Araştırma Makalesi
BibTex RIS Kaynak Göster

Sentetik atıksulardan atık çay sorbentine Cu+2 biyosorpsiyonu: kinetikler, eşitlikler ve termodinamik

Yıl 2021, Cilt: 27 Sayı: 3, 359 - 367, 09.06.2021

Öz

𝐶𝑢+2’nin atık çaya (AÇ) biyosorpsiyonu kesikli deneyler ile araştırılmıştır. AÇ’nin giderme verimi ve biyosorpsiyon kapasitesi (𝑞𝑒), pH, temas süresi, başlangıç 𝐶𝑢+2derişimi, sıcaklık ve AÇ dozuna göre araştırılmıştır. AÇ’ın 𝑞𝑒 değeri, çözelti sıcaklığı arttıkça yükselmiştir. Deneysel çalışmalar ile elde edilen 𝑅2, 𝑞𝑑𝑒𝑛 ve 𝑞ℎ𝑒𝑠 değerlerine göre adsorpsiyon eşitliği en iyi, Langmuir izoterm modeli ile tanımlanmaktadır. AÇ’ye en yüksek 𝐶𝑢+2 biyosorpsiyonu, başlangıç pH ve sıcaklığı olan 6.0 ve 55 °C’de olduğu belirlenmiştir. Deneysel sonuçlar, AÇ’ye, 𝐶𝑢+2 biyosorpsiyonunun endotermik bir reaksiyon olduğunu göstermektedir. Kinetik modeller karşılaştırıldığında biyosorpsiyon en iyi yalancı II. derece kinetik model tarafından tanımlanmaktadır. Negatif ΔG˚ değeri AÇ’ye 𝐶𝑢+2 biyosorpsiyonunun uygulanabilir olduğunu göstermektedir.

Kaynakça

  • [1] Boonamnuayvitaya C, Chaiya W, Tanthapanichakoon S, Jarudilokkul S. “Removal of heavy metals by adsorbent prepared from pyrolyzed coffee residues and clay”. Separation and Purification Technology, 35(1), 11-22, 2004.
  • [2] Çay S, Uyanık A, Özaşık A. “Single and binary component adsorption of copper(II) and cadmium(II) from aqueous solutions using tea-industry waste”. Separation and Purification Technology, 38(3), 273-280, 2004.
  • [3] Öztürk NK, Öztürk S, Sütçü M, Sever K. “Fındık kabuğu ve evsel çay atığı katkılı yüksek yoğunluklu polietilen kompozitlerin fiziksel ve mekaniksel özelliklerin belirlenmesi”. XIX. Ulusal Mekanik Kongresi, Trabzon, Türkiye, 24-28 Ağustos 2015.
  • [4] Türkiye İstatistik Kurumu. “İstatistik Veri Portalı, İstatistiksel Tablolar, Çay Üretimi 1988-2018”. https://data.tuik.gov.tr/Search/Search?text=%C3%87ay(18.09.2020).
  • [5] Usta B. Karadeniz Bölgesindeki Organik Atıkların Değerlendirilmesi. Yüksek Lisans Tezi, On Dokuz Mayıs Üniversitesi, Samsun, Türkiye, 2015.
  • [6] ÇAYKUR, “Çay Sektörü Raporu”, Çay İşletmeleri Genel Müdürlüğü, 2013.
  • [7] Çaykur. “İstatistik Bülten”. http://www.caykur.gov.tr/ Pages/Yayinlar/IstatistikBulteni.aspx. (31.12.2016).
  • [8] Rize Ticaret Borsası. “Çay kaçakçılığı ve sektöre verdiği zararlar 2013”. https://www.rtb.org.tr/tr/cay-sektoru-raporlari (17.12.2019).
  • [9] Amarasinghe BMWPK, Williams RA. “Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater”. Chemical Engineering Journal, 132, 299-309, 2007.
  • [10] Demir İ. “An investigation on the production of construction brick with processed waste tea”. Building and Environment, 41, 1274-1278, 2006.
  • [11] Kara C. “Çay atığının doğal lif olarak betonda kullanılabilirliği. Doğal Afetler ve Çevre Dergisi, 4(2), 156-165, 2018.
  • [12] Ayas N, Esen T. “Hydrogen production from tea waste”. International Journal of Hydrogen Energy, 41, 8067-8072, 2016.
  • [13] Munda US, Pholane L, Kar DD, Meikap BC. “Production of bioenergy from composite waste materials made of corn waste, spent tea waste, and kitchen waste co-mixed with cow dung”. International Journal of Green Energy, 9, 361-375, 2012.
  • [14] Uzun BB, Varol EA, Ates F, Özbay N, Pütün AE. “Synthetic fuel production from tea waste: Characterisation of bio-oil and bio-char”. Fuel, 89, 176-184, 2010.
  • [15] Yüksek T, Atamov Türüt K. “Demlenmiş çay atığı ve evsel yemek atıkları ile beslenen kırmızı kaliforniya solucanından elde edilen katı solucan gübresindeki bazı besin elementlerinin belirlenmesi”. Journal of Anatolian Environmental and Animal Sciences, 4(2), 263-271, 2019.
  • [16] Kütük AC, Çaycı G, Baran A. “Çay atıklarının bitki yetiştirme ortamı olarak kullanılabilme olanakları”. Tarım Bilimleri Dergisi, 1(1), 35-40, 1995.
  • [17] Filiz M, Usta P, Şahin HT. “Melamin, üre formaldehit tutkalı, kızılçam ve çay atıkları ile elde edilen yonga levhanın bazı teknik özelliklerinin değerlendirilmesi”. Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü Dergisi, 15(2), 88-93, 2011.
  • [18] Bisht NS, Harsh NSK. “Use of waste tea leaves as an aid to culture of some wood-rotting fungi”. International Biodeterioration Bulletin, 17(1), 19-20, 1981.
  • [19] Sun G, Shi W. “Sunflower stalks as adsorbents for the removal of metal ions from wastewater”. Industrial  Engineering Chemical Research, 37, 1324-1328, 1998.
  • [20] Tee TW, Khan ARM. “Removal of lead, cadmium and zinc by waste tea leaves”. Environmental Technology Letters, 9, 223-1232, 1988.
  • [21] Malakahmad A, Tan S, Yavari S. “Valorization of wasted black tea as a low-cost adsorbent for nickel and zinc removal from aqueous solution”. Journal of Chemistry, 1, 1-8, 2016.
  • [22] Thakur LS, Parmar M. “Adsorption of heavy metal (Cu2+, Ni2+ and Zn2+) from synthetic waste water by tea waste adsorbent”. International Journal of Chemical and Physical Sciences, 2(6), 6-19, 2013.
  • [23] Wasewar KL, Atif M, Prasad B, Mishra IM. “Adsorption of zinc using tea factory waste: kinetics, equilibrium and thermodynamics”. Clean, 36(3), 320-329, 2008.
  • [24] Aslan S, Yildiz S, Ozturk M, Polat A. “Adsorption of heavy metals onto waste tea”. European Scientific Journal, April Special Edition, 111-117, 2016.
  • [25] Malkoc E, Nuhoglu Y. “Investigations of nickel(II) removal from aqueous solutions using tea factory waste”. Journal of Hazardous Materials, B127, 120-128, 2005.
  • [26] Mahvi AH, Naghipour D, Vaezi F, Nazmara S. “Tea waste as an adsorbent for heavy metal removal from industrial wastewaters”. American Journal of Applied Sciences, 2(1), 372-375, 2005.
  • [27] Malkoc E, Nuhoglu Y. “Removal of Ni(II) ions from aqueous solutions using waste of tea factory: Adsorption on a fixed-bed column”. Journal of Hazardous Materials, B135, 328-336, 2009.
  • [28] Singh SR, Singh AP. “Adsorption of heavy metals from waste waters on tea waste”. Global Journal of Researches in Engineering, General Engineering, 12(1), 19-22, 2012.
  • [29] Dwivedi AK, Rajput DPS. “Studies on adsorptive removal of heavy metal (Cu, Cd) from aqueous solution by tea waste adsorbent”. Journal of Industrial Pollution Control, 30(1), 85-90, 2014.
  • [30] Ahmad R, Kumar R, Haseeb S. “Adsorption of Cu2+ from aqueous solution onto iron oxide coated eggshell powder: Evaluation of equilibrium, isotherms, kinetics, and regeneration capacity”. Arabian Journal of Chemistry, 5(3), 353-359, 2010.
  • [31] Sljivic M, Smiciklas I, Plecas I, Mitric M. “The influence of equilibration conditions and hydroxyapatite physico-chemical properties onto retention of Cu2+ ion”. Chemical Engineering Journal, 148, 80-88, 2009.
  • [32] Thapak, HK, Sharma J, Boudh B, Banger N, Pragati Dwivedia. “Adsorption of copper ions in aqueous media using tea waste and sawdust as an adsorbent”. IJIRST-International Journal for Innovative Research in Science & Technology, 2(3), 52-57, 2015.
  • [33] Aksu Z. “Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of nickel(II) ions onto Chlorella vulgaris”. Process Biochemistry, 38, 89-99, 2002.
  • [34] Aslan S, Yıldız S, Ozturk M. “Biosorption of Cu2+ and Ni2+ ions from aqueous solutions using waste dreid activated sludge Biomass”. Polish Journal of Chemical Technology, 20(3), 20-28, 2018.
  • [35] Demirbas E, Dizge E, Sulak MT, Kobya M. “Adsorption kinetics and equilibrium of copper from aqueous solutions using hazelnut shell activated carbon”. Chemical Engineering Journal, 148(2-3), 480-487, 2009.
  • [36] Rocha GC, Zai DAM, Alfaya RVS. “Use of rice straw as biosorbent for removal of Cu(II), Zn(II), Cd(II) and Hg(II) ions in industrial effluents”. Journal of Hazardous Materials, 166, 383-388. 2009.
  • [37] Chassary P, Vincent T, Guibal E. “Metal anion sorption on chitosan and derivative materials: a strategy for polymer modifi cation and optimum use”. Reactive Functional Polymers, 60, 137-149, 2004.
  • [38] Guzman J, Saucedo I, Revilla J, Navarro R, Guibal E. “Copper sorption by chitosan in the presence of citrate ions: infl uence of metal speciation on sorption mechanism and uptake capacities”. International Journal of Biological Macromolecules, 33(1-3), 57-65, 2003.
  • [39] Pamukoglu MY, Kargi F. “Removal of copper (II) ions from aqueous medium by biosorption onto powdered waste sludge”. Process Biochemitry, 41(5), 1047-1054, 2006.
  • [40] Celekli, A, Atmaca, M, Bozkurt H. “An ecofriendly process: predictive modelling of copper adsorption from aqueous solution on Spirulina platensis,” Journal of Hazardous Materials, 173, 123-129, 2010.
  • [41] Jianlong W, Yi Q, Horan N, Stentiford E. “Bioadsorption of pentachlorophenol (PCP) from aqueous solution by activated sludge biomass”. Bioresource Technology, 7(5), 157-161, 2000.
  • [42] Göksungur Y, Üren S, Güvenç U. “Biosorption of copper ions by caustic treated waste baker’s yeast biomass”. Turkish Journal of Biology, 27, 23-29, 2003.
  • [43] Kovacevic ZF, Sipos L, Briski F. “Biosorption of chromium, copper, nickel and zinc ions onto fungal pellets of Aspergillus niger 405 from aqueous solutions”. Food Technology and Biotechnolgy, 38, 211-216, 2000.
  • [44] Polat A, Aslan S. “Kinetic and isotherm study of cupper adsorption from aqueous solution using waste eggshell”. Journal of Environmental Engineering and Landscape Management, 22(02), 132-140, 2014.
  • [45] Sciban M, Kalasnja M, Skrbic B. “Modified softwood sawdust as adsorbent of heavy metal ions from water”. Journal of Hazardous Materials, 136(2), 266-271, 2006.
  • [46] Ozdemir G, Ozturk T, Ceyhan N, Isler R, Cosar T. “Heavy metal biosorption by biomass of Ochrobactrum anthropi producing exopolysaccharide in activated sludge”. Bioresource Technology, 90, 71-74, 2003.
  • [47] Azouaou N, Sadaoui Z, Djaafri A, Mokaddem H. “Adsorption of cadmium from aqueous solution onto untreated coffee grounds: Equilibrium, kinetics and thermodynamics”. Journal of Hazardous Materials, 184(1), 126-134, 2010.
  • [48] Bermúdez YG, Rico ILR, Bermúdez OG, Guibal E. “Nickel biosorption using Gracilaria caudata and Sargassum muticum”. Chemical Engineering Journal, 166, 122-131, 2011.
  • [49] Cojocaru C, Diaconu M, Cretescu I, Savi J, Vasi V. “Biosorption of copper (II) ions from aqua solutions using dried yeast biomass”. Colloids and Surfaces A: Physicochemical and Engineering Aspects, A, 335,181-188. 2009.
  • [50] Günay A, Dikmen S, Ersoy B, Evcin A. “Bazik mavi-16 boyar maddesinin kil üzerine adsorpsiyonu”. Avrupa Bilim ve Teknoloji Dergisi, 1(2), 29-38, 2014.
  • [51] Moreira VR, Lebron YAR, Freire SJ, Santos LVS, Palladino F, Jacob RS. “Biosorption of copper ions from aqueous solution using Chlorella pyrenoidosa: Optimization, equilibrium and kinetics studies”. Microchemical Journal 145, 119-129, 2019.
  • [52] Ho YS, Porter JF, McKay G. “Equilibrium, isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel and lead single component systems”. Water, Air, and Soil Pollution, 141, 1-33, 2002.
  • [53] Lin SH, Juang RS. “Heavy metal removal from water by sorption using surfactant-modified montmorillonite”. Journal of Hazardous Materials, B92, 315-326, 2002.
  • [54] Ahluwalia SS, Goyal D. “Removal of heavy metals by waste tea leaves from aqueous solution”. Engineering Life Sciences, 5(2), 158-162, 2005.
  • [55] Aslan Ş, Topçu US. “Biyolojik atık nitrifikasyon organizmasına Cu+2 biyosorpsiyonu”. Artvin Çoruh Üniversitesi, Doğal Afetler Uygulama ve Araştırma Merkezi, Doğal Afetler ve Çevre Dergisi, 6(1), 181-195, 2020.
  • [56] Benaïssa H, Elouchdi MA. “Biosorption of copper (II) ions from synthetic aqueous solutions by drying bed activated sludge”. Journal of Hazardous Materials, 194, 69-78, 2011.
  • [57] Gupta VK, Rastogi A, Saini VK, Jain N. “Biosorption of copper(II) from aqueous solutions by Spirogyra species”. Journal of Colloid and Interface Science, 296, 59-63, 2006.
  • [58] Kumar Y P, King P, Prasad VSRK. “Removal of copper from aqueous solution using Ulva fasciata sp.-A marine green algae”. Journal of Hazardous Materials, B137, 367-373, 2006.
  • [59] Kizilkaya B, Tekinay AA, Dilgin Y. “Adsorption and removal of Cu (II) ions from aqueous solution using pretreated fis bones". Desalination, 264, 37-47, 2010.
  • [60] Zare H, Heydarzade H, Rahimnejad M, Tardast A, Seyfi M, Peyghambarzadeh SM. “Dried activated sludge as an appropriate biosorbent for removal of copper (II) ions”. Arabian Journal of Chemistry, 8, 858-864, 2015.
  • [61] Hossain MA, Ngo HH, Guo WS, Setiati T. “Adsorption and desorption of copper (II) ions onto garden grass”. Bioresource Technology, 121, 386-395, 2012.
  • [62] Onal O, Ozcelik E, Benli S, Cabbar H C “Adsorption of Fe3+ and Cu2+ on orange skin and sunflower Shell”. 4th European BioRemediation Conference, Chania, Crete, Greece, 03-06 September 2008.
  • [63] Larous S, Meniai AH, Lehocine MB. “Experimental study of the removal of copper from aqueous solutions by adsorption using sawdust”. Desalination, 185, 483-490 2005.
  • [64] Chen JP, Wu S, Chong KH. “Surface modification of a granular activated carbon by citric acid for enhancement of copper adsorption”. Carbon, 41, 1979-1986, 2003.
  • [65] Yıldız S. “Kinetic and isotherm analysis of Cu (II) adsorption onto almond shell (Prunus dulcis)”. Ecological Chemistry and Engineering S, 24(1), 87-106, 2017.
  • [66] Dede ÖT. “Atık sulardan metallerin gideriminde fındık kabuğunun adsorbent olarak kullanılması: Adsorpsiyon mekanizması ve kinetik modelleme”. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22 (2), 232-242, 2018.
  • [67] Ata A, Nalcaci OO, Ovez B. “Macro algae Gracilaria verrucosa as a biosorbent: A study of sorption mechanisms”. Algal Research, 1(2), 194-204, 2012.
  • [68] Nollet H, Roels M, Lutgen P, Van der Meeren P, Verstraete W. “Removal of PCBs from wastewater using fly ash”. Chemosphere, 53, 655-665, 2003.
  • [69] Donat R, Akdogan A, Erdem E, Cetisli H. “Thermodynamics of Pb2+ and Ni2+ adsorption onto natural bentonite from aqueous solutions”. Journal of Colloid and Interface Science, 286, 43-52, 2005.
  • [70] Yeddou N, Bensmaili A. “Equilibrium and kinetic modelling of iron adsorption by eggshells in a batch system: effect of temperature”. Desalination, 206, 127-134, 2007.
  • [71] Özacar M, Sengil İA. “A kinetic study of metal complex dye sorption onto pine sawdust”. Process Biochemistry, 40, 565-572, 2005.
  • [72] Ho YS, McKay G. “The kinetics of sorption of divalent metal ions onto Sphagnum Moss Peat ”. Water Research, 34(3), 735-742, 2000.
  • [73] Özcan A, Ozcan AS, Tunali S, Akar T, Kiran İ. “Determination of the equilibrium, kinetic and thermodynamic parameters of adsorption of copper(II) ions onto seeds of Capsicum annuum”. Journal of Hazardous Materials, B124, 200-208, 2005.

Biosorption of Cu2+ from synthetic wastewater by tea waste sorbent: kinetics, equilibrium and thermodynamics

Yıl 2021, Cilt: 27 Sayı: 3, 359 - 367, 09.06.2021

Öz

The biosorption of 𝐶𝑢2+ onto the tea wastes (TW) was investigated by performing the batch experiments. The removal efficiency and biosorption capacity (𝑞𝑒) of TW was investigated as a function of pH, contact time, initial 𝐶𝑢2+ concentration, temperature, and TW dose. The 𝑞𝑒 value of TW increased with the increase of solution temperatures. According to the 𝑅2 value, 𝑞𝑒𝑥𝑝 and 𝑞𝑐𝑎𝑙, the adsorption equilibrium was well described by the Langmuir isotherm model. The highest sorption of 𝐶𝑢2+ onto TW was observed at the initial pH value and temperature of 6.0 and 55 °C, respectively. Experimental results confirming that the biosorption reaction of 𝐶𝑢2+on the TW was thought to be endothermic. By the comparison of kinetic models, results demonstrated that the system was best described by the pseudo second-order kinetic model. The negative ΔG˚ value indicated that the 𝐶𝑢2+sorption onto the TW is feasible.

Kaynakça

  • [1] Boonamnuayvitaya C, Chaiya W, Tanthapanichakoon S, Jarudilokkul S. “Removal of heavy metals by adsorbent prepared from pyrolyzed coffee residues and clay”. Separation and Purification Technology, 35(1), 11-22, 2004.
  • [2] Çay S, Uyanık A, Özaşık A. “Single and binary component adsorption of copper(II) and cadmium(II) from aqueous solutions using tea-industry waste”. Separation and Purification Technology, 38(3), 273-280, 2004.
  • [3] Öztürk NK, Öztürk S, Sütçü M, Sever K. “Fındık kabuğu ve evsel çay atığı katkılı yüksek yoğunluklu polietilen kompozitlerin fiziksel ve mekaniksel özelliklerin belirlenmesi”. XIX. Ulusal Mekanik Kongresi, Trabzon, Türkiye, 24-28 Ağustos 2015.
  • [4] Türkiye İstatistik Kurumu. “İstatistik Veri Portalı, İstatistiksel Tablolar, Çay Üretimi 1988-2018”. https://data.tuik.gov.tr/Search/Search?text=%C3%87ay(18.09.2020).
  • [5] Usta B. Karadeniz Bölgesindeki Organik Atıkların Değerlendirilmesi. Yüksek Lisans Tezi, On Dokuz Mayıs Üniversitesi, Samsun, Türkiye, 2015.
  • [6] ÇAYKUR, “Çay Sektörü Raporu”, Çay İşletmeleri Genel Müdürlüğü, 2013.
  • [7] Çaykur. “İstatistik Bülten”. http://www.caykur.gov.tr/ Pages/Yayinlar/IstatistikBulteni.aspx. (31.12.2016).
  • [8] Rize Ticaret Borsası. “Çay kaçakçılığı ve sektöre verdiği zararlar 2013”. https://www.rtb.org.tr/tr/cay-sektoru-raporlari (17.12.2019).
  • [9] Amarasinghe BMWPK, Williams RA. “Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater”. Chemical Engineering Journal, 132, 299-309, 2007.
  • [10] Demir İ. “An investigation on the production of construction brick with processed waste tea”. Building and Environment, 41, 1274-1278, 2006.
  • [11] Kara C. “Çay atığının doğal lif olarak betonda kullanılabilirliği. Doğal Afetler ve Çevre Dergisi, 4(2), 156-165, 2018.
  • [12] Ayas N, Esen T. “Hydrogen production from tea waste”. International Journal of Hydrogen Energy, 41, 8067-8072, 2016.
  • [13] Munda US, Pholane L, Kar DD, Meikap BC. “Production of bioenergy from composite waste materials made of corn waste, spent tea waste, and kitchen waste co-mixed with cow dung”. International Journal of Green Energy, 9, 361-375, 2012.
  • [14] Uzun BB, Varol EA, Ates F, Özbay N, Pütün AE. “Synthetic fuel production from tea waste: Characterisation of bio-oil and bio-char”. Fuel, 89, 176-184, 2010.
  • [15] Yüksek T, Atamov Türüt K. “Demlenmiş çay atığı ve evsel yemek atıkları ile beslenen kırmızı kaliforniya solucanından elde edilen katı solucan gübresindeki bazı besin elementlerinin belirlenmesi”. Journal of Anatolian Environmental and Animal Sciences, 4(2), 263-271, 2019.
  • [16] Kütük AC, Çaycı G, Baran A. “Çay atıklarının bitki yetiştirme ortamı olarak kullanılabilme olanakları”. Tarım Bilimleri Dergisi, 1(1), 35-40, 1995.
  • [17] Filiz M, Usta P, Şahin HT. “Melamin, üre formaldehit tutkalı, kızılçam ve çay atıkları ile elde edilen yonga levhanın bazı teknik özelliklerinin değerlendirilmesi”. Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü Dergisi, 15(2), 88-93, 2011.
  • [18] Bisht NS, Harsh NSK. “Use of waste tea leaves as an aid to culture of some wood-rotting fungi”. International Biodeterioration Bulletin, 17(1), 19-20, 1981.
  • [19] Sun G, Shi W. “Sunflower stalks as adsorbents for the removal of metal ions from wastewater”. Industrial  Engineering Chemical Research, 37, 1324-1328, 1998.
  • [20] Tee TW, Khan ARM. “Removal of lead, cadmium and zinc by waste tea leaves”. Environmental Technology Letters, 9, 223-1232, 1988.
  • [21] Malakahmad A, Tan S, Yavari S. “Valorization of wasted black tea as a low-cost adsorbent for nickel and zinc removal from aqueous solution”. Journal of Chemistry, 1, 1-8, 2016.
  • [22] Thakur LS, Parmar M. “Adsorption of heavy metal (Cu2+, Ni2+ and Zn2+) from synthetic waste water by tea waste adsorbent”. International Journal of Chemical and Physical Sciences, 2(6), 6-19, 2013.
  • [23] Wasewar KL, Atif M, Prasad B, Mishra IM. “Adsorption of zinc using tea factory waste: kinetics, equilibrium and thermodynamics”. Clean, 36(3), 320-329, 2008.
  • [24] Aslan S, Yildiz S, Ozturk M, Polat A. “Adsorption of heavy metals onto waste tea”. European Scientific Journal, April Special Edition, 111-117, 2016.
  • [25] Malkoc E, Nuhoglu Y. “Investigations of nickel(II) removal from aqueous solutions using tea factory waste”. Journal of Hazardous Materials, B127, 120-128, 2005.
  • [26] Mahvi AH, Naghipour D, Vaezi F, Nazmara S. “Tea waste as an adsorbent for heavy metal removal from industrial wastewaters”. American Journal of Applied Sciences, 2(1), 372-375, 2005.
  • [27] Malkoc E, Nuhoglu Y. “Removal of Ni(II) ions from aqueous solutions using waste of tea factory: Adsorption on a fixed-bed column”. Journal of Hazardous Materials, B135, 328-336, 2009.
  • [28] Singh SR, Singh AP. “Adsorption of heavy metals from waste waters on tea waste”. Global Journal of Researches in Engineering, General Engineering, 12(1), 19-22, 2012.
  • [29] Dwivedi AK, Rajput DPS. “Studies on adsorptive removal of heavy metal (Cu, Cd) from aqueous solution by tea waste adsorbent”. Journal of Industrial Pollution Control, 30(1), 85-90, 2014.
  • [30] Ahmad R, Kumar R, Haseeb S. “Adsorption of Cu2+ from aqueous solution onto iron oxide coated eggshell powder: Evaluation of equilibrium, isotherms, kinetics, and regeneration capacity”. Arabian Journal of Chemistry, 5(3), 353-359, 2010.
  • [31] Sljivic M, Smiciklas I, Plecas I, Mitric M. “The influence of equilibration conditions and hydroxyapatite physico-chemical properties onto retention of Cu2+ ion”. Chemical Engineering Journal, 148, 80-88, 2009.
  • [32] Thapak, HK, Sharma J, Boudh B, Banger N, Pragati Dwivedia. “Adsorption of copper ions in aqueous media using tea waste and sawdust as an adsorbent”. IJIRST-International Journal for Innovative Research in Science & Technology, 2(3), 52-57, 2015.
  • [33] Aksu Z. “Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of nickel(II) ions onto Chlorella vulgaris”. Process Biochemistry, 38, 89-99, 2002.
  • [34] Aslan S, Yıldız S, Ozturk M. “Biosorption of Cu2+ and Ni2+ ions from aqueous solutions using waste dreid activated sludge Biomass”. Polish Journal of Chemical Technology, 20(3), 20-28, 2018.
  • [35] Demirbas E, Dizge E, Sulak MT, Kobya M. “Adsorption kinetics and equilibrium of copper from aqueous solutions using hazelnut shell activated carbon”. Chemical Engineering Journal, 148(2-3), 480-487, 2009.
  • [36] Rocha GC, Zai DAM, Alfaya RVS. “Use of rice straw as biosorbent for removal of Cu(II), Zn(II), Cd(II) and Hg(II) ions in industrial effluents”. Journal of Hazardous Materials, 166, 383-388. 2009.
  • [37] Chassary P, Vincent T, Guibal E. “Metal anion sorption on chitosan and derivative materials: a strategy for polymer modifi cation and optimum use”. Reactive Functional Polymers, 60, 137-149, 2004.
  • [38] Guzman J, Saucedo I, Revilla J, Navarro R, Guibal E. “Copper sorption by chitosan in the presence of citrate ions: infl uence of metal speciation on sorption mechanism and uptake capacities”. International Journal of Biological Macromolecules, 33(1-3), 57-65, 2003.
  • [39] Pamukoglu MY, Kargi F. “Removal of copper (II) ions from aqueous medium by biosorption onto powdered waste sludge”. Process Biochemitry, 41(5), 1047-1054, 2006.
  • [40] Celekli, A, Atmaca, M, Bozkurt H. “An ecofriendly process: predictive modelling of copper adsorption from aqueous solution on Spirulina platensis,” Journal of Hazardous Materials, 173, 123-129, 2010.
  • [41] Jianlong W, Yi Q, Horan N, Stentiford E. “Bioadsorption of pentachlorophenol (PCP) from aqueous solution by activated sludge biomass”. Bioresource Technology, 7(5), 157-161, 2000.
  • [42] Göksungur Y, Üren S, Güvenç U. “Biosorption of copper ions by caustic treated waste baker’s yeast biomass”. Turkish Journal of Biology, 27, 23-29, 2003.
  • [43] Kovacevic ZF, Sipos L, Briski F. “Biosorption of chromium, copper, nickel and zinc ions onto fungal pellets of Aspergillus niger 405 from aqueous solutions”. Food Technology and Biotechnolgy, 38, 211-216, 2000.
  • [44] Polat A, Aslan S. “Kinetic and isotherm study of cupper adsorption from aqueous solution using waste eggshell”. Journal of Environmental Engineering and Landscape Management, 22(02), 132-140, 2014.
  • [45] Sciban M, Kalasnja M, Skrbic B. “Modified softwood sawdust as adsorbent of heavy metal ions from water”. Journal of Hazardous Materials, 136(2), 266-271, 2006.
  • [46] Ozdemir G, Ozturk T, Ceyhan N, Isler R, Cosar T. “Heavy metal biosorption by biomass of Ochrobactrum anthropi producing exopolysaccharide in activated sludge”. Bioresource Technology, 90, 71-74, 2003.
  • [47] Azouaou N, Sadaoui Z, Djaafri A, Mokaddem H. “Adsorption of cadmium from aqueous solution onto untreated coffee grounds: Equilibrium, kinetics and thermodynamics”. Journal of Hazardous Materials, 184(1), 126-134, 2010.
  • [48] Bermúdez YG, Rico ILR, Bermúdez OG, Guibal E. “Nickel biosorption using Gracilaria caudata and Sargassum muticum”. Chemical Engineering Journal, 166, 122-131, 2011.
  • [49] Cojocaru C, Diaconu M, Cretescu I, Savi J, Vasi V. “Biosorption of copper (II) ions from aqua solutions using dried yeast biomass”. Colloids and Surfaces A: Physicochemical and Engineering Aspects, A, 335,181-188. 2009.
  • [50] Günay A, Dikmen S, Ersoy B, Evcin A. “Bazik mavi-16 boyar maddesinin kil üzerine adsorpsiyonu”. Avrupa Bilim ve Teknoloji Dergisi, 1(2), 29-38, 2014.
  • [51] Moreira VR, Lebron YAR, Freire SJ, Santos LVS, Palladino F, Jacob RS. “Biosorption of copper ions from aqueous solution using Chlorella pyrenoidosa: Optimization, equilibrium and kinetics studies”. Microchemical Journal 145, 119-129, 2019.
  • [52] Ho YS, Porter JF, McKay G. “Equilibrium, isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel and lead single component systems”. Water, Air, and Soil Pollution, 141, 1-33, 2002.
  • [53] Lin SH, Juang RS. “Heavy metal removal from water by sorption using surfactant-modified montmorillonite”. Journal of Hazardous Materials, B92, 315-326, 2002.
  • [54] Ahluwalia SS, Goyal D. “Removal of heavy metals by waste tea leaves from aqueous solution”. Engineering Life Sciences, 5(2), 158-162, 2005.
  • [55] Aslan Ş, Topçu US. “Biyolojik atık nitrifikasyon organizmasına Cu+2 biyosorpsiyonu”. Artvin Çoruh Üniversitesi, Doğal Afetler Uygulama ve Araştırma Merkezi, Doğal Afetler ve Çevre Dergisi, 6(1), 181-195, 2020.
  • [56] Benaïssa H, Elouchdi MA. “Biosorption of copper (II) ions from synthetic aqueous solutions by drying bed activated sludge”. Journal of Hazardous Materials, 194, 69-78, 2011.
  • [57] Gupta VK, Rastogi A, Saini VK, Jain N. “Biosorption of copper(II) from aqueous solutions by Spirogyra species”. Journal of Colloid and Interface Science, 296, 59-63, 2006.
  • [58] Kumar Y P, King P, Prasad VSRK. “Removal of copper from aqueous solution using Ulva fasciata sp.-A marine green algae”. Journal of Hazardous Materials, B137, 367-373, 2006.
  • [59] Kizilkaya B, Tekinay AA, Dilgin Y. “Adsorption and removal of Cu (II) ions from aqueous solution using pretreated fis bones". Desalination, 264, 37-47, 2010.
  • [60] Zare H, Heydarzade H, Rahimnejad M, Tardast A, Seyfi M, Peyghambarzadeh SM. “Dried activated sludge as an appropriate biosorbent for removal of copper (II) ions”. Arabian Journal of Chemistry, 8, 858-864, 2015.
  • [61] Hossain MA, Ngo HH, Guo WS, Setiati T. “Adsorption and desorption of copper (II) ions onto garden grass”. Bioresource Technology, 121, 386-395, 2012.
  • [62] Onal O, Ozcelik E, Benli S, Cabbar H C “Adsorption of Fe3+ and Cu2+ on orange skin and sunflower Shell”. 4th European BioRemediation Conference, Chania, Crete, Greece, 03-06 September 2008.
  • [63] Larous S, Meniai AH, Lehocine MB. “Experimental study of the removal of copper from aqueous solutions by adsorption using sawdust”. Desalination, 185, 483-490 2005.
  • [64] Chen JP, Wu S, Chong KH. “Surface modification of a granular activated carbon by citric acid for enhancement of copper adsorption”. Carbon, 41, 1979-1986, 2003.
  • [65] Yıldız S. “Kinetic and isotherm analysis of Cu (II) adsorption onto almond shell (Prunus dulcis)”. Ecological Chemistry and Engineering S, 24(1), 87-106, 2017.
  • [66] Dede ÖT. “Atık sulardan metallerin gideriminde fındık kabuğunun adsorbent olarak kullanılması: Adsorpsiyon mekanizması ve kinetik modelleme”. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22 (2), 232-242, 2018.
  • [67] Ata A, Nalcaci OO, Ovez B. “Macro algae Gracilaria verrucosa as a biosorbent: A study of sorption mechanisms”. Algal Research, 1(2), 194-204, 2012.
  • [68] Nollet H, Roels M, Lutgen P, Van der Meeren P, Verstraete W. “Removal of PCBs from wastewater using fly ash”. Chemosphere, 53, 655-665, 2003.
  • [69] Donat R, Akdogan A, Erdem E, Cetisli H. “Thermodynamics of Pb2+ and Ni2+ adsorption onto natural bentonite from aqueous solutions”. Journal of Colloid and Interface Science, 286, 43-52, 2005.
  • [70] Yeddou N, Bensmaili A. “Equilibrium and kinetic modelling of iron adsorption by eggshells in a batch system: effect of temperature”. Desalination, 206, 127-134, 2007.
  • [71] Özacar M, Sengil İA. “A kinetic study of metal complex dye sorption onto pine sawdust”. Process Biochemistry, 40, 565-572, 2005.
  • [72] Ho YS, McKay G. “The kinetics of sorption of divalent metal ions onto Sphagnum Moss Peat ”. Water Research, 34(3), 735-742, 2000.
  • [73] Özcan A, Ozcan AS, Tunali S, Akar T, Kiran İ. “Determination of the equilibrium, kinetic and thermodynamic parameters of adsorption of copper(II) ions onto seeds of Capsicum annuum”. Journal of Hazardous Materials, B124, 200-208, 2005.
Toplam 73 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makale
Yazarlar

Şükrü Aslan Bu kişi benim

Sayıter Yıldız Bu kişi benim

Mustafa Öztürk Bu kişi benim

Yayımlanma Tarihi 9 Haziran 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 27 Sayı: 3

Kaynak Göster

APA Aslan, Ş., Yıldız, S., & Öztürk, M. (2021). Sentetik atıksulardan atık çay sorbentine Cu+2 biyosorpsiyonu: kinetikler, eşitlikler ve termodinamik. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 27(3), 359-367.
AMA Aslan Ş, Yıldız S, Öztürk M. Sentetik atıksulardan atık çay sorbentine Cu+2 biyosorpsiyonu: kinetikler, eşitlikler ve termodinamik. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Haziran 2021;27(3):359-367.
Chicago Aslan, Şükrü, Sayıter Yıldız, ve Mustafa Öztürk. “Sentetik atıksulardan atık çay Sorbentine Cu+2 Biyosorpsiyonu: Kinetikler, eşitlikler Ve Termodinamik”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 27, sy. 3 (Haziran 2021): 359-67.
EndNote Aslan Ş, Yıldız S, Öztürk M (01 Haziran 2021) Sentetik atıksulardan atık çay sorbentine Cu+2 biyosorpsiyonu: kinetikler, eşitlikler ve termodinamik. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 27 3 359–367.
IEEE Ş. Aslan, S. Yıldız, ve M. Öztürk, “Sentetik atıksulardan atık çay sorbentine Cu+2 biyosorpsiyonu: kinetikler, eşitlikler ve termodinamik”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 27, sy. 3, ss. 359–367, 2021.
ISNAD Aslan, Şükrü vd. “Sentetik atıksulardan atık çay Sorbentine Cu+2 Biyosorpsiyonu: Kinetikler, eşitlikler Ve Termodinamik”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 27/3 (Haziran 2021), 359-367.
JAMA Aslan Ş, Yıldız S, Öztürk M. Sentetik atıksulardan atık çay sorbentine Cu+2 biyosorpsiyonu: kinetikler, eşitlikler ve termodinamik. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2021;27:359–367.
MLA Aslan, Şükrü vd. “Sentetik atıksulardan atık çay Sorbentine Cu+2 Biyosorpsiyonu: Kinetikler, eşitlikler Ve Termodinamik”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 27, sy. 3, 2021, ss. 359-67.
Vancouver Aslan Ş, Yıldız S, Öztürk M. Sentetik atıksulardan atık çay sorbentine Cu+2 biyosorpsiyonu: kinetikler, eşitlikler ve termodinamik. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2021;27(3):359-67.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.