Araştırma Makalesi
BibTex RIS Kaynak Göster

Çoklu banda sahip mikroşerit antenlerde boyut optimizasyonunun derin öğrenme yöntemleri ile gerçekleştirilmesi

Yıl 2021, Cilt: 27 Sayı: 2, 229 - 233, 04.04.2021

Öz

Elektromanyetik frekans spektrumu farklı alt frekans bantlara ayrılmıştır. Bu alt frekans bantları, farklı uygulamalar için tahsis edilmiştir. Günümüzde çoklu alt frekans bantlarında çalışan cihazlar önemli avantajlar sağlamaktadır. Cihazlar, çoklu frekans bantlarında çalışması için anten yapılarına ihtiyaç duyar. Mikroşerit antenler, boyutlarının küçük olması, taşınabilir yapıları ve diğer sistemlere kolay bir şekilde entegre olması ile öne çıkan anten yapıları olmuştur. Bu çalışmada, çoklu frekans bantlarında çalışabilen mikroşerit anten yapısı tasarlanmıştır. Aynı zamanda, tasarlanan antenin optimizasyonunu daha kısa sürede sağlamak için anten boyutlarının optimizasyonunda derin öğrenme yöntemleri ile kullanılmıştır. Tasarlanan anten yapısının çalışma frekansları elde edilen sonuçlarda görüldüğü üzere C ve X bandında çalışmaktadır. IEEE Standartlarına göre C bandı 4 GHz ile 8 GHz arasında ve X bandı 8 GHz ile 12 GHz frekans aralığı olarak belirlenmiştir. Önerilen anten yapısında, çoklu bant yapılarında çalışma özelliği, C-şekilli anten dizisi vasıtasıyla elde edilmiştir. Optimizasyon işleminde kullanılacak olan derin öğrenme yöntemlerinde ise beş farklı Uzun Kısa Süreli Bellek (UKSB) modeli kullanılmıştır. Derin öğrenme yöntemlerinin en önemli avantajı, zorlu ve zaman alıcı problemlerin çözümünde gerekli özellikleri kendi öğrenme yeteneği ile belirleyerek tatmin edici sonuçlar elde etmesidir. Bu kapsamda 52 adet anten verisi üretilmiştir. Eğitim sürecinde 40 adet ve test aşamasında ise 12 adet veri kullanılmıştır. Test verilerinde elde edilen en düşük Ortalama Karesel Kök Hata (OKKH) performansı, UKSB-1 + kaçınma katmanı-1 + UKSB -2 + kaçınma katmanı-2 ile 1.0161 hata değeri olarak belirlenmiştir. Önerilen yöntemle elde edilen sonuçlar High Frequency Simulation Software (HFSS) programında değerlendirilmiştir. Elde edilen deneysel sonuçlar değerlendirildiğinde derin öğrenme modelinin üretmiş olduğu sonuçlar ile test verilerinin birbirine çok yakın olduğu gözlemlenmiştir.

Kaynakça

  • [1] Saunders SR. Antennas and Propagation for Wireless Communication Systems. 5th ed. New York, USA, Wiley, 2003.
  • [2] Bahl IJ, Bhartia P. Microstrip Antennas. 4th ed. Dedham, Mass, USA, Artech House, 1980.
  • [3] Modiri A, Kiasaleh K. “Efficient design of microstrip antennas for SDR applications using modified PSO algorithm”. IEEE Transactions on Magnetics, 47(5), 1278-1281, 2011.
  • [4] Smith DR, Padilla WJ, Vier DC, Nemat-Nasser SC, Schultz S. “Composite medium with simultaneously negative permeability and permittivity”. Physical Review Letters, 84(18), 4184-4187, 2000.
  • [5] Sivia JS, Pharwaha APS, Kamal TS. “Analysis and design of circular fractal antenna using artificial neural networks”. Progress in Electromagnetics Research, 56, 251-267, 2013.
  • [6] Sarmah K, Sarma KK, Baruah S. “ANN based optimization of resonating frequency of split ring resonator”. IEEE Symposium on Computational Intelligence for Communication Systems and Networks (CIComms), Orlando, USA, 9-12 December 2014.
  • [7] Deshmukh AA, Kulkarni SD, Venkata APC, Phatak NV. “Artificial neural network model for suspended rectangular microstrip antennas”. Procedia Computer Science, 49, 332-339, 2015.
  • [8] Deshmukh AA, Venkata APC, Nagarbowdi S, Kulkarni SD. “Artificial neural network model for suspended equilateral triangular microstrip antennas”. International Conference on Communication, Information & Computing Technology (ICCICT), Mumbai, India, 1-4 January 2015.
  • [9] Srivastava M, Saini S, Thakur A. “Analysis and parameter estimation of microstrip circular patch antennas using artificial neural networks”. International Conference on Soft Computing: Theories and Applications, Singapore, 17-18 July 2016.
  • [10] Singh P, Singh VK, Lala A, Bhoi AK. “Design and analysis of microstrip antenna using multilayer feed-forward back-propagation neural network (MLPFFBP-ANN)”. International Conference in Communication, Devices and Networking, Sikkim, India, 3-4 June 2017.
  • [11] Michael J, Rahmat-Samii Y. “Genetic algorithms and method of moments (GA/MOM) for the design of integrated antennas”. IEEE Transactions on Antennas and Propagation, 47(10), 1606-1614, 1999.
  • [12] Griffiths LA, Furse C, Chung YC. “Broadband and multiband antenna design using the genetic algorithm to create amorphous shapes using ellipses”. IEEE Transactions on Antennas and Propagation, 54(10), 2776-2782, 2006.
  • [13] Hochreiter S, Schmidhuber J. “Long short-term memory”. Neural Computation, 9(8), 1735-1780, 1997.
  • [14] Schmidhuber, J. “Deep learning in neural networks: An overview”. Neural networks, 61, 85-117, 2015.
  • [15] Wan H, Guo S, Yin K, Liang X, Lin Y. “CTS-LSTM: LSTM-based neural networks for correlated time series prediction”. Knowledge-Based Systems, 191, 1-10, 105239, 2020.

Dimension optimization of multi-band microstrip antennas using deep learning methods

Yıl 2021, Cilt: 27 Sayı: 2, 229 - 233, 04.04.2021

Öz

The electromagnetic frequency spectrum is divided into different sub-frequency bands. These sub-frequency bands are allocated for different applications. In these days, devices operating in multiple sub-frequency bands provide significant advantages. Devices require antenna structures to operate in multiple frequency bands. Microstrip antennas have become prominent antenna structures with their small size, portable structures and easy integration into other systems. In this study, microstrip antenna structure which can work in multi frequency bands is designed. At the same time, it was used with deep learning methods in optimization of antenna sizes to ensure the optimization of the designed antenna in a shorter time. The operating frequencies of designed antenna structure work in the C and X band as seen in the obtained results. According to IEEE standards, C band is determined between 4 GHz and 8 GHz; X band determined as in 8 GHz and 12 GHz frequency range. In the proposed antenna structure, the ability to operate in multi-band structures was achieved by means of a C-shaped antenna array. In the deep learning methods that will be used in the optimization process, five different Long Short Term Memory (LSTM) models are used. The most important advantage of deep learning methods is that it can achieve satisfactory results by identifying the necessary features for solving difficult and time consuming problems with its own learning ability. In this context, 52 pieces of antenna data were produced. 40 pieces of data were used in the training process and 12 pieces of data were used in the test stage. The lowest root mean square error (RMSE) performance obtained in the test data was determined as LSTM-1 + Dropout layer-1 + LSTM -2 + Dropout layer-2 and 1.0161 error value. The obtained results by proposed method were evaluated in High Frequency Simulation Software (HFSS) program. In experimental results, it was observed that the results produced by the deep learning model and the test data were very close to each other.

Kaynakça

  • [1] Saunders SR. Antennas and Propagation for Wireless Communication Systems. 5th ed. New York, USA, Wiley, 2003.
  • [2] Bahl IJ, Bhartia P. Microstrip Antennas. 4th ed. Dedham, Mass, USA, Artech House, 1980.
  • [3] Modiri A, Kiasaleh K. “Efficient design of microstrip antennas for SDR applications using modified PSO algorithm”. IEEE Transactions on Magnetics, 47(5), 1278-1281, 2011.
  • [4] Smith DR, Padilla WJ, Vier DC, Nemat-Nasser SC, Schultz S. “Composite medium with simultaneously negative permeability and permittivity”. Physical Review Letters, 84(18), 4184-4187, 2000.
  • [5] Sivia JS, Pharwaha APS, Kamal TS. “Analysis and design of circular fractal antenna using artificial neural networks”. Progress in Electromagnetics Research, 56, 251-267, 2013.
  • [6] Sarmah K, Sarma KK, Baruah S. “ANN based optimization of resonating frequency of split ring resonator”. IEEE Symposium on Computational Intelligence for Communication Systems and Networks (CIComms), Orlando, USA, 9-12 December 2014.
  • [7] Deshmukh AA, Kulkarni SD, Venkata APC, Phatak NV. “Artificial neural network model for suspended rectangular microstrip antennas”. Procedia Computer Science, 49, 332-339, 2015.
  • [8] Deshmukh AA, Venkata APC, Nagarbowdi S, Kulkarni SD. “Artificial neural network model for suspended equilateral triangular microstrip antennas”. International Conference on Communication, Information & Computing Technology (ICCICT), Mumbai, India, 1-4 January 2015.
  • [9] Srivastava M, Saini S, Thakur A. “Analysis and parameter estimation of microstrip circular patch antennas using artificial neural networks”. International Conference on Soft Computing: Theories and Applications, Singapore, 17-18 July 2016.
  • [10] Singh P, Singh VK, Lala A, Bhoi AK. “Design and analysis of microstrip antenna using multilayer feed-forward back-propagation neural network (MLPFFBP-ANN)”. International Conference in Communication, Devices and Networking, Sikkim, India, 3-4 June 2017.
  • [11] Michael J, Rahmat-Samii Y. “Genetic algorithms and method of moments (GA/MOM) for the design of integrated antennas”. IEEE Transactions on Antennas and Propagation, 47(10), 1606-1614, 1999.
  • [12] Griffiths LA, Furse C, Chung YC. “Broadband and multiband antenna design using the genetic algorithm to create amorphous shapes using ellipses”. IEEE Transactions on Antennas and Propagation, 54(10), 2776-2782, 2006.
  • [13] Hochreiter S, Schmidhuber J. “Long short-term memory”. Neural Computation, 9(8), 1735-1780, 1997.
  • [14] Schmidhuber, J. “Deep learning in neural networks: An overview”. Neural networks, 61, 85-117, 2015.
  • [15] Wan H, Guo S, Yin K, Liang X, Lin Y. “CTS-LSTM: LSTM-based neural networks for correlated time series prediction”. Knowledge-Based Systems, 191, 1-10, 105239, 2020.
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makale
Yazarlar

Umut Özkaya Bu kişi benim

Levent Seyfi Bu kişi benim

Şaban Öztürk Bu kişi benim

Yayımlanma Tarihi 4 Nisan 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 27 Sayı: 2

Kaynak Göster

APA Özkaya, U., Seyfi, L., & Öztürk, Ş. (2021). Dimension optimization of multi-band microstrip antennas using deep learning methods. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 27(2), 229-233.
AMA Özkaya U, Seyfi L, Öztürk Ş. Dimension optimization of multi-band microstrip antennas using deep learning methods. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Nisan 2021;27(2):229-233.
Chicago Özkaya, Umut, Levent Seyfi, ve Şaban Öztürk. “Dimension Optimization of Multi-Band Microstrip Antennas Using Deep Learning Methods”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 27, sy. 2 (Nisan 2021): 229-33.
EndNote Özkaya U, Seyfi L, Öztürk Ş (01 Nisan 2021) Dimension optimization of multi-band microstrip antennas using deep learning methods. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 27 2 229–233.
IEEE U. Özkaya, L. Seyfi, ve Ş. Öztürk, “Dimension optimization of multi-band microstrip antennas using deep learning methods”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 27, sy. 2, ss. 229–233, 2021.
ISNAD Özkaya, Umut vd. “Dimension Optimization of Multi-Band Microstrip Antennas Using Deep Learning Methods”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 27/2 (Nisan 2021), 229-233.
JAMA Özkaya U, Seyfi L, Öztürk Ş. Dimension optimization of multi-band microstrip antennas using deep learning methods. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2021;27:229–233.
MLA Özkaya, Umut vd. “Dimension Optimization of Multi-Band Microstrip Antennas Using Deep Learning Methods”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 27, sy. 2, 2021, ss. 229-33.
Vancouver Özkaya U, Seyfi L, Öztürk Ş. Dimension optimization of multi-band microstrip antennas using deep learning methods. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2021;27(2):229-33.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.