram BG. “Influence of polyolefin macro-monofilement fibre on mechanical properties of high performance concrete”. KSCE Journal of Civil Engineering, 17(7), 1682-1689, 2013.
  • [27] Pliya P, Beaucour AL, Noumowé A. “Contribution of cocktail of polypropylene and steel fibres in improving the behaviour of high strength concrete subjected to high temperature”. Construction and Building Materials, 25(4), 1926-1934, 2011.
  • [28] Wu Y, Song W, Zhao W, Tan X. “An experimental study on dynamic mechanical properties of fiber-reinforced concrete under different strain rates”. Applied Sciences, 8(1904), 1-18, 2018.
  • [29] Ayub T, Shafiq N, Khan SU. “Compressive stress-strain behavior of HSFRC reinforced with basalt fibers”. Journal of Materials in Civil Engineering, 28(4), 1-11, 2016.
  • [30] Hsu LS, Hsu CT. “Stress-strain behavior of steel fiber high-strength concrete under compression”. ACI Structural Journal, 91(4), 448-457, 1994.
  • [31] Bhargava P, Sharma UK, Kaushik SK. “Compressive stress-strain behavior of small scale steel fibre reinforced high strength concrete cylinders”. Journal of Advanced Concrete Technology, 4(1), 109-121, 2006.
  • [32] Suhaendi SL, Horiguchi T. “Fiber-reinforced high-strength concrete under elevated temperature-effect of fibers on residual properties”. Fire Safety Science-Proceedings of the Eight International Symposium, Beijing, China, 18-23 September 2005.
  • [33] Yoo DY, Yoon YS, Banthia N. “Predicting the post-cracking behavior of normal- and high-strength-fiber-reinforced concrete beams”. Construction and Building Materials, 93(2015), 477-485, 2015.
  • [34] Noushini A, Vessalas K, Samali B. “Flexural and tensile characteristics of polyvinyl alcohol fibre reinforced concrete (PVA-FRC)”. 13th East Asia-Pacific Conference on Structural, Sapporo, Japan, 11-13 September 2013.
  • [35] Jo BW, Shon YH, Kim YJ. “The evaluation of elastic modulus for steel fiber reinforced concete”. Russian Journal of Nondestructive Testing, 37(2), 152-161, 2001.
  • [36] Graybeal BA, Davis M. “Cylinder or cube: Strength testing of 80 to 200 MPa (11.6 to 29 ksi) ultra-high-performance fiber-reinforced concrete”. ACI Materials Journal, 105(6), 603-609, 2008.
  • [37] Hamad AJ. “Lightweight concrete reinforced with polypropylene fibers”. International Journal of Advances in Applied Sciences, 4(2), 45-49, 2015.
  • [38] Usta S. “Agrega granülometrisinin beton bileşimindeki teorik malzeme miktarları ile betonun kompasite ve porozite değerleri üzerindeki etkilerinin incelenmesi”. Yapı Teknolojileri Elektronik Dergisi, 8(1), 1-15, 2012.
  • [39] Uğurlu A. 1989, “Betonda agrega granülometrisinin düzenlenmesi ve önerilen bir yöntem: Fuller parabolü”, Devlet Su İşleri Genel Müdürlüğü Teknik Bülteni, 69, 45-49, 1989.
  • [40] Çakıroğlu MA, Kaya F, Yedek ÇY. “Kuru karışım püskürtme betonun elastisite modülünü bulanık mantık yöntemi ile tahmin edilmesi”, SDU International Technologic Science, 6(1), 22-30, 2014.
  • [41] Fanella DA, Naaman AE. "Stress-strain properties of fiber reinforced concrete in compression". Journal of ACI Materials, 82 (4), 475-483, 1985.
  • [42] Nanni A, Johari A. “RCC pavement reinforced with steel fibers”. Concrete International, 11(3), 64-69, 1989.
  • [43] Muscalu MT, Radu A, Budescu M, Taranu N, Florescu E. “Use of recycled materials in the construction of roller compacted concrete (RCC) pavements”. Advanced Materials Research, 649, 262–265, 2013.
  • [44] Topçu İB, Demirel OE, Uygunoğlu T. “Polipropilen lif katkılı harçların fiziksel ve mekanik özelikleri”. Politeknik Dergisi, 20(1), 91-96, 2017.
  • [45] Ersoy U, Özcebe G. Betonarme. 2. Baskı. İstanbul, Türkiye, Evrim Yayınevi, 2004.
  • [46] Suksawang N, Wtaife S, Alsabbagh A. “Evaluation of elastic modulus of fiber-reinforced concrete”. ACI Materials Journal, 115(2), 239-249, 2018.
  • [47] Neves RD, Almeida JCOF. “Compressive behaviour of steel fibre reinforced concrete”. Structural Concrete, 6(1), 1-8, 2005.
  • [48] ACI Committee 318, “Building Code Requirements for Structural Concrete and Commentary”. Farmington Hills, USA, 318-14, 2014.
  • [49] Norwegian Standard. “Design of Concrete Structures”. Norwegian Council for Building Standardization, Oslo, Norway, NS 3473, 1992.
  • [50] “Eurocode 2: Design of concrete structures-Part 1-1: General Rules and Rules for buildings”. European Standard, EN 1992-1-1, 2004.
  • [51] Türk Standardı. “Betonarme Yapıların Tasarım ve Yapım Kuralları”. Türk Standartları Enstitüsü, Ankara, Türkiye, TS 500, 2000.
  • [52] Iravani S. “Mechanical properties of high-performance concrete”. ACI Materials Journal, 93(5), 416-426, 1996.
  • [53] Thomas J, Ramaswamy A. “Mechanical properties of steel fiber-reinforced concrete”. Journal of Materials in Civil Engineering, 19(5), 385-392, 2007.
  • [54] ACI Committee 363, “Report on high strength concrete”. American Concrete Institute, Farmington Hills, USA, 363R-10, 2010.
  • [55] Korea Concrete Institute (KCI), “Concrete Design Code and Commentary”. Kimoondang Publishing Co., Seoul, Republic of Korea, 2007.
Toplam 55 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makale
Yazarlar

Eren Yağmur

Yayımlanma Tarihi 13 Kasım 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 26 Sayı: 6

Kaynak Göster

APA Yağmur, E. (2020). Lifli betonlar için elastisite modülü tahmini. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(6), 1098-1109.
AMA Yağmur E. Lifli betonlar için elastisite modülü tahmini. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Kasım 2020;26(6):1098-1109.
Chicago Yağmur, Eren. “Lifli Betonlar için Elastisite modülü Tahmini”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 26, sy. 6 (Kasım 2020): 1098-1109.
EndNote Yağmur E (01 Kasım 2020) Lifli betonlar için elastisite modülü tahmini. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 26 6 1098–1109.
IEEE E. Yağmur, “Lifli betonlar için elastisite modülü tahmini”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 26, sy. 6, ss. 1098–1109, 2020.
ISNAD Yağmur, Eren. “Lifli Betonlar için Elastisite modülü Tahmini”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 26/6 (Kasım 2020), 1098-1109.
JAMA Yağmur E. Lifli betonlar için elastisite modülü tahmini. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2020;26:1098–1109.
MLA Yağmur, Eren. “Lifli Betonlar için Elastisite modülü Tahmini”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 26, sy. 6, 2020, ss. 1098-09.
Vancouver Yağmur E. Lifli betonlar için elastisite modülü tahmini. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2020;26(6):1098-109.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.