Araştırma Makalesi
BibTex RIS Kaynak Göster

Manyetit-hidroksiapatit nanokompoziti ile sulardan Zn(II) iyonlarının gideriminin incelenmesi

Yıl 2021, Cilt: 27 Sayı: 3, 368 - 377, 09.06.2021

Öz

Bu çalışmada, kimyasal olarak sentezlenen hidroksiapatit ve nano manyetit partiküllerinden manyetit-hidroksiapatit (HAp/Fe3O4-MHAp) nanokompozit malzemesi üretilmiş ve sulardan Zn(II) iyonlarının gideriminde adsorbent olarak kullanılmıştır. MHAp nanokompozit materyali düşük maliyet, kullanım ve üretim kolaylığı, yüksek stabilite ve etkili sorpsiyon kapasitesi gibi özelliklere sahip olduğu için seçilmiştir. Kesikli adsorpsiyon prosesine etki eden parametreler örneğin pH, başlangıç Zn(II) konsantrasyonu, adsorbent konsantrasyonu ve reaksiyon süresi için optimum değerlerin belirlenmesine yönelik deneyler gerçekleştirilmiştir. Elde edilen kompozit malzemenin özelliklerini belirlemek amacıyla Fourier Dönüşümlü Kızılötesi Spektroskopisi (FTIR), Taramalı Elektron Mikroskopu (SEM), Enerji yayılımlı X-Işını Analizi (EDX) kullanılmıştır. Adsorpsiyonun izoterm tipini belirlemek için Langmuir, Freundlich, Tempkin ve Dubinin-Radushkevich (D-R) izoterm modelleri denenmiş ve reaksiyonun zamanla değişimini tespit etmek amacıyla kinetic çalışmaları yürütülmüştür. Elde edilen sonuçlar, HAp/Fe3O4 kompozitinin sulardan Zn(II) iyonlarının gideriminde başarılı bir adsorbent olduğunu ve reaksiyon kinetiğinin Yalancı İkinci Dereceden Kinetik Modele uyduğunu göstermiştir. Optimum deneysel koşullarda (pH:6.0, 25 mg Zn(II)/L, 30 dk, 6.25 g/L MHAp) maksimum sorpsiyon kapasitesi 555.55 mg/g ve giderim verimi %96 olarak tespit edilmiştir.

Kaynakça

  • [1] Fan HJ, Shu HY, Yang HS, Chen WC. “Characteristics of Landfill Leachates in Central”. Taiwan. Science of the Total Environment, 361 (1-3), 25-37, 2006.
  • [2] Bhattacharya AK, Mandal SN, Das SK. “Adsorption of Zn(II) from aqueous solution by using different adsorbents”. Chemical Enginering Journal, 123(1-2), 43-51, 2006.
  • [3] Rashed MN. Adsorption Technique for the Removal of Organic Pollutants From Water and Wastewater. Editor: Mohamed Rageeb Nashed. Organic Pollutants-Monitoring, Risk and Treatment. 167-194, Intech Open, 2013.
  • [4] Gupta VK. “Application of low-cost adsorbents for dye removal- a review”. Journal of Environmental Management, 90(8), 2313-2342, 2009.
  • [5] Crini G. “Non-conventional low-cost adsorbents for dye removal: a review”. Bioresource Technology, 97(9), 1061-1085, 2006.
  • [6] Gong JL, Wang B, Zeng GM, Yang CP, Niu CG, Niu QY, Zhou WJ, Liang Y. “Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent”. Journal of Hazard Mater, 164(2-3), 1517-1522, 2009.
  • [7] Liu G, Gao J, Ai H, Chen X. “Applications and potential toxicity of magnetic iron oxide nanoparticles”. Small, 9(9-10), 1533-1545, 2013.
  • [8] Bao S, Tang L, Li K, Ning P, Peng J, Guo H, Zhu T, Liu Y “Highly selective removal of Zn(II) ion from hot-dip galvanizing pickling waste with amino-functionalized Fe3O4@SiO2 magnetic nano-adsorbent”. Journal of Colloid and Interface Science, 462, 235-242, 2016.
  • [9] Karami H. “Heavy metal removal from water by magnetite nanorods”. Chemical Engineering Journal, 219, 209-216, 2013.
  • [10] Nagpal M, Kakkar R. “Use of metal oxides for the adsorptive removal of toxic organic pollutants”. Separation and Purification Technology, 211, 522-539, 2019.
  • [11] Su C. “Environmental implications and applications of engineered nanoscale magnetite and its hybrid nanocomposites: A review of recent literature”. Journal of Hazardous Materials, 322(Part A), 48-84, 2017.
  • [12] Zhou Y, Fu S, Zhang L, Zhan H, Levit MV. “Use of carboxylated cellulose nanofibrils-filled magnetic chitosan hydrogel beads as adsorbents for Pb (II)”. Carbohydrate Polymers, 101, 75-82, 2014.
  • [13] Lu AH, Salabas EL, Schüth F. “Magnetic nanoparticles: synthesis, protection, functionalization, and application”. Angewandte Chemie International Edition, 46, 1222-1244, 2007.
  • [14] Mondal S, Manivasagan P, Bharathiraja S, Moorthy MS, Kim HH, Seo H, Lee KD, Oh J. “Magnetic hydroxyapatite: a promising multifunctional platform for nanomedicine application”. International Journal of Nanomedicine, 12, 8389-8410, 2017.
  • [15] Dong L, Zhu Z, Qiu Y, Zhao J. “Removal of lead from aqueous solution by hydroxyapatite/magnetite composite adsorbent”. Chemical Engineering Journal, 165(3), 827-834, 2010.
  • [16] Akmal M, Khalid FA, Hussain MA. “Interfacial diffusion reaction and mechanical characterization of 316L stainless steel-hydroxyapatite functionally graded materials for joint prostheses”. Ceramics International, 41(10), 14458-14467, 2015.
  • [17] Akmal M, Raza A, Khan MM, Khan MI, Hussain MA. “Effect of nanohydroxyapatite reinforcement in mechanically alloyed NiTi composites for biomedical implant”. Materials Science and Engineering: C, 68, 30-36, 2016.
  • [18] Oelkers EH, Valsami-Jones E. “Phosphate mineral reactivity and global sustainability”. Elements, 4(2), 83-87, 2008.
  • [19] Ciobanu G, Ignat D, Carja G, Luca C. “Hydroxyapatite/polyurethane composite membranes for lead ions removal”. Environmental Engineering and Management, 8(6), 1347-1350, 2009.
  • [20] Nishiyama Y, Hanafusa T, Yamashita J, Yamamoto Y, Ono T. “Adsorption and removal of strontium in aqueous solution by synthetic hydroxyapatite”. Journal of Radioanalytical and Nuclear Chemistry, 307, 1279-1285, 2016
  • [21] Wang S, Liu H, Liu W, Zuo Q. “Effect of low-molecular-weight organic acids on nano-hydroxyapatite adsorption of cadmium and lead”. Journal of Biomaterials and Tissue Engineering, 6(6), 433-439, 2016.
  • [22] Yoo JI, Shinagawa T, Wood JP, Linak WP, Santoianni DA, King CJ, Wendt JOL. “High-temperature sorption of cesium and strontium on dispersed kaolinite powders”. Environmental Science & Technology, 39(13), 5087-5094, 2005.
  • [23] Wen T, Wu X, Liu M, Xing Z, Wang X, Xu AW. “Efficient capture of strontium from aqueous solutions using graphene oxide-hydroxyapatite nanocomposites”. Dalton Transactions, 43(20), 7464-7472, 2014.
  • [24] Yang D, Sarina S, Zhu H, Liu H, Zheng Z, Xie M, Smith SV, Komarneni S. “Capture of radioactive cesium and iodide ions from water by using titanate nanofibers and nanotubes”. Angewandte Chemie International Edition, 50(45), 10594-10598, 2011.
  • [25] Smiciklas I, Dimovic S, Plecas I, Mitric M. “Removal of Co2+ from aqueous solutions by hydroxyapatite”. Water Research, 40(12), 2267-2274, 2006.
  • [26] Xia X, Shen J, Cao F, Wang C, Tang M, Zhang Q, Wei S. “A facile synthesis of hydroxyapatite for effective removal strontium ion”. Journal of Hazardous Materials, 364, 326-335, 2019.
  • [27] Sugiyama S, Ichii T, Masayoshi F, Kawashiro K, Tomida T, Shigemoto N, Hayashi H. “Heavy metal immobilization in aqueous solution using calcium phosphate and calcium hydrogen phosphates”. Journal of Colloid and Interface Science, 259(2), 408-410, 2003.
  • [28] Venkatesan S, Hassan M, Ryu H. “Adsorption and immobilization of radioactive ionic-corrosionproducts using magnetic hydroxyapatite and cold-sintering for nuclear waste management applications”. Journal of Nuclear Materials, 514, 40-49, 2019.
  • [29] Lee J, Isobe T, Senna M. “Magnetic properties of ultrafine magnetite particles and their slurries prepared via in-situ precipitation”. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 109, 121-127, 1996.
  • [30] Kim JH, Kim SM, Kim YI. “Properties of magnetic nanoparticles prepared by co-precipitation”. Journal of Nanoscience and Nanotechnology, 14(11), 8739-8744, 2014.
  • [31] Thanh DN, Novak P, Vejpravova J, Vu HN, Lederer J, Munshi T. “Removal of copper and nickel from water using nanocomposite of magnetic hydroxyapatite nanorods”. Journal of Magnetism and Magnetic Materials, 456, 451-460, 2018.
  • [32] Lagergren S. “About the theory of so-called adsorption of soluble substance”. Kung Sven Veten. Hand, 24(4), 1-39, 1898.
  • [33] Ho YS, Mckay G. “Pseudo-second order model for sorption processes”. Process Biochemistry, 34(5), 451-465, 1999.
  • [34] Weber Jr WJ, Morriss JC. “Kinetics of adsorption on carbon from solution”. Journal of the Sanitary Engineering Division, 89(2), 31-60, 1963.
  • [35] Jiun-Horng T, Hsiu-Mei C, Guan-Yinag H, Hung-Lung C. “Adsorption characteristics of acetone, chloroform and acetonitrile on sludge-derived adsorbent, commercial granular activated carbon and activated carbon fibers”. Journal of Hazardous Materials, 154(1-3), 1183-1191, 2008.
  • [36] Yaoguang W, Lihua H, Guangya Z, Tao Y, Liangguo Y, Qin W, Bin D. “Removal of Pb(II) and methylene blue from aqueous solution by magnetic hydroxyapatite-immobilized oxidized multi-walled carbon nanotubes”. Journal of Colloid and Interface Science, 494, 380-388, 2017.
  • [37] Nahid G, Maryam G, Saleh M, Paris G, Njud SA, Vinod KG, Agarwal S, Burakova IV, Tkachev AV. “Zn (II) removal by amino-functionalized magnetic nanoparticles: kinetics, isotherm, and thermodynamic aspects of adsorption”. Journal of Industrial and Engineering Chemistry, 62, 302-310, 2018.
  • [38] Saida MG, Frini-Srasra N. “A comparison of single and mixed pillared clays for zinc and chromium cations removal”. Applied Clay Science, 158, 150-157, 2018.
  • [39] Chayan S, Jayanta K, Basu A, Nath S. “Synthesis of mesoporous geopolymeric powder from LD slag as superior adsorbent for zinc (II) removal”. Advanced Powder Technology, 29(5), 1142-1152, 2018.
  • [40] Kanungo SB, Tripathy SS, Rajeev. “Adsorption of Co, Ni, Cu, and Zn on hydrous manganese dioxide from complex electrolyte solutions resembling sea water in major ion content”. Journal of Colloid and Interface Science, 269(1), 1-10, 2004.
  • [41] Valsami-Jones E, Ragnarsdottir KV, Putnis A, Bosbach D, Kemp AJ, Cressey G. “The dissolution of apatite in the presence of aqueous metal cations at pH 2-7”. Chemical Geology, 151(1-4), 215-233, 1998.
  • [42] Harja M, Ciobanu G. “Studies on Adsorption of oxytetracycline from aqueous solutions onto hydroxyapatite”. Science of the Total Environment, 628-629, 36-43, 2018.
  • [43] Periyasamy S, Gopalakannan V, Viswanathan N. “Hydrothermal assisted magnetic nano-hydroxyapatite encapsulated alginate beads for efficient Cr(VI) uptake from water”. Journal of Environmental Chemical Engineering, 6(1), 1443-1454, 2018.
  • [44] Wang Y, Liu Y, Lu H, Yang R, Yang S. “Competitive adsorption of Pb(II), Cu(II), and Zn(II) ions ontohydroxyapatite-biochar nanocomposite in aqueous solutions”. Journal of Solid State Chemistry, 261, 53-61, 2018.

Removal of Zn (II) from water by magnetic hydroxyapatite nanocomposite

Yıl 2021, Cilt: 27 Sayı: 3, 368 - 377, 09.06.2021

Öz

In this study, the capability of chemically synthesized hydroxyapatite-magnetite (HAp/Fe3O4-MHAp) nanocomposite for the sorption of Zn(II) ions was investigated. Magnetite-hydroxyapatite nanocomposite (MHAp) has been chosen as an adsorbent because of its excellent properties such as stability, low cost and effective sorption power. Adsorption process were tried to find the optimum conditions of the parameters for Zn(II) removal such as pH, concentrations of initial Zn(II) and adsorbent and reaction time. Nanocomposite properties were also characterized by using Fouirer Transform Infrared Spektrofotometre (FTIR), Scanning Electron Microscope (SEM) and Energy-dispersive X-ray Spectroscopy (EDX) techniques. Our results showed that the adsorption kinetic of Zn(II) using HAp/Fe3O4 composite fitted to the pseudo-second-order kinetic model. Calculations were carried out to determine which isotherm model the adsorption fits by using Langmuir, Freundlich, Tempkin, and Dubinin-Radushkevich (D-R) equations. Adsorption potential of MHAp nanocomposite was obtained 555.55 mg/g, and best removal value of 96% were determined at pH of 6.0, optimum adsorbent concentration of 6.25 g/L, in 25 mg/L Zn(II) concentration and optimum mixing time of 30 min. This study showed that the MHAp can be considered an effective adsorbent on the Zn(II) removal from wastewater.

Kaynakça

  • [1] Fan HJ, Shu HY, Yang HS, Chen WC. “Characteristics of Landfill Leachates in Central”. Taiwan. Science of the Total Environment, 361 (1-3), 25-37, 2006.
  • [2] Bhattacharya AK, Mandal SN, Das SK. “Adsorption of Zn(II) from aqueous solution by using different adsorbents”. Chemical Enginering Journal, 123(1-2), 43-51, 2006.
  • [3] Rashed MN. Adsorption Technique for the Removal of Organic Pollutants From Water and Wastewater. Editor: Mohamed Rageeb Nashed. Organic Pollutants-Monitoring, Risk and Treatment. 167-194, Intech Open, 2013.
  • [4] Gupta VK. “Application of low-cost adsorbents for dye removal- a review”. Journal of Environmental Management, 90(8), 2313-2342, 2009.
  • [5] Crini G. “Non-conventional low-cost adsorbents for dye removal: a review”. Bioresource Technology, 97(9), 1061-1085, 2006.
  • [6] Gong JL, Wang B, Zeng GM, Yang CP, Niu CG, Niu QY, Zhou WJ, Liang Y. “Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent”. Journal of Hazard Mater, 164(2-3), 1517-1522, 2009.
  • [7] Liu G, Gao J, Ai H, Chen X. “Applications and potential toxicity of magnetic iron oxide nanoparticles”. Small, 9(9-10), 1533-1545, 2013.
  • [8] Bao S, Tang L, Li K, Ning P, Peng J, Guo H, Zhu T, Liu Y “Highly selective removal of Zn(II) ion from hot-dip galvanizing pickling waste with amino-functionalized Fe3O4@SiO2 magnetic nano-adsorbent”. Journal of Colloid and Interface Science, 462, 235-242, 2016.
  • [9] Karami H. “Heavy metal removal from water by magnetite nanorods”. Chemical Engineering Journal, 219, 209-216, 2013.
  • [10] Nagpal M, Kakkar R. “Use of metal oxides for the adsorptive removal of toxic organic pollutants”. Separation and Purification Technology, 211, 522-539, 2019.
  • [11] Su C. “Environmental implications and applications of engineered nanoscale magnetite and its hybrid nanocomposites: A review of recent literature”. Journal of Hazardous Materials, 322(Part A), 48-84, 2017.
  • [12] Zhou Y, Fu S, Zhang L, Zhan H, Levit MV. “Use of carboxylated cellulose nanofibrils-filled magnetic chitosan hydrogel beads as adsorbents for Pb (II)”. Carbohydrate Polymers, 101, 75-82, 2014.
  • [13] Lu AH, Salabas EL, Schüth F. “Magnetic nanoparticles: synthesis, protection, functionalization, and application”. Angewandte Chemie International Edition, 46, 1222-1244, 2007.
  • [14] Mondal S, Manivasagan P, Bharathiraja S, Moorthy MS, Kim HH, Seo H, Lee KD, Oh J. “Magnetic hydroxyapatite: a promising multifunctional platform for nanomedicine application”. International Journal of Nanomedicine, 12, 8389-8410, 2017.
  • [15] Dong L, Zhu Z, Qiu Y, Zhao J. “Removal of lead from aqueous solution by hydroxyapatite/magnetite composite adsorbent”. Chemical Engineering Journal, 165(3), 827-834, 2010.
  • [16] Akmal M, Khalid FA, Hussain MA. “Interfacial diffusion reaction and mechanical characterization of 316L stainless steel-hydroxyapatite functionally graded materials for joint prostheses”. Ceramics International, 41(10), 14458-14467, 2015.
  • [17] Akmal M, Raza A, Khan MM, Khan MI, Hussain MA. “Effect of nanohydroxyapatite reinforcement in mechanically alloyed NiTi composites for biomedical implant”. Materials Science and Engineering: C, 68, 30-36, 2016.
  • [18] Oelkers EH, Valsami-Jones E. “Phosphate mineral reactivity and global sustainability”. Elements, 4(2), 83-87, 2008.
  • [19] Ciobanu G, Ignat D, Carja G, Luca C. “Hydroxyapatite/polyurethane composite membranes for lead ions removal”. Environmental Engineering and Management, 8(6), 1347-1350, 2009.
  • [20] Nishiyama Y, Hanafusa T, Yamashita J, Yamamoto Y, Ono T. “Adsorption and removal of strontium in aqueous solution by synthetic hydroxyapatite”. Journal of Radioanalytical and Nuclear Chemistry, 307, 1279-1285, 2016
  • [21] Wang S, Liu H, Liu W, Zuo Q. “Effect of low-molecular-weight organic acids on nano-hydroxyapatite adsorption of cadmium and lead”. Journal of Biomaterials and Tissue Engineering, 6(6), 433-439, 2016.
  • [22] Yoo JI, Shinagawa T, Wood JP, Linak WP, Santoianni DA, King CJ, Wendt JOL. “High-temperature sorption of cesium and strontium on dispersed kaolinite powders”. Environmental Science & Technology, 39(13), 5087-5094, 2005.
  • [23] Wen T, Wu X, Liu M, Xing Z, Wang X, Xu AW. “Efficient capture of strontium from aqueous solutions using graphene oxide-hydroxyapatite nanocomposites”. Dalton Transactions, 43(20), 7464-7472, 2014.
  • [24] Yang D, Sarina S, Zhu H, Liu H, Zheng Z, Xie M, Smith SV, Komarneni S. “Capture of radioactive cesium and iodide ions from water by using titanate nanofibers and nanotubes”. Angewandte Chemie International Edition, 50(45), 10594-10598, 2011.
  • [25] Smiciklas I, Dimovic S, Plecas I, Mitric M. “Removal of Co2+ from aqueous solutions by hydroxyapatite”. Water Research, 40(12), 2267-2274, 2006.
  • [26] Xia X, Shen J, Cao F, Wang C, Tang M, Zhang Q, Wei S. “A facile synthesis of hydroxyapatite for effective removal strontium ion”. Journal of Hazardous Materials, 364, 326-335, 2019.
  • [27] Sugiyama S, Ichii T, Masayoshi F, Kawashiro K, Tomida T, Shigemoto N, Hayashi H. “Heavy metal immobilization in aqueous solution using calcium phosphate and calcium hydrogen phosphates”. Journal of Colloid and Interface Science, 259(2), 408-410, 2003.
  • [28] Venkatesan S, Hassan M, Ryu H. “Adsorption and immobilization of radioactive ionic-corrosionproducts using magnetic hydroxyapatite and cold-sintering for nuclear waste management applications”. Journal of Nuclear Materials, 514, 40-49, 2019.
  • [29] Lee J, Isobe T, Senna M. “Magnetic properties of ultrafine magnetite particles and their slurries prepared via in-situ precipitation”. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 109, 121-127, 1996.
  • [30] Kim JH, Kim SM, Kim YI. “Properties of magnetic nanoparticles prepared by co-precipitation”. Journal of Nanoscience and Nanotechnology, 14(11), 8739-8744, 2014.
  • [31] Thanh DN, Novak P, Vejpravova J, Vu HN, Lederer J, Munshi T. “Removal of copper and nickel from water using nanocomposite of magnetic hydroxyapatite nanorods”. Journal of Magnetism and Magnetic Materials, 456, 451-460, 2018.
  • [32] Lagergren S. “About the theory of so-called adsorption of soluble substance”. Kung Sven Veten. Hand, 24(4), 1-39, 1898.
  • [33] Ho YS, Mckay G. “Pseudo-second order model for sorption processes”. Process Biochemistry, 34(5), 451-465, 1999.
  • [34] Weber Jr WJ, Morriss JC. “Kinetics of adsorption on carbon from solution”. Journal of the Sanitary Engineering Division, 89(2), 31-60, 1963.
  • [35] Jiun-Horng T, Hsiu-Mei C, Guan-Yinag H, Hung-Lung C. “Adsorption characteristics of acetone, chloroform and acetonitrile on sludge-derived adsorbent, commercial granular activated carbon and activated carbon fibers”. Journal of Hazardous Materials, 154(1-3), 1183-1191, 2008.
  • [36] Yaoguang W, Lihua H, Guangya Z, Tao Y, Liangguo Y, Qin W, Bin D. “Removal of Pb(II) and methylene blue from aqueous solution by magnetic hydroxyapatite-immobilized oxidized multi-walled carbon nanotubes”. Journal of Colloid and Interface Science, 494, 380-388, 2017.
  • [37] Nahid G, Maryam G, Saleh M, Paris G, Njud SA, Vinod KG, Agarwal S, Burakova IV, Tkachev AV. “Zn (II) removal by amino-functionalized magnetic nanoparticles: kinetics, isotherm, and thermodynamic aspects of adsorption”. Journal of Industrial and Engineering Chemistry, 62, 302-310, 2018.
  • [38] Saida MG, Frini-Srasra N. “A comparison of single and mixed pillared clays for zinc and chromium cations removal”. Applied Clay Science, 158, 150-157, 2018.
  • [39] Chayan S, Jayanta K, Basu A, Nath S. “Synthesis of mesoporous geopolymeric powder from LD slag as superior adsorbent for zinc (II) removal”. Advanced Powder Technology, 29(5), 1142-1152, 2018.
  • [40] Kanungo SB, Tripathy SS, Rajeev. “Adsorption of Co, Ni, Cu, and Zn on hydrous manganese dioxide from complex electrolyte solutions resembling sea water in major ion content”. Journal of Colloid and Interface Science, 269(1), 1-10, 2004.
  • [41] Valsami-Jones E, Ragnarsdottir KV, Putnis A, Bosbach D, Kemp AJ, Cressey G. “The dissolution of apatite in the presence of aqueous metal cations at pH 2-7”. Chemical Geology, 151(1-4), 215-233, 1998.
  • [42] Harja M, Ciobanu G. “Studies on Adsorption of oxytetracycline from aqueous solutions onto hydroxyapatite”. Science of the Total Environment, 628-629, 36-43, 2018.
  • [43] Periyasamy S, Gopalakannan V, Viswanathan N. “Hydrothermal assisted magnetic nano-hydroxyapatite encapsulated alginate beads for efficient Cr(VI) uptake from water”. Journal of Environmental Chemical Engineering, 6(1), 1443-1454, 2018.
  • [44] Wang Y, Liu Y, Lu H, Yang R, Yang S. “Competitive adsorption of Pb(II), Cu(II), and Zn(II) ions ontohydroxyapatite-biochar nanocomposite in aqueous solutions”. Journal of Solid State Chemistry, 261, 53-61, 2018.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makale
Yazarlar

Yağmur Uysal Bu kişi benim

Ahmet Canbakış Bu kişi benim

Yayımlanma Tarihi 9 Haziran 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 27 Sayı: 3

Kaynak Göster

APA Uysal, Y., & Canbakış, A. (2021). Removal of Zn (II) from water by magnetic hydroxyapatite nanocomposite. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 27(3), 368-377.
AMA Uysal Y, Canbakış A. Removal of Zn (II) from water by magnetic hydroxyapatite nanocomposite. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Haziran 2021;27(3):368-377.
Chicago Uysal, Yağmur, ve Ahmet Canbakış. “Removal of Zn (II) from Water by Magnetic Hydroxyapatite Nanocomposite”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 27, sy. 3 (Haziran 2021): 368-77.
EndNote Uysal Y, Canbakış A (01 Haziran 2021) Removal of Zn (II) from water by magnetic hydroxyapatite nanocomposite. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 27 3 368–377.
IEEE Y. Uysal ve A. Canbakış, “Removal of Zn (II) from water by magnetic hydroxyapatite nanocomposite”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 27, sy. 3, ss. 368–377, 2021.
ISNAD Uysal, Yağmur - Canbakış, Ahmet. “Removal of Zn (II) from Water by Magnetic Hydroxyapatite Nanocomposite”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 27/3 (Haziran 2021), 368-377.
JAMA Uysal Y, Canbakış A. Removal of Zn (II) from water by magnetic hydroxyapatite nanocomposite. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2021;27:368–377.
MLA Uysal, Yağmur ve Ahmet Canbakış. “Removal of Zn (II) from Water by Magnetic Hydroxyapatite Nanocomposite”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 27, sy. 3, 2021, ss. 368-77.
Vancouver Uysal Y, Canbakış A. Removal of Zn (II) from water by magnetic hydroxyapatite nanocomposite. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2021;27(3):368-77.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.