Araştırma Makalesi
BibTex RIS Kaynak Göster

Orta yükseklikteki betonarme binalarda çekiçlemenin deplasman talepleri üzerindeki etkileri

Yıl 2021, Cilt: 27 Sayı: 6, 703 - 710, 30.11.2021

Öz

Bu çalışmada, yetersiz derz mesafesine sahip orta yükseklikteki betonarme komşu binaların sismik etkiler altındaki çekiçleme davranışları incelenmiştir. Orta yükseklikteki binaların temsil edilebilmesi için 5, 8, 10, 13 ve 15 katlı betonarme bina modelleri oluşturulmuştur. Bu modellerin doğrusal elastik olmayan davranış özellikleri kolon ve kiriş uçlarına tanımlanan plastik mafsallar ile yansıtılmıştır. Doğrusal olmayan bina modelleri üç boyutlu (3B) kolonkiriş çerçeve sistemi olarak modellenmiştir. Kelvin birleşim elemanları kullanılarak döşemeden döşemeye bağlanan ikili bina modelleri türetilmiştir. Kat adetleri farklı olan binaların kullanımı ile birlikte toplam 30 adet farklı ikili model oluşturulmuştur. Çarpışmanın görülmediği ikili modellerde 5 m boşluk bırakılırken, çarpışmanın görüldüğü modellerde ise 0 m derz mesafesi seçilmiştir. Bu ikili binalar arasındaki çekiçleme etkilerinin araştırılabilmesi için TBDY-2018 ile uyumlu 22 adet gerçek ivme kaydı seçilerek ölçeklendirilmiştir. Ölçeklendirilen ivme kayıtları 30 adet ikili modele uygulanarak toplam 660 adet zaman tanım alanında dinamik analiz gerçekleştirilmiştir. Analizlerden elde edilen tepe deplasman talepleri, çarpışmalı ve çarpışmasız durumlar için kıyaslanmıştır. Çalışma sonucunda, komşu binaların çarpışması sonucu yapı taleplerinde ciddi değişimler görülmüştür. Komşu binaların periyot oranlarına bağlı olarak çekiçleme etkisi ile değişen yapı talepleri için deplasman büyütme faktörleri (β) önerilmiştir.

Kaynakça

  • [1] Bertero VV, Collins RG. “Investigation of the Failures of the Olive View Stair-Towers During the San Fernando Earthquake and Their Implications on Seismic Design”. Earthquake Engineering Research Center, University of California, Berkeley, CA, Report No. EERC 73-26, 1973.
  • [2] Kasai K, Maison BF. “Building pounding damage during the 1989 Loma Prieta earthquake”. Engineering Structures, 19, 195-207, 1997.
  • [3] Northridge Reconnaissance Team. “Northridge Earthquake of January 17, 1994”. Oakland, California, Reconnaissance Report, EERI 25-47, 1996.
  • [4] Youd TL, Bardet JP, Bray JD. “Kocaeli, Turkey, earthquake of August 17, 1999”. Earthquake Engineering Research Institute, Oakland, CA, Reconnaissance Report, 2000.
  • [5] Uzarski J, Arnold C. “Chi-Chi, Taiwan, Earthquake of September 21, 1999”. Earthquake Engineering Research Institute, Oakland, CA, Reconnaissance Report, Publ. No. 01-02, 2001.
  • [6] Rosenblueth E, Meli R. “The 1985 earthquake: causes and effects in mexico city”. Concrete International, 8(5), 23-34, 1986.
  • [7] Anagnostopoulos S. “Earthquake induced pounding: State of the art”. In: Proceedings of the 10th European Conference on Earthquake Engineering, Vienna, Austria, 28 August-2 September 1994.
  • [8] Valles-Mattox R, Reinhorn A. “Evaluation, prevention and mitigation of pounding effects in building structures”. In: Proceedings of the 11th World Conference on Earthquake Engineering, Acapulco, Mexico, 23-28 June, 1996.
  • [9] Ozmen HB, Inel M, Akyol E, Cayci BT, Un H. “Evaluations on the relation of RC building damages with structural parameters after May 19, 2011 Simav (Turkey) earthquake”. Natural Hazards, 71, 63-84, 2014.
  • [10] Inel M, Ozmen HB, Akyol E. “Observations on the building damages after 19 May 2011 Simav (Turkey) earthquake”. Bulletin of Earthquake Engineering, 11, 255-283, 2013.
  • [11] Maison BF, Kasai K. “Analysis for type of structural pounding”. Journal of Structural Engineering, 116, 957-977, 1990.
  • [12] Anagnostopoulos SA, Spiliopoulos KV. “An investigation of earthquake induced pounding between adjacent buildings”. Earthquake Engineering and Structural Dynamics, 21, 289-302, 1992.
  • [13] Kose MM, Abacioglu MA. “Dynamic interactions of adjacent structures in different geometries”. KSU Journal of Science and Engineering, 11(2), 45-51, 2008.
  • [14] Doğan M, Günaydın A. “Pounding of adjacent RC buildings during seismic loads”. Journal of Engineering and Architecture Faculty of Eskisehir Osmangazi University, 22, 129-145, 2009.
  • [15] Ghandil M, Behnamfar F. “Ductility demands of MRF structures on soft soils considering soil-structure interaction”. Soil Dynamics and Earthquake Engineering, 92, 203-214, 2017.
  • [16] Favvata MJ. “Minimum required separation gap for adjacent RC frames with potential inter-story seismic pounding”. Engineering Structures, 15, 643-659, 2017.
  • [17] Goody J, Chandler R, Clancy J, Dixon D, Wooding G. Building type basics for housing, 2nd ed. New Jersey, USA, Wiley, 2010.
  • [18] Türk Standartları Enstitüsü. “Yapı Elemanlarının Boyutlandırılmasında Alınacak Yüklerin Hesap Değerleri”. Ankara, Türkiye, 498, 1997.
  • [19] Afet ve Acil Durum Başkanlığı. “Türkiye Bina Deprem Yönetmeliği”. Ankara, Türkiye, 30364, 2018.
  • [20] Efraimiadou S, Hatzigeorgiou GD, Beskos DE. “Structural pounding between adjacent buildings subjected to strong ground motions. Part I: the effect of different structures arrangement and of seismic records”. Earthquake Engineering and Structural Dynamics, 42, 1509-1528, 2013.
  • [21] Computers and Structures. “Integrated Finite Element Analysis and Design of Structures Basic Analysis Reference Manual”. New York, USA, 2019.
  • [22] Muthukumar S, Desroches R. “Evaluation of impact models for seismic pounding”. 13th World Conference on Earthquake Engineering, Vancouver, British Columbia, Canada, 1-6 August, 2004.
  • [23] Mahmoud S, Jankowski R. “Modified linear viscoelastic model of earthquake-induced structural pounding”. Transactions of Civil and Environmental Engineering, 35, 51-62, 2011.
  • [24] van Mier JG, Pruijssers A, Reinhardt HW, Monnier T. “Load time response of colliding concrete bodies”. Journal of Structural Engineering, 117(2), 354-374, 1991.
  • [25] Jankowski R. “Non linear viscoelastic modelling of earthquake induced structural pounding”. Earthquake Engineering and Structural Dynamics, 34(6), 595-611, 2005.
  • [26] Shakya K, Wijeyewickrema A. “Mid-Column pounding of multistory reinforced concrete buildings considering soil effects”. Advances in Structural Engineering, 12(1), 71-85, 2009.
  • [27] Anagnostopoulos SA. “Pounding of buildings in series during earthquakes”. Earthquake Engineering and Structural Dynamics, 16(3), 443-456, 1988.
  • [28] Azevedo J, Bento R. “Equivalent viscous damping for modeling inelastic impacts in earthquake pounding problems”. Proceedings of the 11th World Conference on Earthquake Engineering, Acapulco, Mexico, 23-28 June, 1996.
  • [29] Mouzakis HP, Papadrakakis M. “Three dimensional nonlinear building pounding with friction during earthquakes”. Journal of Earthquake Engineering, 8(1), 107-132, 2004.
  • [30] Jankowski R. “Pounding force response spectrum under earthquake excitation”. Engineering Structures, 28(8), 1149-1161, 2006.
  • [31] Storn R, Price K. “Differential Evolution a Simple and Efficient Adaptive Scheme for Global Optimization Over Continuous Spaces”. Technical Report, TR-95-012, 1-12, 1995.
  • [32] Cakici Z, Murat YS. “A differential evolution algorithmbased traffic control model for signalized intersections”. Advances in Civil Engineering, Article ID 7360939, 1-16, 2019.
  • [33] Kamal M, Inel M. “Optimum design of reinforced concrete continuous foundation using differential evolution algorithm”. Arabian Journal for Science and Engineering, 44, 8401-8415, 2019.
  • [34] University of California, Berkeley. “PEER Ground Motion Database”. https://ngawest2.berkeley.edu/ (22.12.2020).
  • [35] Kamal M, Inel M. “Required separation distance for reinforced concrete buildings with seismic pounding potential”. Pamukkale University Journal of Engineering Sciences, 27(3), 281-289, 2021.

Effects of pounding on displacement demands in mid-rise RC buildings

Yıl 2021, Cilt: 27 Sayı: 6, 703 - 710, 30.11.2021

Öz

In this study, the effects of pounding on seismic behavior of mid-rise reinforced concrete (RC) adjacent buildings with insufficient separation distance were investigated. 5, 8, 10, 13 and 15-storey RC building models were created to represent mid-rise buildings. The nonlinear behavior properties of these models are reflected by plastic hinges defined at the column and beam ends. The buildings are modeled as a three dimensional (3D) column-beam frame system. Adjacent building models are derived, which are connected from floor to floor level using Kelvin contact elements. Total of 30 different adjacent building models were created with the use of buildings having different number of floors. The “0” m gaps reflect inadequate separation distance between adjacent buildings while the “5” m gap is used for the reference building without collision. In order to investigate the pounding effects between adjacent buildings, 22 real acceleration records compatible with TBEC-2018 were selected and scaled. Total of 660 3D nonlinear time history analyses were carried out and the roof displacement demands obtained from these analyses were compared for collision and without collision cases The outcomes of this study show that significant changes may occur in the building displacement demands due to the collision of the mid-rise RC neighboring buildings with insufficient seismic gap. Based on the findings obtained on significant number of adjacent building pairs with different period ratios, the displacement amplification factors (β) are proposed for the mid-rise RC buildings.

Kaynakça

  • [1] Bertero VV, Collins RG. “Investigation of the Failures of the Olive View Stair-Towers During the San Fernando Earthquake and Their Implications on Seismic Design”. Earthquake Engineering Research Center, University of California, Berkeley, CA, Report No. EERC 73-26, 1973.
  • [2] Kasai K, Maison BF. “Building pounding damage during the 1989 Loma Prieta earthquake”. Engineering Structures, 19, 195-207, 1997.
  • [3] Northridge Reconnaissance Team. “Northridge Earthquake of January 17, 1994”. Oakland, California, Reconnaissance Report, EERI 25-47, 1996.
  • [4] Youd TL, Bardet JP, Bray JD. “Kocaeli, Turkey, earthquake of August 17, 1999”. Earthquake Engineering Research Institute, Oakland, CA, Reconnaissance Report, 2000.
  • [5] Uzarski J, Arnold C. “Chi-Chi, Taiwan, Earthquake of September 21, 1999”. Earthquake Engineering Research Institute, Oakland, CA, Reconnaissance Report, Publ. No. 01-02, 2001.
  • [6] Rosenblueth E, Meli R. “The 1985 earthquake: causes and effects in mexico city”. Concrete International, 8(5), 23-34, 1986.
  • [7] Anagnostopoulos S. “Earthquake induced pounding: State of the art”. In: Proceedings of the 10th European Conference on Earthquake Engineering, Vienna, Austria, 28 August-2 September 1994.
  • [8] Valles-Mattox R, Reinhorn A. “Evaluation, prevention and mitigation of pounding effects in building structures”. In: Proceedings of the 11th World Conference on Earthquake Engineering, Acapulco, Mexico, 23-28 June, 1996.
  • [9] Ozmen HB, Inel M, Akyol E, Cayci BT, Un H. “Evaluations on the relation of RC building damages with structural parameters after May 19, 2011 Simav (Turkey) earthquake”. Natural Hazards, 71, 63-84, 2014.
  • [10] Inel M, Ozmen HB, Akyol E. “Observations on the building damages after 19 May 2011 Simav (Turkey) earthquake”. Bulletin of Earthquake Engineering, 11, 255-283, 2013.
  • [11] Maison BF, Kasai K. “Analysis for type of structural pounding”. Journal of Structural Engineering, 116, 957-977, 1990.
  • [12] Anagnostopoulos SA, Spiliopoulos KV. “An investigation of earthquake induced pounding between adjacent buildings”. Earthquake Engineering and Structural Dynamics, 21, 289-302, 1992.
  • [13] Kose MM, Abacioglu MA. “Dynamic interactions of adjacent structures in different geometries”. KSU Journal of Science and Engineering, 11(2), 45-51, 2008.
  • [14] Doğan M, Günaydın A. “Pounding of adjacent RC buildings during seismic loads”. Journal of Engineering and Architecture Faculty of Eskisehir Osmangazi University, 22, 129-145, 2009.
  • [15] Ghandil M, Behnamfar F. “Ductility demands of MRF structures on soft soils considering soil-structure interaction”. Soil Dynamics and Earthquake Engineering, 92, 203-214, 2017.
  • [16] Favvata MJ. “Minimum required separation gap for adjacent RC frames with potential inter-story seismic pounding”. Engineering Structures, 15, 643-659, 2017.
  • [17] Goody J, Chandler R, Clancy J, Dixon D, Wooding G. Building type basics for housing, 2nd ed. New Jersey, USA, Wiley, 2010.
  • [18] Türk Standartları Enstitüsü. “Yapı Elemanlarının Boyutlandırılmasında Alınacak Yüklerin Hesap Değerleri”. Ankara, Türkiye, 498, 1997.
  • [19] Afet ve Acil Durum Başkanlığı. “Türkiye Bina Deprem Yönetmeliği”. Ankara, Türkiye, 30364, 2018.
  • [20] Efraimiadou S, Hatzigeorgiou GD, Beskos DE. “Structural pounding between adjacent buildings subjected to strong ground motions. Part I: the effect of different structures arrangement and of seismic records”. Earthquake Engineering and Structural Dynamics, 42, 1509-1528, 2013.
  • [21] Computers and Structures. “Integrated Finite Element Analysis and Design of Structures Basic Analysis Reference Manual”. New York, USA, 2019.
  • [22] Muthukumar S, Desroches R. “Evaluation of impact models for seismic pounding”. 13th World Conference on Earthquake Engineering, Vancouver, British Columbia, Canada, 1-6 August, 2004.
  • [23] Mahmoud S, Jankowski R. “Modified linear viscoelastic model of earthquake-induced structural pounding”. Transactions of Civil and Environmental Engineering, 35, 51-62, 2011.
  • [24] van Mier JG, Pruijssers A, Reinhardt HW, Monnier T. “Load time response of colliding concrete bodies”. Journal of Structural Engineering, 117(2), 354-374, 1991.
  • [25] Jankowski R. “Non linear viscoelastic modelling of earthquake induced structural pounding”. Earthquake Engineering and Structural Dynamics, 34(6), 595-611, 2005.
  • [26] Shakya K, Wijeyewickrema A. “Mid-Column pounding of multistory reinforced concrete buildings considering soil effects”. Advances in Structural Engineering, 12(1), 71-85, 2009.
  • [27] Anagnostopoulos SA. “Pounding of buildings in series during earthquakes”. Earthquake Engineering and Structural Dynamics, 16(3), 443-456, 1988.
  • [28] Azevedo J, Bento R. “Equivalent viscous damping for modeling inelastic impacts in earthquake pounding problems”. Proceedings of the 11th World Conference on Earthquake Engineering, Acapulco, Mexico, 23-28 June, 1996.
  • [29] Mouzakis HP, Papadrakakis M. “Three dimensional nonlinear building pounding with friction during earthquakes”. Journal of Earthquake Engineering, 8(1), 107-132, 2004.
  • [30] Jankowski R. “Pounding force response spectrum under earthquake excitation”. Engineering Structures, 28(8), 1149-1161, 2006.
  • [31] Storn R, Price K. “Differential Evolution a Simple and Efficient Adaptive Scheme for Global Optimization Over Continuous Spaces”. Technical Report, TR-95-012, 1-12, 1995.
  • [32] Cakici Z, Murat YS. “A differential evolution algorithmbased traffic control model for signalized intersections”. Advances in Civil Engineering, Article ID 7360939, 1-16, 2019.
  • [33] Kamal M, Inel M. “Optimum design of reinforced concrete continuous foundation using differential evolution algorithm”. Arabian Journal for Science and Engineering, 44, 8401-8415, 2019.
  • [34] University of California, Berkeley. “PEER Ground Motion Database”. https://ngawest2.berkeley.edu/ (22.12.2020).
  • [35] Kamal M, Inel M. “Required separation distance for reinforced concrete buildings with seismic pounding potential”. Pamukkale University Journal of Engineering Sciences, 27(3), 281-289, 2021.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm İnşaat Müh. / Çevre Müh. / Jeoloji Müh.
Yazarlar

Muhammet Kamal Bu kişi benim

Mehmet İnel Bu kişi benim

Yayımlanma Tarihi 30 Kasım 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 27 Sayı: 6

Kaynak Göster

APA Kamal, M., & İnel, M. (2021). Orta yükseklikteki betonarme binalarda çekiçlemenin deplasman talepleri üzerindeki etkileri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 27(6), 703-710.
AMA Kamal M, İnel M. Orta yükseklikteki betonarme binalarda çekiçlemenin deplasman talepleri üzerindeki etkileri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Kasım 2021;27(6):703-710.
Chicago Kamal, Muhammet, ve Mehmet İnel. “Orta yükseklikteki Betonarme Binalarda çekiçlemenin Deplasman Talepleri üzerindeki Etkileri”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 27, sy. 6 (Kasım 2021): 703-10.
EndNote Kamal M, İnel M (01 Kasım 2021) Orta yükseklikteki betonarme binalarda çekiçlemenin deplasman talepleri üzerindeki etkileri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 27 6 703–710.
IEEE M. Kamal ve M. İnel, “Orta yükseklikteki betonarme binalarda çekiçlemenin deplasman talepleri üzerindeki etkileri”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 27, sy. 6, ss. 703–710, 2021.
ISNAD Kamal, Muhammet - İnel, Mehmet. “Orta yükseklikteki Betonarme Binalarda çekiçlemenin Deplasman Talepleri üzerindeki Etkileri”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 27/6 (Kasım 2021), 703-710.
JAMA Kamal M, İnel M. Orta yükseklikteki betonarme binalarda çekiçlemenin deplasman talepleri üzerindeki etkileri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2021;27:703–710.
MLA Kamal, Muhammet ve Mehmet İnel. “Orta yükseklikteki Betonarme Binalarda çekiçlemenin Deplasman Talepleri üzerindeki Etkileri”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 27, sy. 6, 2021, ss. 703-10.
Vancouver Kamal M, İnel M. Orta yükseklikteki betonarme binalarda çekiçlemenin deplasman talepleri üzerindeki etkileri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2021;27(6):703-10.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.