Araştırma Makalesi
BibTex RIS Kaynak Göster

Yüksek uzama kabiliyetine sahip elastomer esaslı kompozit malzemelerin yanma özelliklerine karbon siyahı ve alev geciktirici ajanların etkisinin incelenmesi

Yıl 2021, Cilt: 27 Sayı: 4, 484 - 494, 20.08.2021

Öz

Doğal kauçuk esaslı kompozit karışımları (NRC), sahip oldukları üstün performans özellikleri sebebiyle araç lastiklerinde, amortisörlerde, süspansiyon sistem elemanları ve çeşitli mühendislik uygulamalarında bir tür ticari malzeme olarak yaygın bir şekilde kullanılmaktadır. Kauçuk esaslı malzemeler çalıştığı ortamlarda son derece ağır şartlara maruz kalmasının yanında ciddi bir yangın güvenliği sorununu da bünyesinde barındırmaktadır. Bu çalışmada, havalı süspansiyon sistemlerinde hammadde olarak kullanılacak farklı partikül boyutlarına sahip karbon siyahı (CB) ve alev ısısı ile reaksiyona girerek kabaran alev geciktirici ajanların (SRA) ilavesi ile hazırlanan kauçuk kompozit karışımlarının termal, alev geciktirici ve mekanik özellikleri araştırılmıştır. Kullanılan dolgu malzemeleri ve alev geciktiricilerin NRC üzerindeki etkisi termal analizler (TGA), yanma testleri, mekanik testler, SEM ve mikroskobik analizler ile incelenmiştir. Kompozitlerin ısıl kararlılığı ve yanıcılığı ağ yapısına, elde edilen karışımdaki katkı maddesinin içeriğine ve tipine bağlı olduğu gözlemlenmiştir. Parçacık boyutunun küçültülmesi, NRC'lerin yanıcılığını azaltırken aynı zamanda mekanik özelliklerini de arttırmada önemli bir role sahiptir.

Kaynakça

  • [1] Khobragade PS, Hansora DP, Naik JB, Chatterjee A. “Flame retarding performance of elastomeric nanocomposites: A review”. Polymer Degradation and Stability, 130, 194-244, 2016.
  • [2] Zhan, X, He Q, Gu H, Colorado H, Guo SWZ. “Flame-retardant electrical conductive nanopolymers based on bisphenol F epoxy resin reinforced with nano polyanilines”. ACS Applied Materils and Interfaces, 5(3), 898-910, 2013.
  • [3] Zhang K, Wu K, Zhang YK, Liu HF, Shen MM, Hu W. “Flammability characteristics and performance of flame-retarded epoxy composite based on melaminecyanurate and ammonium polyphosphate”. Polymer-Plastics Technology and Engineering, 52(5), 525-532, 2013.
  • [4] Wang J, Dong X, Hao W, Yi Z, Xi G, Ding W. “Application properties of TCP/OMMT flame-retardant- system in NR composites”. Journal of Elastomers and Plastics, 45(2), 107-119, 2013.
  • [5] Derouet D, Radhakrishnan N, Brosse JC, Boccaccio G. “Phosphorus modification of epoxidized liquid natural-rubber to improve flame resistance of vulcanized rubbers”. Journal of Applied Polymer Science, 52(9), 1309-1316, 1994.
  • [6] Wang J, Chen Y. “Synthesis of an ıntumescent flame retardant (IFR) agent and application in a natural rubber (NR) system”. Journal of Elastomers and Plastics, 39(1), 33-51, 2007.
  • [7] Carli LN, Roncato CR, Zanchet A, Mauler RS, Giovanela M, Brandalise RN, Crespo JS. “Characterization of natural rubber nanocomposites filled with organoclay as a substitute for silica obtained by the conventional two-roll mill method”. Applied Clay Science, 52(1-2), 56-61, 2011.
  • [8] Huang GB, Li YJ, Han LA, Gao JR, Wang X. “A novel intumescent flame retardant-functionalized montmorillonite: Preparation, characterization, and flammability properties”. Applied Clay Science, 51(3), 360-365, 2011.
  • [9] Wang DL, Liu Y, Wang DY, Zhao CX, Mou YR, Wang YZ. “A novel intumescent flame-retardant system containing metal chelates for polyvinyl alcohol”. Polymer Degradation and Stability, 92(8), 1555-1564, 2007.
  • [10] Przemysław R, Grażyna J, Małgorzata J, Agnieszka P. “Thermal stability and flammability of butadiene-styrene rubber nanocomposites”. Journal of Thermal Analysis and Calorimetry, 109(2), 561-571, 2012.
  • [11] Akdogan E, Tarakcılar AR, Topcu M, Yurtseven R. “Alüminyum hidroksit ve magnezyum hidroksit katkısının termoplastik poliüretan malzemelerin mekanik özelliklerine etkisi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 21(8), 376-380, 2015.
  • [12] Wang JC, Yang SL, Li G, Jiang, JM. “Synthesis of a new-type carbonific and its application in ıntumescent flame-retardant (IFR)/Polyurethane coatings”. Journal of Fire Sciences, 21(4), 245-266, 2003.
  • [13] Akdogan E. “The effects of ıntumescent flame retardant and nanoclay on mechanical and thermal expansion properties of high density polyethylene composites”. Acta Physica Polonica A, 135(4), 717-721, 2019.
  • [14] Wang JC, Li G, Yang SL, Jiang JM. “New intumescent flame-retardant agent: application to polyurethane coatings”. Journal of Applied Polymer Science, 91(2), 1193-1206, 2004.
  • [15] Bras ML, Bugajny M, Lefebvre J. “Use of polyurethanes as char-forming agents in polypropylene ıntumescent formulations”. Polymer International, 49(10), 1115-1124, 2000.
  • [16] Bourbigot S, Le Bras M, Bugajny M. “Intumescence and polymer blending: an approach for flame retardancy”. NIST Annual Conference, Gaithersburg, USA, 2-5 November 1998.
  • [17] Bourbigot S, Le Bras M, Delobel RJ. “Synergistic effect of zeolite in an ıntumescence process: study of the carbonaceous structures using solid state NMR”. Journal of the Chemical Society, Faraday Transactions, 92(1), 149-158, 1996.
  • [18] Le Bras M, Camino G, Bourbigot S, Delobel R. Fire Retardancy of Polymers: The Use of Intumescence. 1st ed. Cambridge, UK, Woodhead, 1998.
  • [19] Camino G, Costa L, Trossarelli L. “Study of the mechanism of ıntumescence in fire retardant polymers: Part I- thermal degradation of ammonium polyphosphate-pentaerythritol mixtures”. Polymer Degradation and Stability, 6(1), 243-252, 1984.
  • [20] Williams CGH. “IV. on isoprene and caoutchine”. Proceedings of the Royal Society of London, 10, 516-519, 1860.
  • [21] Midgley T, Henne AL. “Natural and synthetic rubber I Products of the destructive distillation of natural rubber”. Journal of the American Chemical Society, 51(4), 1215-1226, 1929.
  • [22] Bolland JL, Orr WJC. “Thermal breakdown of rubber”. Rubber Chemistry and Technology, 19(2), 277-282, 1946.
  • [23] Straus S, Madorsky SL. “Thermal degradation of unvulcanized and vulcanized rubber in a vacuum”. Industrial and Engineering Chemistry, 48(7), 1212-1219, 1956.
  • [24] Colin X, Audouin L, Verdu J. “Kinetic modelling of the thermal oxidation of polyisoprene elastomers. Part 1: Unvulcanized unstabilized polyisoprene”. Polymer Degradation and Stability, 92(5), 886-897, 2007.
  • [25] Chen FZ, Qian JL. “Studies on the thermal degradation of cis-1,4-polyisoprene”. Fuel, 81(16), 2071-2077, 2002.
  • [26] Reshetnikov SM, Reshetnikov IS. “Oxidation kinetic of volatile polymer degradation products”. Polymer Degradation and Stability, 64(3), 379-385, 1999.
  • [27] Cataldo F. “Thermal depolymerization and pyrolysis of cis-1,4-polyisoprene: Preparation of liquid polyisoprene and terpene resin”. Journal of Analytical and Applied Pyrolysis, 44(2), 121-130, 1998.
  • [28] Neiman MB. “Mechanism of the oxidative thermal degradation and of the stabilisation of polymers”. Russian Chemical Reviews, 33(1), 13-27, 1964.
  • [29] Malas A, Pal P, Das CK. “Effect of expanded graphite and modified graphite flakes on thephysical and thermo-mechanical properties of styrene butadiene rubber/polybutadiene rubber (SBR/BR) blends”. Materials and Design, 55, 664-673, 2014.
  • [30] Cerin O, Fontainer G, Duquesner S, Bourbigot S. “Thermally stable and flame retardant elastomeric nanocomposites”. Recent Advances in Elastomeric Nanocomposites, 9, 155-178,2011.
  • [31] Wen X,Szymanska K, Chen X, Mijowska E. “Nanosized carbon black as synergist in PP/POE-MA/IFR system for simultaneously improving thermal, electrical and mechanical properties”. Journal of Thermal Analysis and Calorimetry, 139, 1091-1098,2020.
  • [32] Liu L, Zhao X, Ma C, Chen X, Li S, Jiao C. “Smoke suppression properties of carbon black on flame retardant thermoplastic polyurethane based on ammonium polyphosphate”. Journal of Thermal Analysis and Calorimetry, 126, 1821-1830,2016.
  • [33] Yan L, Xu Z, Deng N, Chu Z. “Synergistic effects of mono-component intumescent flame retardant grafted with carbon black on flame retardancy and smoke suppression properties of epoxy resins”. Journal of Thermal Analysis and Calorimetry, 138, 915-927, 2019.
  • [34] Liu Q, Zhang Y, Xu H. “Properties of vulcanized rubber nanocomposite filled withnanokaolin and precipitated silica”. Applied Clay Science, 42(1-2), 232-237,2008.
  • [35] Tarakcılar AR. “The effects of ıntumescent flame retardant ıncluding ammonium polyphosphate/ pentaerythritol and fly ash fillers on the physicomechanical properties of rigid polyurethane foams”. Journal of Applied Polymer Science, 120(4), 2095-2102, 2011.

Investigation of the effect of carbon black and flame retardant agent on the fire properties of elastomer-based composite materials with high elongation capability

Yıl 2021, Cilt: 27 Sayı: 4, 484 - 494, 20.08.2021

Öz

Natural rubber-based composite mixtures (NRC) are widely used as commercial material in vehicle tires, shock absorbers, suspension system components, and various engineering applications due to their superior performance properties. In addition to the extremely severe conditions of the working environments of rubber-based materials, it also contains a serious fire safety problem. In this study, thermal, flame retardant and mechanical properties of rubber composite mixtures prepared with the addition of carbon black (CB) and intumescent flame retardant agents (IFR) with different particle sizes to be used as raw materials in air suspension systems were investigated. The effect of filler materials and flame retardants used on NRC was investigated using thermal analysis (TGA), combustion tests, mechanical tests, SEM, and microscopic studies. It was observed that the thermal stability and flammability of the composites depend on the network structure, the content, and the type of the additive in the mixture obtained. Particle size reduction has a significant role on reducing NRCs flammability while also increasing their mechanical properties.

Kaynakça

  • [1] Khobragade PS, Hansora DP, Naik JB, Chatterjee A. “Flame retarding performance of elastomeric nanocomposites: A review”. Polymer Degradation and Stability, 130, 194-244, 2016.
  • [2] Zhan, X, He Q, Gu H, Colorado H, Guo SWZ. “Flame-retardant electrical conductive nanopolymers based on bisphenol F epoxy resin reinforced with nano polyanilines”. ACS Applied Materils and Interfaces, 5(3), 898-910, 2013.
  • [3] Zhang K, Wu K, Zhang YK, Liu HF, Shen MM, Hu W. “Flammability characteristics and performance of flame-retarded epoxy composite based on melaminecyanurate and ammonium polyphosphate”. Polymer-Plastics Technology and Engineering, 52(5), 525-532, 2013.
  • [4] Wang J, Dong X, Hao W, Yi Z, Xi G, Ding W. “Application properties of TCP/OMMT flame-retardant- system in NR composites”. Journal of Elastomers and Plastics, 45(2), 107-119, 2013.
  • [5] Derouet D, Radhakrishnan N, Brosse JC, Boccaccio G. “Phosphorus modification of epoxidized liquid natural-rubber to improve flame resistance of vulcanized rubbers”. Journal of Applied Polymer Science, 52(9), 1309-1316, 1994.
  • [6] Wang J, Chen Y. “Synthesis of an ıntumescent flame retardant (IFR) agent and application in a natural rubber (NR) system”. Journal of Elastomers and Plastics, 39(1), 33-51, 2007.
  • [7] Carli LN, Roncato CR, Zanchet A, Mauler RS, Giovanela M, Brandalise RN, Crespo JS. “Characterization of natural rubber nanocomposites filled with organoclay as a substitute for silica obtained by the conventional two-roll mill method”. Applied Clay Science, 52(1-2), 56-61, 2011.
  • [8] Huang GB, Li YJ, Han LA, Gao JR, Wang X. “A novel intumescent flame retardant-functionalized montmorillonite: Preparation, characterization, and flammability properties”. Applied Clay Science, 51(3), 360-365, 2011.
  • [9] Wang DL, Liu Y, Wang DY, Zhao CX, Mou YR, Wang YZ. “A novel intumescent flame-retardant system containing metal chelates for polyvinyl alcohol”. Polymer Degradation and Stability, 92(8), 1555-1564, 2007.
  • [10] Przemysław R, Grażyna J, Małgorzata J, Agnieszka P. “Thermal stability and flammability of butadiene-styrene rubber nanocomposites”. Journal of Thermal Analysis and Calorimetry, 109(2), 561-571, 2012.
  • [11] Akdogan E, Tarakcılar AR, Topcu M, Yurtseven R. “Alüminyum hidroksit ve magnezyum hidroksit katkısının termoplastik poliüretan malzemelerin mekanik özelliklerine etkisi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 21(8), 376-380, 2015.
  • [12] Wang JC, Yang SL, Li G, Jiang, JM. “Synthesis of a new-type carbonific and its application in ıntumescent flame-retardant (IFR)/Polyurethane coatings”. Journal of Fire Sciences, 21(4), 245-266, 2003.
  • [13] Akdogan E. “The effects of ıntumescent flame retardant and nanoclay on mechanical and thermal expansion properties of high density polyethylene composites”. Acta Physica Polonica A, 135(4), 717-721, 2019.
  • [14] Wang JC, Li G, Yang SL, Jiang JM. “New intumescent flame-retardant agent: application to polyurethane coatings”. Journal of Applied Polymer Science, 91(2), 1193-1206, 2004.
  • [15] Bras ML, Bugajny M, Lefebvre J. “Use of polyurethanes as char-forming agents in polypropylene ıntumescent formulations”. Polymer International, 49(10), 1115-1124, 2000.
  • [16] Bourbigot S, Le Bras M, Bugajny M. “Intumescence and polymer blending: an approach for flame retardancy”. NIST Annual Conference, Gaithersburg, USA, 2-5 November 1998.
  • [17] Bourbigot S, Le Bras M, Delobel RJ. “Synergistic effect of zeolite in an ıntumescence process: study of the carbonaceous structures using solid state NMR”. Journal of the Chemical Society, Faraday Transactions, 92(1), 149-158, 1996.
  • [18] Le Bras M, Camino G, Bourbigot S, Delobel R. Fire Retardancy of Polymers: The Use of Intumescence. 1st ed. Cambridge, UK, Woodhead, 1998.
  • [19] Camino G, Costa L, Trossarelli L. “Study of the mechanism of ıntumescence in fire retardant polymers: Part I- thermal degradation of ammonium polyphosphate-pentaerythritol mixtures”. Polymer Degradation and Stability, 6(1), 243-252, 1984.
  • [20] Williams CGH. “IV. on isoprene and caoutchine”. Proceedings of the Royal Society of London, 10, 516-519, 1860.
  • [21] Midgley T, Henne AL. “Natural and synthetic rubber I Products of the destructive distillation of natural rubber”. Journal of the American Chemical Society, 51(4), 1215-1226, 1929.
  • [22] Bolland JL, Orr WJC. “Thermal breakdown of rubber”. Rubber Chemistry and Technology, 19(2), 277-282, 1946.
  • [23] Straus S, Madorsky SL. “Thermal degradation of unvulcanized and vulcanized rubber in a vacuum”. Industrial and Engineering Chemistry, 48(7), 1212-1219, 1956.
  • [24] Colin X, Audouin L, Verdu J. “Kinetic modelling of the thermal oxidation of polyisoprene elastomers. Part 1: Unvulcanized unstabilized polyisoprene”. Polymer Degradation and Stability, 92(5), 886-897, 2007.
  • [25] Chen FZ, Qian JL. “Studies on the thermal degradation of cis-1,4-polyisoprene”. Fuel, 81(16), 2071-2077, 2002.
  • [26] Reshetnikov SM, Reshetnikov IS. “Oxidation kinetic of volatile polymer degradation products”. Polymer Degradation and Stability, 64(3), 379-385, 1999.
  • [27] Cataldo F. “Thermal depolymerization and pyrolysis of cis-1,4-polyisoprene: Preparation of liquid polyisoprene and terpene resin”. Journal of Analytical and Applied Pyrolysis, 44(2), 121-130, 1998.
  • [28] Neiman MB. “Mechanism of the oxidative thermal degradation and of the stabilisation of polymers”. Russian Chemical Reviews, 33(1), 13-27, 1964.
  • [29] Malas A, Pal P, Das CK. “Effect of expanded graphite and modified graphite flakes on thephysical and thermo-mechanical properties of styrene butadiene rubber/polybutadiene rubber (SBR/BR) blends”. Materials and Design, 55, 664-673, 2014.
  • [30] Cerin O, Fontainer G, Duquesner S, Bourbigot S. “Thermally stable and flame retardant elastomeric nanocomposites”. Recent Advances in Elastomeric Nanocomposites, 9, 155-178,2011.
  • [31] Wen X,Szymanska K, Chen X, Mijowska E. “Nanosized carbon black as synergist in PP/POE-MA/IFR system for simultaneously improving thermal, electrical and mechanical properties”. Journal of Thermal Analysis and Calorimetry, 139, 1091-1098,2020.
  • [32] Liu L, Zhao X, Ma C, Chen X, Li S, Jiao C. “Smoke suppression properties of carbon black on flame retardant thermoplastic polyurethane based on ammonium polyphosphate”. Journal of Thermal Analysis and Calorimetry, 126, 1821-1830,2016.
  • [33] Yan L, Xu Z, Deng N, Chu Z. “Synergistic effects of mono-component intumescent flame retardant grafted with carbon black on flame retardancy and smoke suppression properties of epoxy resins”. Journal of Thermal Analysis and Calorimetry, 138, 915-927, 2019.
  • [34] Liu Q, Zhang Y, Xu H. “Properties of vulcanized rubber nanocomposite filled withnanokaolin and precipitated silica”. Applied Clay Science, 42(1-2), 232-237,2008.
  • [35] Tarakcılar AR. “The effects of ıntumescent flame retardant ıncluding ammonium polyphosphate/ pentaerythritol and fly ash fillers on the physicomechanical properties of rigid polyurethane foams”. Journal of Applied Polymer Science, 120(4), 2095-2102, 2011.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makale
Yazarlar

Hasan Kasım

Yayımlanma Tarihi 20 Ağustos 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 27 Sayı: 4

Kaynak Göster

APA Kasım, H. (2021). Yüksek uzama kabiliyetine sahip elastomer esaslı kompozit malzemelerin yanma özelliklerine karbon siyahı ve alev geciktirici ajanların etkisinin incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 27(4), 484-494.
AMA Kasım H. Yüksek uzama kabiliyetine sahip elastomer esaslı kompozit malzemelerin yanma özelliklerine karbon siyahı ve alev geciktirici ajanların etkisinin incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Ağustos 2021;27(4):484-494.
Chicago Kasım, Hasan. “Yüksek Uzama Kabiliyetine Sahip Elastomer Esaslı Kompozit Malzemelerin Yanma özelliklerine Karbon Siyahı Ve Alev Geciktirici ajanların Etkisinin Incelenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 27, sy. 4 (Ağustos 2021): 484-94.
EndNote Kasım H (01 Ağustos 2021) Yüksek uzama kabiliyetine sahip elastomer esaslı kompozit malzemelerin yanma özelliklerine karbon siyahı ve alev geciktirici ajanların etkisinin incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 27 4 484–494.
IEEE H. Kasım, “Yüksek uzama kabiliyetine sahip elastomer esaslı kompozit malzemelerin yanma özelliklerine karbon siyahı ve alev geciktirici ajanların etkisinin incelenmesi”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 27, sy. 4, ss. 484–494, 2021.
ISNAD Kasım, Hasan. “Yüksek Uzama Kabiliyetine Sahip Elastomer Esaslı Kompozit Malzemelerin Yanma özelliklerine Karbon Siyahı Ve Alev Geciktirici ajanların Etkisinin Incelenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 27/4 (Ağustos 2021), 484-494.
JAMA Kasım H. Yüksek uzama kabiliyetine sahip elastomer esaslı kompozit malzemelerin yanma özelliklerine karbon siyahı ve alev geciktirici ajanların etkisinin incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2021;27:484–494.
MLA Kasım, Hasan. “Yüksek Uzama Kabiliyetine Sahip Elastomer Esaslı Kompozit Malzemelerin Yanma özelliklerine Karbon Siyahı Ve Alev Geciktirici ajanların Etkisinin Incelenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 27, sy. 4, 2021, ss. 484-9.
Vancouver Kasım H. Yüksek uzama kabiliyetine sahip elastomer esaslı kompozit malzemelerin yanma özelliklerine karbon siyahı ve alev geciktirici ajanların etkisinin incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2021;27(4):484-9.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.