Araştırma Makalesi
BibTex RIS Kaynak Göster

Nano-Yapılı katalizör kullanılarak mikrokirleticilerin giderilmesi

Yıl 2021, Cilt: 27 Sayı: 3, 378 - 383, 09.06.2021

Öz

Günümüzde, organik anti-mikrobik maddelerin kullanımı, insan sağlığı ve doğal yaşam üzerindeki potansiyel etkileri nedeniyle kaygıları arttırmaktadır. Triklosan (TCS), temizlik ürünlerinde yaygın olarak kullanılan ve anti bakteriyel veya anti-mikrobik olarak bilinen bir maddedir. Su bitkilerinin ve diğer su canlılarının triklosan'a daha duyarlı olduğuna dair güçlü kanıtlar vardır. Trikolosanın ayrışması sonucunda oluşabilecek yeni bileşiklere arıtma tesisleri çıkışında rastlanabilmektedir. TCS bir tür endokrin bozucu kimyasaldır ve sucul eko sisteme ve uzun vadede insan sağlığına zarar verir. Bu çalışmanın amacı, foto-oksidasyon yöntemini kullanarak TCS'in atıksudan uzaklaştırılmasını incelemektir. TCS'nin giderimi ultraviyole ışık ve yeni geliştirilen katalizörler kullanılarak incelenmiştir. Poli (dimetilsiloksan) (PDMS) modifiye edilmiş Nafion/Silica kompozit katalizörü, TCS'yi, herhangi bir demir çamuru üretimi olmadan sükroza başarıyla parçalamıştır. Ayrıca, katalizörü ihmal edilebilir demir liçi miktarları ile birkaç kez tekrar kullanmak mümkündür. Sonuç olarak, PDMS ile değiştirilmiş katalizör, sadece 34 mg/L H202 ve 0.1 g katalizör kullanılarak 60 dk. oksidasyon süresince TCS başarıyla parçalanmıştır.

Kaynakça

  • [1] Reiss R, Mackay N, Habig C, Griffin J. “An ecological risk assessment for triclosan in lotic systems following discharge from wastewater treatment plants in the United States”. Environmental Toxicology and Chemistry, 21(11), 2483-2492, 2002.
  • [2] Çelebi H, Gök O. “Effect of triclosan exposure on mortality and behavioral changes of Poecilia reticulata and Danio rerio”. Human and Ecological Risk Assessment: An International Journal, 24(5), 1327-1341, 2018.
  • [3] Bedoux G, Roig B, Thomas O, Dupont V, Le Bot B. “Occurrence and toxicity of antimicrobial triclosan and by-products in the environment”. Environmental Science and Pollution Research, 19(4), 1044-1065, 2012.
  • [4] Zhang H, Yamada H, Tsuno H. “Removal of endocrine-disrupting chemicals during ozonation of municipal sewage with brominated byproducts control”. Environmental Science and Technology, 42(9), 3375-3380, 2008.
  • [5] Munoz M, De Pedro ZM, Casas JA, Rodriguez JJ. “Triclosan breakdown by Fenton-like oxidation”. Chemical Engineering Journal, 198-199, 275-281, 2012.
  • [6] Son HS, Ko G, Zoh KD. “Kinetics and mechanism of photolysis and TiO2 photocatalysis of triclosan”. Journal of Hazardous Materials, 166(2-3), 954-960, 2009.
  • [7] Yu JC, Kwong TY, Luo Q, Cai Z. “Photocatalytic oxidation of triclosan”. Chemosphere, 65(3), 390-399, 2006.
  • [8] Piccoli A, Fiori J, Andrisano V, Orioli M. “Determination of triclosan in personal health care products by liquid chromatography (HPLC)”. Il Farmaco, 57(5), 369-372, 2002.
  • [9] Baycan N, Li Puma G. “Nanostructured catalysts for photo-oxidation of endocrine disrupting chemicals”. Journal of Photochemistry and Photobiology A: Chemistry, 364, 274-281, 2018.
  • [10] Abbasi AF, Ahmad M, Wasim M. “Optimization of concrete mix proportioning using reduced factorial experimental technique”. American Concrete Institute Materials Journal, 84(1), 55-63, 1987.
  • [11] Çatalkaya EÇ, Kargı F. “Effects of operating parameters on advanced oxidation of diuron by the Fenton’s reagent: A statistical design approach”. Chemosphere, 69(3), 485-492, 2007.
  • [12] Sandell EB. “Colorimetric Determination of Traces of Metals”. 3rd ed. New York, USA, Interscience Publishers, 1959.
  • [13] Harris D. “Quantitative Chemical Analysis: Determination of Iron with 1,10-Phenanthroline”. 6th ed. New Jersey, USA, Prentice Hall, 2003.
  • [14] Gmurek M, Olak-Kucharczyk M, Ledakowicz S. “Photochemical decomposition of endocrine disrupting compounds-a review”. Chemical Engineering Journal, 310(2), 437-456, 2017.
  • [15] Otriz de la Plata G, Alfano O, Cassano A. “The heterogeneous photo-Fenton reaction using goethite as catalyst”. Water Science & Technology, 61(12), 3109-3116, 2010.
  • [16] Asaithambi P, Sajjadi B, Abdul Aziz AR. “Ozone (O3) and sono (US) based advanced oxidation processes for the removal of color, COD, and determination of electrical energy from landfill leachate”. Separation and Purification Techniques, 172, 442-451, 2017.
  • [17] Luo Y, Guo W, Ngo HH, Nghiem LD, Hai F, Zhang J, Liang S, Wang XC. “A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment”. Science of the Total Environment, 473-474, 619-641, 2014.
  • [18] Latch DE, Packer JL, Arnold WA, McNeill K. “Photochemical conversion of triclosan to 2,8-dichlorodibenzo-p-dioxin in aqueous solution”. Journal of Photochemistry and Photobiology A: Chemistry, 158(1), 63-66, 2003.
  • [19] Son HS, Ko G, Zoh KD. “Kinetics and mechanism of photolysis and TiO2 photocatalysis of triclosan”. Journal of Hazardous Materials, 166(2-3), 954- 960, 2009.
  • [20] Constantin LA, Nitoi I, Cristea NI, Constantin MA. “Possible degradation pathways of triclosan from aqueous systems via TiO2 assisted photocatalysis”. Journal of Industrial and Engineering Chemistry, 58, 155-162, 2018.

Micro-Pollutant degradation using nanostructured catalysts

Yıl 2021, Cilt: 27 Sayı: 3, 378 - 383, 09.06.2021

Öz

Today, organic anti-microbic substances have increased the concern due to their potential health effects on human and natural life. Triclosan (TCS) is the commonly known as anti-bacterial or anti-microbic and cleaning products. There is strong evidence that water plants and other aquatic species are more sensitive to triclosan. New products are resulting from the decomposition of triclosan, which easily founded at the effluent of wastewater treatment plants. TCS is a kind of an endocrine distractive chemical and gives damage to the aquatic eco-system and human health in the long term. The purpose of this study was to investigate the elimination of TCS from wastewater by using the photo-oxidation method. The removal of TCS studied using ultraviolet light and newly developed catalysts. The Poly(dimethylsiloxane) (PDMS) modified Nafion/Silica composite catalyst was successfully destroyed the TCS to the sucrose without any iron sludge production. In addition, it is possible to re-use the catalyst several times with negligible iron leaching amounts. Consequently, PDMS modified catalyst was successfully applied to destroyed TCS in 60 min. of exposure time with using only 34 mg/L H2O2 and 0.1g of catalyst.

Kaynakça

  • [1] Reiss R, Mackay N, Habig C, Griffin J. “An ecological risk assessment for triclosan in lotic systems following discharge from wastewater treatment plants in the United States”. Environmental Toxicology and Chemistry, 21(11), 2483-2492, 2002.
  • [2] Çelebi H, Gök O. “Effect of triclosan exposure on mortality and behavioral changes of Poecilia reticulata and Danio rerio”. Human and Ecological Risk Assessment: An International Journal, 24(5), 1327-1341, 2018.
  • [3] Bedoux G, Roig B, Thomas O, Dupont V, Le Bot B. “Occurrence and toxicity of antimicrobial triclosan and by-products in the environment”. Environmental Science and Pollution Research, 19(4), 1044-1065, 2012.
  • [4] Zhang H, Yamada H, Tsuno H. “Removal of endocrine-disrupting chemicals during ozonation of municipal sewage with brominated byproducts control”. Environmental Science and Technology, 42(9), 3375-3380, 2008.
  • [5] Munoz M, De Pedro ZM, Casas JA, Rodriguez JJ. “Triclosan breakdown by Fenton-like oxidation”. Chemical Engineering Journal, 198-199, 275-281, 2012.
  • [6] Son HS, Ko G, Zoh KD. “Kinetics and mechanism of photolysis and TiO2 photocatalysis of triclosan”. Journal of Hazardous Materials, 166(2-3), 954-960, 2009.
  • [7] Yu JC, Kwong TY, Luo Q, Cai Z. “Photocatalytic oxidation of triclosan”. Chemosphere, 65(3), 390-399, 2006.
  • [8] Piccoli A, Fiori J, Andrisano V, Orioli M. “Determination of triclosan in personal health care products by liquid chromatography (HPLC)”. Il Farmaco, 57(5), 369-372, 2002.
  • [9] Baycan N, Li Puma G. “Nanostructured catalysts for photo-oxidation of endocrine disrupting chemicals”. Journal of Photochemistry and Photobiology A: Chemistry, 364, 274-281, 2018.
  • [10] Abbasi AF, Ahmad M, Wasim M. “Optimization of concrete mix proportioning using reduced factorial experimental technique”. American Concrete Institute Materials Journal, 84(1), 55-63, 1987.
  • [11] Çatalkaya EÇ, Kargı F. “Effects of operating parameters on advanced oxidation of diuron by the Fenton’s reagent: A statistical design approach”. Chemosphere, 69(3), 485-492, 2007.
  • [12] Sandell EB. “Colorimetric Determination of Traces of Metals”. 3rd ed. New York, USA, Interscience Publishers, 1959.
  • [13] Harris D. “Quantitative Chemical Analysis: Determination of Iron with 1,10-Phenanthroline”. 6th ed. New Jersey, USA, Prentice Hall, 2003.
  • [14] Gmurek M, Olak-Kucharczyk M, Ledakowicz S. “Photochemical decomposition of endocrine disrupting compounds-a review”. Chemical Engineering Journal, 310(2), 437-456, 2017.
  • [15] Otriz de la Plata G, Alfano O, Cassano A. “The heterogeneous photo-Fenton reaction using goethite as catalyst”. Water Science & Technology, 61(12), 3109-3116, 2010.
  • [16] Asaithambi P, Sajjadi B, Abdul Aziz AR. “Ozone (O3) and sono (US) based advanced oxidation processes for the removal of color, COD, and determination of electrical energy from landfill leachate”. Separation and Purification Techniques, 172, 442-451, 2017.
  • [17] Luo Y, Guo W, Ngo HH, Nghiem LD, Hai F, Zhang J, Liang S, Wang XC. “A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment”. Science of the Total Environment, 473-474, 619-641, 2014.
  • [18] Latch DE, Packer JL, Arnold WA, McNeill K. “Photochemical conversion of triclosan to 2,8-dichlorodibenzo-p-dioxin in aqueous solution”. Journal of Photochemistry and Photobiology A: Chemistry, 158(1), 63-66, 2003.
  • [19] Son HS, Ko G, Zoh KD. “Kinetics and mechanism of photolysis and TiO2 photocatalysis of triclosan”. Journal of Hazardous Materials, 166(2-3), 954- 960, 2009.
  • [20] Constantin LA, Nitoi I, Cristea NI, Constantin MA. “Possible degradation pathways of triclosan from aqueous systems via TiO2 assisted photocatalysis”. Journal of Industrial and Engineering Chemistry, 58, 155-162, 2018.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makale
Yazarlar

Neval Baycan Bu kişi benim

Yayımlanma Tarihi 9 Haziran 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 27 Sayı: 3

Kaynak Göster

APA Baycan, N. (2021). Micro-Pollutant degradation using nanostructured catalysts. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 27(3), 378-383.
AMA Baycan N. Micro-Pollutant degradation using nanostructured catalysts. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Haziran 2021;27(3):378-383.
Chicago Baycan, Neval. “Micro-Pollutant Degradation Using Nanostructured Catalysts”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 27, sy. 3 (Haziran 2021): 378-83.
EndNote Baycan N (01 Haziran 2021) Micro-Pollutant degradation using nanostructured catalysts. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 27 3 378–383.
IEEE N. Baycan, “Micro-Pollutant degradation using nanostructured catalysts”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 27, sy. 3, ss. 378–383, 2021.
ISNAD Baycan, Neval. “Micro-Pollutant Degradation Using Nanostructured Catalysts”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 27/3 (Haziran 2021), 378-383.
JAMA Baycan N. Micro-Pollutant degradation using nanostructured catalysts. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2021;27:378–383.
MLA Baycan, Neval. “Micro-Pollutant Degradation Using Nanostructured Catalysts”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 27, sy. 3, 2021, ss. 378-83.
Vancouver Baycan N. Micro-Pollutant degradation using nanostructured catalysts. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2021;27(3):378-83.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.