Araştırma Makalesi
BibTex RIS Kaynak Göster

Tek serbestlik dereceli modellerde yer değiştirme talebinin TBDY-2018 uyumlu gerçek ivme kayıtları kullanılarak incelenmesi

Yıl 2021, Cilt: 27 Sayı: 3, 251 - 263, 09.06.2021

Öz

Deprem mühendisliğindeki gelişmeler, tüm dünyada deprem yönetmeliklerinin gelişmesinde rol oynamaktadır. Türkiye Bina Deprem Yönetmeliği’nin (TBDY) yeni versiyonu da 2018 yılında yayınlanmıştır. Teknolojik gelişmeler sayesinde, yapıların dinamik analizinde kullanılacak gerçek ivme kayıtları kolay ulaşılabilir hale gelmiştir. Bu çalışmada, tek serbestlik dereceli (TSD) sistemlerin TBDY ile uyumlu gerçek ivme kayıtları kullanılarak yapılan dinamik analizi ile elde edilen maksimum yerdeğiştirme taleplerinin değişimi incelenmiştir. Bu amaçla, çeşitli yapı özelliklerini dikkate almaya olanak sağlayan 120 TSD sistem modeli, farklı yatay dayanım oranı, titreşim periyodu, histeretik davranış modeli ve akma sonrası rijitlik değerlerinin kombinasyonu ile elde edilmiştir. İvme kayıtlarının elde edilmesi için iki farklı deprem seviyesi ile beraber üç farklı yerel zemin sınıfı dikkate alınmıştır. Maksimum yerdeğiştirme taleplerinin eğilimi ve saçılımını detaylı olarak değerlendirmek amacıyla her bir deprem seviyesi ve yerel zemin sınıfı için 30 gerçek ivme kaydı seti kullanılmıştır. Sonuçlar, (a) çevrimsel modellerin etkisinin ihmal edilebileceğini, (b) sete ait ortalama taleplerin, medyan taleplere göre daha yüksek olduğunu, (c) taleplerin set içindeki saçılımının yüksek ve değişkenlik gösterdiğini, (d) talep saçılımında yerel zemin sınıfı ve/veya deprem yer hareketi etkisinin olmadığı ve rastgele değiştiğini, (e) yatay dayanım oranı ve akma sonrası rijitliğin taleplerin saçılımı üzerinde etkili olduğunu, göstermiştir.

Kaynakça

  • [1] Ghobarah A. “Performance-based design in earthquake engineering”. State of Development Engineering Structures, 23, 878-884, 2001.
  • [2] SEAOC Vision 2000 Committee. “Performance-based seismic engineering”. Report Prepared by Structural Engineers Association of California, Sacramento, California, USA, 1995.
  • [3] Demir A, Palanci M, Kayhan AH. “Global and interstory drift demands calculated for a mid-rise rc building using TBEC-2018 compatible real ground motion record sets”. International Civil Engineering and Architecture Conference 2019, Trabzon, Turkey, 17-20 April 2019.
  • [4] Yön B, Oncu ME, Calayır Y. “Effects of seismic zones and local soil conditions on response of RC buildings”. Građevinar, 67(06), 585-596, 2015.
  • [5] Yön B, Calayır Y. “The soil effect on the seismic behaviour of reinforced concrete buildings”. Earthquakes and Structures, 8(1), 133-152, 2015.
  • [6] Applied Technology Council, “ATC-40: Seismic Evaluation and Retrofit of Concrete Buildings”. California, USA, 1996.
  • [7] Riddell R, Garcia JE, Garces E. “Inelastic deformation response of SDOF systems subjected to earthquakes”. Eartquake Engineering and Structural Dynamics, 31, 515-538, 2002.
  • [8] Hatzigeorgiou GD, Beskos DE. “Inelastic displacement ratios for SDOF structures subjected to repeated earthquakes”. Engineering Structures, 31, 2744-2755, 2009.
  • [9] Kayhan AH, Demir A. “Tek serbestlik dereceli sistemlerde maksimum ötelenme talebi üzerinde çevrimsel davranış modellerinin etkisi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 22(6), 442-453, 2016.
  • [10] Tekin G. Probabilistic Aerthquake Response Analysis of Single Degree of Freedom Structures. M.s Thesis, Boğaziçi University, Istanbul, Turkey, 2010.
  • [11] Mollaioli F, Bruno S. “Influence of site effects on inelastic displacement ratios for SDOF and MDOF systems”. Computers and Mathematics with Applications, 55, 184-207, 2008.
  • [12] Liossatou E, Fardis MN. “Residual displacements of RC structures as SDOF systems”. Earthquake Engineering and Structural Dynamics, 44(5), 713-734, 2015.
  • [13] Oviedo AJA, Midorikawa M, Asari T. “An equivalent SDOF system model for estimating the response of R/C building structures with proportional hysteretic dampers subjected to earthquake motions”. Earthquake Engineering and Structural Dynamics, 40(5), 571-589, 2010.
  • [14] Ministry of Public Works and Settlement. “TEC: Specification for Buildings to be Constructed in Seismic Zones”. Ankara, Turkey, 2007.
  • [15] Baltzopoulos G, Baraschino R, Iervolino I, Vamvatsikos D. “Dynamic analysis of single-degree-of-freedom systems (DYANAS): A graphical user interface for OpenSees”. Engineering Structures, 177, 395-408, 2018.
  • [16] Celep Z. Betonarme Taşıyıcı Sistemlerde Doğrusal Olmayan Davranış ve Çözümleme. 4. Baskı. İstanbul, Türkiye, Beta, 2017.
  • [17] Clough R, Johnston S. “Effect of stiffness degradation on earthquake ductility requirements”. 2nd Japan Earthquake Engineering Symposium, Tokyo, Japan, 1996.
  • [18] Graziotti F, Penna A, Magenes G. "A nonlinear SDOF model for the simplified evaluation of the displacement demand of low-rise URM buildings." Bulletin of Earthquake Engineering, 14(6), 1589-1612, 2016.
  • [19] Lignos DG, Krawinkler H. "Deterioration modeling of steel components in support of collapse prediction of steel moment frames under earthquake loading". Journal of Structural Engineering, 137(11), 1291-1302, 2010.
  • [20] Kayhan AH, Korkmaz KA, Irfanoglu A. “Selecting and scaling real ground motion records using harmony search algorithm”. Soil Dynamics and Earthquake Engineering, 31, 941-953, 2011.
  • [21] Iervolino I, Maddaloni G, Cosenza E. “Eurocode 8 compliant real record sets for seismic analysis of structures”. Journal of Earthquake Engineering, 12(1), 54-90, 2008.
  • [22] Kayhan AH, Demir A, Palanci M. “Statistical evaluation of maximum displacement demands of SDOF systems by code-compatible nonlinear time history analysis”. Soil Dynamics and Earthquake Engineering, 115, 513-530, 2018.
  • [23] Palanci M, Kayhan AH, Demir A. “A statistical assessment on global drift ratio demands of mid-rise RC buildings using code-compatible real ground motion records”. Bulletin of Earthquake Engineering, 16(11), 5453-5488, 2018.
  • [24] Ambraseys NN, Douglas J, Berge-Thierry C, Suhadolc P, Costa G, Sigbjörnsson R, Smit P. “Dissemination of European strong-motion data, vol. 2”. 13th World Conference on Earthquake Engineering, Vancouver, Canada, 1-6 August 2014.
  • [25] Akkar S, Sandıkkaya MA, Senyurt M, Sisi AA, Ay BÖ, Traversa P, Douglas J, Cotton F, Luzi L, Hernandez B, Godey S. “Reference database for seismic ground-motion in Europe (RESORCE)”. Bulletin of Earthquake Engineering, 12(1), 311-339, 2014.
  • [26] Ancheta TD, Darragh RB, Stewart JP, Seyhan E, Silva WJ, Chiou BSJ, Wooddell KE, Graves RB, Kottke AR, Boore DM, Kishida T, Donahue JL. “NGA-West2 database”. Earthquake Spectra, 30(3), 989-1005, 2014.
  • [27] Ministry of Public Works and Settlement. “TBEC: Turkish building earthquake code”. Ankara, Turkey, 2018.
  • [28] Palanci M, Kalkan A, Senel SM. “Investigation of shear effects on the capacity and demand estimation of RC buildings”. Structural Engineering and Mechanics, 60(6), 1021-1038, 2016.
  • [29] Demir A. Deprem Yönetmeliği İle Uyumlu İvme Kaydı Setleri Kullanılarak Doğrusal Olmayan Dinamik Ötelenme Taleplerinin İstatistiksel Olarak Değerlendirilmesi. Yüksek Lisans Tezi, Pamukkale Üniversitesi, Denizli, Türkiye, 2015.
  • [30] Kayhan AH. “Armoni araştırması ile ivme kaydı seçimi ve ölçeklendirme”. IMO Teknik Dergi, 23, 5751-5775, 2012.
  • [31] Jacobson R. Microsoft Excel-Visual Basic for Applications. Washington, USA, Microsoft Press, 1995.
  • [32] Ministry of Interior Disaster and Emergency Management Presidency. “Earthquake Hazard Map of Turkey”. https://tdth.afad.gov.tr/ (01.06.2019).

The investigation of displacement demands of single degree of freedom models using real earthquake records compatible with TBEC-2018

Yıl 2021, Cilt: 27 Sayı: 3, 251 - 263, 09.06.2021

Öz

Advances in earthquake engineering play a role in the development of seismic codes all over the world. The new version of Turkish Building Earthquake Code (TBEC) has also been published in 2018. Thanks to the technological developments, real acceleration records to be used in dynamic analysis of structures have been easily accessible. In this study, the variation of maximum displacement demands of single degree of freedom (SDOF) systems determined via dynamic analysis by using real earthquake records compatible with TBEC are investigated. For this purpose, 120 SDOF systems which represent behavior of variety of structural topologies were created by combination of different lateral strength capacity ratios, structural periods, hysteretic models and post-yield stiffness ratios. In order to obtain ground motion records, two different level of seismic intensity level and three different local soil classes are considered. 30 real ground motion record sets for each seismic intensity level and local soil class are used for detailed assessment of tendency and variation of maximum displacement demands. Results indicated that (a) effect of different hysteretic models on displacement demands is negligible, (b) the mean displacement demands are more conservative than median displacement demands for the sets, (c) displacement demand variation of the sets are high and not evenly distributed, (d) the variation of the demands changes randomly depending on local soil class and earthquake level, (e) lateral strength ratio and post-yield stiffness are efficient on the variation of the demands.

Kaynakça

  • [1] Ghobarah A. “Performance-based design in earthquake engineering”. State of Development Engineering Structures, 23, 878-884, 2001.
  • [2] SEAOC Vision 2000 Committee. “Performance-based seismic engineering”. Report Prepared by Structural Engineers Association of California, Sacramento, California, USA, 1995.
  • [3] Demir A, Palanci M, Kayhan AH. “Global and interstory drift demands calculated for a mid-rise rc building using TBEC-2018 compatible real ground motion record sets”. International Civil Engineering and Architecture Conference 2019, Trabzon, Turkey, 17-20 April 2019.
  • [4] Yön B, Oncu ME, Calayır Y. “Effects of seismic zones and local soil conditions on response of RC buildings”. Građevinar, 67(06), 585-596, 2015.
  • [5] Yön B, Calayır Y. “The soil effect on the seismic behaviour of reinforced concrete buildings”. Earthquakes and Structures, 8(1), 133-152, 2015.
  • [6] Applied Technology Council, “ATC-40: Seismic Evaluation and Retrofit of Concrete Buildings”. California, USA, 1996.
  • [7] Riddell R, Garcia JE, Garces E. “Inelastic deformation response of SDOF systems subjected to earthquakes”. Eartquake Engineering and Structural Dynamics, 31, 515-538, 2002.
  • [8] Hatzigeorgiou GD, Beskos DE. “Inelastic displacement ratios for SDOF structures subjected to repeated earthquakes”. Engineering Structures, 31, 2744-2755, 2009.
  • [9] Kayhan AH, Demir A. “Tek serbestlik dereceli sistemlerde maksimum ötelenme talebi üzerinde çevrimsel davranış modellerinin etkisi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 22(6), 442-453, 2016.
  • [10] Tekin G. Probabilistic Aerthquake Response Analysis of Single Degree of Freedom Structures. M.s Thesis, Boğaziçi University, Istanbul, Turkey, 2010.
  • [11] Mollaioli F, Bruno S. “Influence of site effects on inelastic displacement ratios for SDOF and MDOF systems”. Computers and Mathematics with Applications, 55, 184-207, 2008.
  • [12] Liossatou E, Fardis MN. “Residual displacements of RC structures as SDOF systems”. Earthquake Engineering and Structural Dynamics, 44(5), 713-734, 2015.
  • [13] Oviedo AJA, Midorikawa M, Asari T. “An equivalent SDOF system model for estimating the response of R/C building structures with proportional hysteretic dampers subjected to earthquake motions”. Earthquake Engineering and Structural Dynamics, 40(5), 571-589, 2010.
  • [14] Ministry of Public Works and Settlement. “TEC: Specification for Buildings to be Constructed in Seismic Zones”. Ankara, Turkey, 2007.
  • [15] Baltzopoulos G, Baraschino R, Iervolino I, Vamvatsikos D. “Dynamic analysis of single-degree-of-freedom systems (DYANAS): A graphical user interface for OpenSees”. Engineering Structures, 177, 395-408, 2018.
  • [16] Celep Z. Betonarme Taşıyıcı Sistemlerde Doğrusal Olmayan Davranış ve Çözümleme. 4. Baskı. İstanbul, Türkiye, Beta, 2017.
  • [17] Clough R, Johnston S. “Effect of stiffness degradation on earthquake ductility requirements”. 2nd Japan Earthquake Engineering Symposium, Tokyo, Japan, 1996.
  • [18] Graziotti F, Penna A, Magenes G. "A nonlinear SDOF model for the simplified evaluation of the displacement demand of low-rise URM buildings." Bulletin of Earthquake Engineering, 14(6), 1589-1612, 2016.
  • [19] Lignos DG, Krawinkler H. "Deterioration modeling of steel components in support of collapse prediction of steel moment frames under earthquake loading". Journal of Structural Engineering, 137(11), 1291-1302, 2010.
  • [20] Kayhan AH, Korkmaz KA, Irfanoglu A. “Selecting and scaling real ground motion records using harmony search algorithm”. Soil Dynamics and Earthquake Engineering, 31, 941-953, 2011.
  • [21] Iervolino I, Maddaloni G, Cosenza E. “Eurocode 8 compliant real record sets for seismic analysis of structures”. Journal of Earthquake Engineering, 12(1), 54-90, 2008.
  • [22] Kayhan AH, Demir A, Palanci M. “Statistical evaluation of maximum displacement demands of SDOF systems by code-compatible nonlinear time history analysis”. Soil Dynamics and Earthquake Engineering, 115, 513-530, 2018.
  • [23] Palanci M, Kayhan AH, Demir A. “A statistical assessment on global drift ratio demands of mid-rise RC buildings using code-compatible real ground motion records”. Bulletin of Earthquake Engineering, 16(11), 5453-5488, 2018.
  • [24] Ambraseys NN, Douglas J, Berge-Thierry C, Suhadolc P, Costa G, Sigbjörnsson R, Smit P. “Dissemination of European strong-motion data, vol. 2”. 13th World Conference on Earthquake Engineering, Vancouver, Canada, 1-6 August 2014.
  • [25] Akkar S, Sandıkkaya MA, Senyurt M, Sisi AA, Ay BÖ, Traversa P, Douglas J, Cotton F, Luzi L, Hernandez B, Godey S. “Reference database for seismic ground-motion in Europe (RESORCE)”. Bulletin of Earthquake Engineering, 12(1), 311-339, 2014.
  • [26] Ancheta TD, Darragh RB, Stewart JP, Seyhan E, Silva WJ, Chiou BSJ, Wooddell KE, Graves RB, Kottke AR, Boore DM, Kishida T, Donahue JL. “NGA-West2 database”. Earthquake Spectra, 30(3), 989-1005, 2014.
  • [27] Ministry of Public Works and Settlement. “TBEC: Turkish building earthquake code”. Ankara, Turkey, 2018.
  • [28] Palanci M, Kalkan A, Senel SM. “Investigation of shear effects on the capacity and demand estimation of RC buildings”. Structural Engineering and Mechanics, 60(6), 1021-1038, 2016.
  • [29] Demir A. Deprem Yönetmeliği İle Uyumlu İvme Kaydı Setleri Kullanılarak Doğrusal Olmayan Dinamik Ötelenme Taleplerinin İstatistiksel Olarak Değerlendirilmesi. Yüksek Lisans Tezi, Pamukkale Üniversitesi, Denizli, Türkiye, 2015.
  • [30] Kayhan AH. “Armoni araştırması ile ivme kaydı seçimi ve ölçeklendirme”. IMO Teknik Dergi, 23, 5751-5775, 2012.
  • [31] Jacobson R. Microsoft Excel-Visual Basic for Applications. Washington, USA, Microsoft Press, 1995.
  • [32] Ministry of Interior Disaster and Emergency Management Presidency. “Earthquake Hazard Map of Turkey”. https://tdth.afad.gov.tr/ (01.06.2019).
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makale
Yazarlar

Mehmet Palancı

Ahmet Demir Bu kişi benim

Ali Haydar Kayhan Bu kişi benim

Yayımlanma Tarihi 9 Haziran 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 27 Sayı: 3

Kaynak Göster

APA Palancı, M., Demir, A., & Kayhan, A. H. (2021). The investigation of displacement demands of single degree of freedom models using real earthquake records compatible with TBEC-2018. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 27(3), 251-263.
AMA Palancı M, Demir A, Kayhan AH. The investigation of displacement demands of single degree of freedom models using real earthquake records compatible with TBEC-2018. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Haziran 2021;27(3):251-263.
Chicago Palancı, Mehmet, Ahmet Demir, ve Ali Haydar Kayhan. “The Investigation of Displacement Demands of Single Degree of Freedom Models Using Real Earthquake Records Compatible With TBEC-2018”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 27, sy. 3 (Haziran 2021): 251-63.
EndNote Palancı M, Demir A, Kayhan AH (01 Haziran 2021) The investigation of displacement demands of single degree of freedom models using real earthquake records compatible with TBEC-2018. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 27 3 251–263.
IEEE M. Palancı, A. Demir, ve A. H. Kayhan, “The investigation of displacement demands of single degree of freedom models using real earthquake records compatible with TBEC-2018”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 27, sy. 3, ss. 251–263, 2021.
ISNAD Palancı, Mehmet vd. “The Investigation of Displacement Demands of Single Degree of Freedom Models Using Real Earthquake Records Compatible With TBEC-2018”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 27/3 (Haziran 2021), 251-263.
JAMA Palancı M, Demir A, Kayhan AH. The investigation of displacement demands of single degree of freedom models using real earthquake records compatible with TBEC-2018. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2021;27:251–263.
MLA Palancı, Mehmet vd. “The Investigation of Displacement Demands of Single Degree of Freedom Models Using Real Earthquake Records Compatible With TBEC-2018”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 27, sy. 3, 2021, ss. 251-63.
Vancouver Palancı M, Demir A, Kayhan AH. The investigation of displacement demands of single degree of freedom models using real earthquake records compatible with TBEC-2018. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2021;27(3):251-63.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.