Araştırma Makalesi
BibTex RIS Kaynak Göster

Kemik doku mühendisliği uygulamalarında kullanılmak üzere nanopartikül katkılı doku iskelelerinin geliştirilmesi

Yıl 2021, Cilt: 27 Sayı: 7, 842 - 850, 31.12.2021

Öz

Bu çalışmada, farklı oranlarda çift katmanlı hidroksit bileşikleri (LDH) içeren bir seri jelatin-metakrilat (JelMA)/ İpek fibroin (J/IF LDH) doku iskeleleri hazırlanmış, LDH nanopartiküllerinin fiziksel, kimyasal, mekaniksel ve biyolojik özellikleri üzerine etkileri ve kemik dokusu olarak kullanılabilirliği araştırılmıştır. Mg/Al LDH nanopartikülleri hidrotermal metot ile sentezlenmiş, FTIR, XRD, ICP-MS, TEM, partikül boyu ve zeta potansiyeli analizleri ile karakterize edilmiştir. Mg/Al LDH nanopartiküllerinin sitotoksisitesi osteoblast hücre hattı kullanılarak 3,(4,5-dimetiltiazol-2-il)-2,5-difenil tetrazolyum bromid (MTT) testi ile belirlenmiş ve toksik olmadıkları bulunmuştur. J/IF LDH doku iskeleleri Irgacure2659 (fotobaşlatıcı) varlığında UV ışığı altında mikro-kalıplama tekniği ile hazırlanmıştır. Yapısı FTIR analizi ile karakterize edilmiştir. Şişme analizi, mekaniksel dayanım testi ve osteoblast hücreleri ile hücre-adezyon testi gerçekleştirilmiştir. Tüm sonuçlar, Mg/Al LDH nanopartikül katkılı doku iskelelerinin kemik doku mühendisliği uygulamaları için yapay kemik üretiminde kullanılabileceğini göstermiştir.

Kaynakça

  • [1] Zheng J, Zhao F, Zhang W, Mo Y, Zeng L, Li X, Chen X. “Sequentially-crosslinked biomimetic bioactive glass/gelatin methacryloyl composites hydrogels for bone regeneration”. Materials Science and Engineering: C, 89, 119-127, 2018.
  • [2] Ramanathan G, Fardim P, Sivagnanam UT. “Fabrication of 3D dual-layered nanofibrous graft loaded with layered double hydroxides and their effects in osteoblastic behavior for bone tissue engineering”. Process Biochemistry, 64, 255-259, 2018.
  • [3] Shafiei SS, Shavandi M, Ahangari G, Shokrolahi F. “Electrospun layered double hydroxide/poly (ε-caprolactone) nanocomposite scaffolds for adipogenic differentiation of adipose-derived mesenchymal stem cells”. Applied Clay Science, 127, 52-63, 2016.
  • [4] Kang HR, da Costa Fernandes CJ, da Silva RA, Constantino VRL, Koh IHJ, Zambuzzi WF. “Mg-Al and Zn-Al Layered double hydroxides promote dynamic expression of marker genes in osteogenic differentiation by modulating mitogen‐activated protein kinases”. Advanced Healthcare Materials, 2018. https://doi.org/10.1002/adhm.201700693
  • [5] Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A, Annabi N, Khademhosseini A. “Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels”. Biomaterials, 73, 254-271, 2015.
  • [6] Fayyazbakhsh F, Solati-Hashjin M, Keshtkar A, Shokrgozar MA, Dehghan MM, Larijani B. “Novel layered double hydroxides-hydroxyapatite/gelatin bone tissue engineering scaffolds: Fabrication, characterization, and in vivo study”. Materials Science and Engineering: C, 76, 701-714, 2017.
  • [7] Zheng J, Zhao F, Zhang W, Mo Y, Zeng L, Li X, Chen X. “Sequentially-crosslinked biomimetic bioactive glass/gelatin methacryloyl composites hydrogels for bone regeneration”. Materials Science and Engineering: C, 89, 119-127, 2018.
  • [8] Kwon S, Lee SS, Sivashanmugam A, Kwon J, Kim SHL, Noh MY, Hwang NS. “Bioglass-incorporated methacrylated gelatin cryogel for regeneration of bone defects”. Polymers, 10(8), 1-17, 2018.
  • [9] Kang H, Shih YRV, Hwang Y, Wen C, Rao V, Seo T, Varghese, S. “Mineralized gelatin methacrylate-based matrices induce osteogenic differentiation of human induced pluripotent stem cells”. Acta biomaterialia, 10(12), 4961-4970, 2014.
  • [10] Piao H, Kim MH, Cui M, Choi G, Choy JH. “Alendronateanionic clay nanohybrid for enhanced osteogenic proliferation and differentiation”. Journal of Korean Medical Science, 34(5), 1-17, 2019.
  • [11] Romeo V, Gorrasi G, Vittoria V, Chronakis IS. “Encapsulation and exfoliation of inorganic lamellar fillers into polycaprolactone by electrospinning”. Biomacromolecules, 8(10), 3147-315, 2007.
  • [12] Li Q, Wang D, Qiu J, Peng F, Liu X. “Regulating the local pH level of titanium via Mg-Fe layered double hydroxides films for enhanced osteogenesis”. Biomaterials Science, 6(5), 1227-1237, 2018.
  • [13] Wu Y, Zhu R, Zhou Y, Zhang J, Wang W, Sun X, Wang S. “Layered double hydroxide nanoparticles promote selfrenewal of mouse embryonic stem cells through the PI3K signaling pathway”. Nanoscale, 7(25), 11102-1111, 2015.
  • [14] Melke J, Midha S, Ghosh S, Ito K, Hofmann S. “Silk fibroin as biomaterial for bone tissue engineering”. Acta Biomaterialia, 31, 1-16, 2016.
  • [15] Luetchford KA, Chaudhuri JB, Paul A. “Silk fibroin/gelatin microcarriers as scaffolds for bone tissue engineering”. Materials Science and Engineering: C, 2020. https://doi.org/10.1016/j.msec.2019.110116
  • [16] Yang Z, Xu LS, Yin F, Shi YQ, Han Y, Zhang L, Fan DM. “In vitro and in vivo characterization of silk fibroin/gelatin composite scaffolds for liver tissue engineering”. Journal of Digestive Diseases, 13(3), 168-178, 2012.
  • [17] Fan H. Liu H, Wang Y, Toh SL, Goh JCH. “Development of a silk cable-reinforced gelatin/silk fibroin hybrid scaffold for ligament tissue engineering”. Cell Transplant, 17(12), 13891401, 2008.
  • [18] Arkhipova AY, Kotlyarova MC, Novichkova SG, Agapova OI, Kulikov DA, Kulikov AV, Moisenovich MM. “New silk fibroin-based bioresorbable microcarriers”. Bulletin of Experimental Biology and Medicine, 160(4), 491-494, 2016.
  • [19] Chung TW, Chang YL. “Silk fibroin/chitosan-hyaluronic acid versus silk fibroin scaffolds for tissue engineering: promoting cell proliferations in vitro”. Journal of Materials Science: Materials in Medicine, 21(4), 1343-1351, 2010.
  • [20] Yan S, Zhang Q, Wang J, Liu Y, Lu S, Li M, Kaplan DL. “Silk fibroin/chondroitin sulfate/hyaluronic acid ternary scaffolds for dermal tissue reconstruction”. Acta Biomaterialia, 9(6), 6771-6782, 2013.
  • [21] Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, Khademhosseini A. “Cell-Laden microengineered gelatin methacrylate hydrogels”. Biomaterials, 31(21), 5536-5544, 2010.
  • [22] Rockwood DN, Preda RC, Yücel T, Wang X, Lovett ML, Kaplan DL. “Materials fabrication from Bombyx mori silk fibroin”. Nature Protocols, 6(10), 1612-1631, 2011.
  • [23] Özgümüş S, Gök MK, Bal A, Güçlü G. “Study on novel exfoliated polyampholyte nanocomposite hydrogels based on acrylic monomers and Mg-Al-Cl layered double hydroxide: synthesis and characterization”. Chemical Engineering Journal, 223, 277-286, 2013.
  • [24] Xu ZP, Stevenson GS, Lu CQ, Lu GQ, Bartlett PF, Gray PP. “Stable suspension of layered double hydroxide nanoparticles in aqueous solution”. Journal of the American Chemical Society, 128(1), 36-37, 2006.
  • [25] Yan S, Gu W, Zhang B, Rolfe BE, Xu ZP. “High adjuvant activity of layered double hydroxide nanoparticles and nanosheets in anti-tumour vaccine formulations”. Dalton Transactions, 47(9), 2956-2964, 2018.
  • [26] Camci-Unal G, Cuttica D, Annabi N, Demarchi D, Khademhosseini A. “Synthesis and characterization of hybrid hyaluronic acid-gelatin hydrogels”. Biomacromolecules, 14(4), 1085-1092, 2013.
  • [27] Shin SR, Aghaei‐Ghareh‐Bolagh B, Dang TT, Topkaya SN, Gao X, Yang SY, Khademhosseini A. “Cell‐laden microengineered and mechanically tunable hybrid hydrogels of gelatin and graphene oxide”. Advanced Materials, 25(44), 6385-6391, 2013.
  • [28] Bal Öztürk A, Cevher E, Pabuccuoğlu S, Özgümüş S. “pH sensitive functionalized hyperbranched polyester based nanoparticulate system for the receptor-mediated targeted cancer therapy”. International Journal of Polymeric Materials and Polymeric Biomaterials, 68(8), 417-432, 2019.
  • [29] Cao Y, Lee BH, Peled HB, Venkatraman SS. “Synthesis of stiffness‐tunable and cell‐responsive gelatin-poly (ethylene glycol) hydrogel for three‐dimensional cell encapsulation”. Journal of Biomedical Materials Research Part A, 104(10), 2401-2411, 2016.
  • [30] Mamaghani KR, Naghib SM, Zahedi A, Mozafari M. “Synthesis and microstructural characterization of GelMa/PEGDA hybrid hydrogel containing graphene oxide for biomedical purposes”. Materials Today: Proceedings, 5(7), 15635-15644, 2018.
  • [31] Li C, Mu C, Lin W. “Novel hemocompatible nanocomposite hydrogels crosslinked with methacrylated gelatin”. RSC Advances, 6(49), 43663-43671, 2016.
  • [32] Resmi R, Unnikrishnan S, Krishnan LK, Kalliyana Krishnan V. “Synthesis and characterization of silver nanoparticle incorporated gelatin‐hydroxypropyl methacrylate hydrogels for wound dressing applications”. Journal of Applied Polymer Science, 134(10), 1-9, 2017.
  • [33] Usal TD, Yucel D, Hasirci V. “A novel GelMA-pHEMA hydrogel nerve guide for the treatment of peripheral nerve damages”. International Journal of Biological Macromolecules, 121, 699-706, 2019.
  • [34] Wang Y, Ma M, Wang J, Zhang W, Lu W, Gao Y, Guo Y. “Development of a photo-crosslinking, biodegradable GelMA/PEGDA hydrogel for guided bone regeneration materials”. Materials, 11(8), 1-12, 2018.
  • [35] Choi BY, Chalisserry EP, Kim MH, Kang HW, Choi IW, Nam SY. “The Influence of astaxanthin on the proliferation of adipose-derived mesenchymal stem cells in gelatinmethacryloyl (GelMA) hydrogels”. Materials, 2019. https://doi.org/10.3390/ma12152416
  • [36] Zhang M, Gao B, Yao Y, Inyang M. “Phosphate removal ability of biochar/MgAl-LDH ultra-fine composites prepared by liquid-phase deposition”. Chemosphere, 92(8), 1042-1047, 2013.
  • [37] Olfs HW, Torres-Dorante LO, Eckelt R, Kosslick H. “Comparison of different synthesis routes for Mg-Al layered double hydroxides (LDH): Characterization of the structural phases and anion exchange properties”. Applied Clay Science, 43(3-4), 459-464, 2009.
  • [38] Nogueira KA, Cecilia JA, Santos SO, Aguiar JE, VilarrasaGarcía E, Rodríguez-Castellón E, Silva IJ. “Adsorption behavior of bovine serum albumin on Zn-Al and Mg-Al layered double hydroxides”. Journal of Sol-Gel Science and Technology, 80(3), 748-758, 2016.
  • [39] Wang SL, Wang PC. “In situ XRD and ATR-FTIR study on the molecular orientation of interlayer nitrate in Mg/Allayered double hydroxides in water”. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 292(2-3), 131-138, 2007.
  • [40] Chubar N. “EXAFS and FTIR studies of selenite and selenate sorption by alkoxide-free sol-gel generated Mg-Al-CO 3 layered double hydroxide with very labile interlayer anions”. Journal of Materials Chemistry A, 2(38), 15995-16007, 2014.
  • [41] Shafiei SS, Shavandi M, Ahangari G, Shokrolahi F. “Electrospun layered double hydroxide/poly (ε-caprolactone) nanocomposite scaffolds for adipogenic differentiation of adipose-derived mesenchymal stem cells”. Applied Clay Science, 127, 52-63, 2016.
  • [42] Fayyazbakhsh F, Solati-Hashjin M, Keshtkar A, Shokrgozar MA, Dehghan MM, Larijani B. “Release behavior and signaling effect of vitamin D3 in layered double hydroxides-hydroxyapatite/gelatin bone tissue engineering scaffold: an in vitro evaluation”. Colloids and Surfaces B: Biointerfaces, 158, 697-708, 2017.
  • [43] Theiss FL, Ayoko GA, Frost RL. “Removal of iodate (IO3-) from aqueous solution using LDH technology”. Materials Chemistry and Physics, 202, 65-75, 2017.
  • [44] Theiss FL, Ayoko GA, Frost RL. “Iodide removal using LDH technology”. Chemical Engineering Journal, 296, 300-309, 2016.
  • [45] Fayyazbakhsh F, Solati-Hashjin M, Keshtkar A, Shokrgozar MA, Dehghan MM, Larijani B. “Novel layered double hydroxides-hydroxyapatite/gelatin bone tissue engineering scaffolds: Fabrication, characterization, and in vivo study”. Materials Science and Engineering: C, 76, 701-714, 2017.
  • [46] Dasgupta, S. “Controlled release of ibuprofen using Mg Al LDH nano carrier”. In IOP Conference Series: Materials Science and Engineering, 225(1), 1-11, 2017.
  • [47] Almeida JF, Ferreira P, Lopes A, Gil MH. “Photocrosslinkable biodegradable responsive hydrogels as drug delivery systems”. International Journal of Biological Macromolecules, 49(5), 948-954, 2011.
  • [48] Xiao W, Li J, Qu X, Wang L, Tan Y, Li K, Liao X. “Cell-laden interpenetrating network hydrogels formed from methacrylated gelatin and silk fibroin via a combination of sonication and photocrosslinking approaches”. Materials Science and Engineering: C, 99, 57-67, 2019.
  • [49] Zheng J, Zhao F, Zhang W, Mo Y, Zeng L, Li X, Chen X. “Sequentially-crosslinked biomimetic bioactive glass/gelatin methacryloyl composites hydrogels for bone regeneration”. Materials Science and Engineering: C, 89, 119-127, 2018.
  • [50] Liu J, Li L, Suo H, Yan M, Yin J, Fu J. “3D printing of biomimetic multi-layered GelMA/nHA scaffold for osteochondral defect repair”. Materials & Design, 171, 1-9, 2019.

Development of tissue scaffolds with nanoparticles for bone tissue engineering applications

Yıl 2021, Cilt: 27 Sayı: 7, 842 - 850, 31.12.2021

Öz

In this study, a series of gelatin-methacrylate (GelMA)/ Silk fibroin tissue scaffolds with different contents of layered double hydroxides (LDHs) were prepared (J/IF LDH), the effects of Mg/Al LDH nanoparticles on physical, chemical, mechanical and biological properties of scaffolds and their use as bone tissue were investigated. Mg/Al LDH nanoparticles were synthesized by hydrothermal method and characterized by FTIR, XRD, ICP-MS, TEM, particle size and zeta potential analysis. The cytotoxicity of Mg/Al LDH nanoparticles was assesed by using 3,(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay with osteoblast cell line. Mg/Al LDH nanoparticles were found to be non-toxic. J/ IF LDH tissue scaffolds were prepared by micro-molding technique under UV light in the presence of Irgacure2659 (photoinitiator). Their structures were characterized by FTIR analysis. Swelling analysis, mechanical strength test and celladhesion test were performed with osteoblast cell line. All results showed that tissue scaffolds with different contents of Mg/Al LDH nanoparticles have great potential in artificial bone tissue production for bone tissue engineering applications

Kaynakça

  • [1] Zheng J, Zhao F, Zhang W, Mo Y, Zeng L, Li X, Chen X. “Sequentially-crosslinked biomimetic bioactive glass/gelatin methacryloyl composites hydrogels for bone regeneration”. Materials Science and Engineering: C, 89, 119-127, 2018.
  • [2] Ramanathan G, Fardim P, Sivagnanam UT. “Fabrication of 3D dual-layered nanofibrous graft loaded with layered double hydroxides and their effects in osteoblastic behavior for bone tissue engineering”. Process Biochemistry, 64, 255-259, 2018.
  • [3] Shafiei SS, Shavandi M, Ahangari G, Shokrolahi F. “Electrospun layered double hydroxide/poly (ε-caprolactone) nanocomposite scaffolds for adipogenic differentiation of adipose-derived mesenchymal stem cells”. Applied Clay Science, 127, 52-63, 2016.
  • [4] Kang HR, da Costa Fernandes CJ, da Silva RA, Constantino VRL, Koh IHJ, Zambuzzi WF. “Mg-Al and Zn-Al Layered double hydroxides promote dynamic expression of marker genes in osteogenic differentiation by modulating mitogen‐activated protein kinases”. Advanced Healthcare Materials, 2018. https://doi.org/10.1002/adhm.201700693
  • [5] Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A, Annabi N, Khademhosseini A. “Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels”. Biomaterials, 73, 254-271, 2015.
  • [6] Fayyazbakhsh F, Solati-Hashjin M, Keshtkar A, Shokrgozar MA, Dehghan MM, Larijani B. “Novel layered double hydroxides-hydroxyapatite/gelatin bone tissue engineering scaffolds: Fabrication, characterization, and in vivo study”. Materials Science and Engineering: C, 76, 701-714, 2017.
  • [7] Zheng J, Zhao F, Zhang W, Mo Y, Zeng L, Li X, Chen X. “Sequentially-crosslinked biomimetic bioactive glass/gelatin methacryloyl composites hydrogels for bone regeneration”. Materials Science and Engineering: C, 89, 119-127, 2018.
  • [8] Kwon S, Lee SS, Sivashanmugam A, Kwon J, Kim SHL, Noh MY, Hwang NS. “Bioglass-incorporated methacrylated gelatin cryogel for regeneration of bone defects”. Polymers, 10(8), 1-17, 2018.
  • [9] Kang H, Shih YRV, Hwang Y, Wen C, Rao V, Seo T, Varghese, S. “Mineralized gelatin methacrylate-based matrices induce osteogenic differentiation of human induced pluripotent stem cells”. Acta biomaterialia, 10(12), 4961-4970, 2014.
  • [10] Piao H, Kim MH, Cui M, Choi G, Choy JH. “Alendronateanionic clay nanohybrid for enhanced osteogenic proliferation and differentiation”. Journal of Korean Medical Science, 34(5), 1-17, 2019.
  • [11] Romeo V, Gorrasi G, Vittoria V, Chronakis IS. “Encapsulation and exfoliation of inorganic lamellar fillers into polycaprolactone by electrospinning”. Biomacromolecules, 8(10), 3147-315, 2007.
  • [12] Li Q, Wang D, Qiu J, Peng F, Liu X. “Regulating the local pH level of titanium via Mg-Fe layered double hydroxides films for enhanced osteogenesis”. Biomaterials Science, 6(5), 1227-1237, 2018.
  • [13] Wu Y, Zhu R, Zhou Y, Zhang J, Wang W, Sun X, Wang S. “Layered double hydroxide nanoparticles promote selfrenewal of mouse embryonic stem cells through the PI3K signaling pathway”. Nanoscale, 7(25), 11102-1111, 2015.
  • [14] Melke J, Midha S, Ghosh S, Ito K, Hofmann S. “Silk fibroin as biomaterial for bone tissue engineering”. Acta Biomaterialia, 31, 1-16, 2016.
  • [15] Luetchford KA, Chaudhuri JB, Paul A. “Silk fibroin/gelatin microcarriers as scaffolds for bone tissue engineering”. Materials Science and Engineering: C, 2020. https://doi.org/10.1016/j.msec.2019.110116
  • [16] Yang Z, Xu LS, Yin F, Shi YQ, Han Y, Zhang L, Fan DM. “In vitro and in vivo characterization of silk fibroin/gelatin composite scaffolds for liver tissue engineering”. Journal of Digestive Diseases, 13(3), 168-178, 2012.
  • [17] Fan H. Liu H, Wang Y, Toh SL, Goh JCH. “Development of a silk cable-reinforced gelatin/silk fibroin hybrid scaffold for ligament tissue engineering”. Cell Transplant, 17(12), 13891401, 2008.
  • [18] Arkhipova AY, Kotlyarova MC, Novichkova SG, Agapova OI, Kulikov DA, Kulikov AV, Moisenovich MM. “New silk fibroin-based bioresorbable microcarriers”. Bulletin of Experimental Biology and Medicine, 160(4), 491-494, 2016.
  • [19] Chung TW, Chang YL. “Silk fibroin/chitosan-hyaluronic acid versus silk fibroin scaffolds for tissue engineering: promoting cell proliferations in vitro”. Journal of Materials Science: Materials in Medicine, 21(4), 1343-1351, 2010.
  • [20] Yan S, Zhang Q, Wang J, Liu Y, Lu S, Li M, Kaplan DL. “Silk fibroin/chondroitin sulfate/hyaluronic acid ternary scaffolds for dermal tissue reconstruction”. Acta Biomaterialia, 9(6), 6771-6782, 2013.
  • [21] Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, Khademhosseini A. “Cell-Laden microengineered gelatin methacrylate hydrogels”. Biomaterials, 31(21), 5536-5544, 2010.
  • [22] Rockwood DN, Preda RC, Yücel T, Wang X, Lovett ML, Kaplan DL. “Materials fabrication from Bombyx mori silk fibroin”. Nature Protocols, 6(10), 1612-1631, 2011.
  • [23] Özgümüş S, Gök MK, Bal A, Güçlü G. “Study on novel exfoliated polyampholyte nanocomposite hydrogels based on acrylic monomers and Mg-Al-Cl layered double hydroxide: synthesis and characterization”. Chemical Engineering Journal, 223, 277-286, 2013.
  • [24] Xu ZP, Stevenson GS, Lu CQ, Lu GQ, Bartlett PF, Gray PP. “Stable suspension of layered double hydroxide nanoparticles in aqueous solution”. Journal of the American Chemical Society, 128(1), 36-37, 2006.
  • [25] Yan S, Gu W, Zhang B, Rolfe BE, Xu ZP. “High adjuvant activity of layered double hydroxide nanoparticles and nanosheets in anti-tumour vaccine formulations”. Dalton Transactions, 47(9), 2956-2964, 2018.
  • [26] Camci-Unal G, Cuttica D, Annabi N, Demarchi D, Khademhosseini A. “Synthesis and characterization of hybrid hyaluronic acid-gelatin hydrogels”. Biomacromolecules, 14(4), 1085-1092, 2013.
  • [27] Shin SR, Aghaei‐Ghareh‐Bolagh B, Dang TT, Topkaya SN, Gao X, Yang SY, Khademhosseini A. “Cell‐laden microengineered and mechanically tunable hybrid hydrogels of gelatin and graphene oxide”. Advanced Materials, 25(44), 6385-6391, 2013.
  • [28] Bal Öztürk A, Cevher E, Pabuccuoğlu S, Özgümüş S. “pH sensitive functionalized hyperbranched polyester based nanoparticulate system for the receptor-mediated targeted cancer therapy”. International Journal of Polymeric Materials and Polymeric Biomaterials, 68(8), 417-432, 2019.
  • [29] Cao Y, Lee BH, Peled HB, Venkatraman SS. “Synthesis of stiffness‐tunable and cell‐responsive gelatin-poly (ethylene glycol) hydrogel for three‐dimensional cell encapsulation”. Journal of Biomedical Materials Research Part A, 104(10), 2401-2411, 2016.
  • [30] Mamaghani KR, Naghib SM, Zahedi A, Mozafari M. “Synthesis and microstructural characterization of GelMa/PEGDA hybrid hydrogel containing graphene oxide for biomedical purposes”. Materials Today: Proceedings, 5(7), 15635-15644, 2018.
  • [31] Li C, Mu C, Lin W. “Novel hemocompatible nanocomposite hydrogels crosslinked with methacrylated gelatin”. RSC Advances, 6(49), 43663-43671, 2016.
  • [32] Resmi R, Unnikrishnan S, Krishnan LK, Kalliyana Krishnan V. “Synthesis and characterization of silver nanoparticle incorporated gelatin‐hydroxypropyl methacrylate hydrogels for wound dressing applications”. Journal of Applied Polymer Science, 134(10), 1-9, 2017.
  • [33] Usal TD, Yucel D, Hasirci V. “A novel GelMA-pHEMA hydrogel nerve guide for the treatment of peripheral nerve damages”. International Journal of Biological Macromolecules, 121, 699-706, 2019.
  • [34] Wang Y, Ma M, Wang J, Zhang W, Lu W, Gao Y, Guo Y. “Development of a photo-crosslinking, biodegradable GelMA/PEGDA hydrogel for guided bone regeneration materials”. Materials, 11(8), 1-12, 2018.
  • [35] Choi BY, Chalisserry EP, Kim MH, Kang HW, Choi IW, Nam SY. “The Influence of astaxanthin on the proliferation of adipose-derived mesenchymal stem cells in gelatinmethacryloyl (GelMA) hydrogels”. Materials, 2019. https://doi.org/10.3390/ma12152416
  • [36] Zhang M, Gao B, Yao Y, Inyang M. “Phosphate removal ability of biochar/MgAl-LDH ultra-fine composites prepared by liquid-phase deposition”. Chemosphere, 92(8), 1042-1047, 2013.
  • [37] Olfs HW, Torres-Dorante LO, Eckelt R, Kosslick H. “Comparison of different synthesis routes for Mg-Al layered double hydroxides (LDH): Characterization of the structural phases and anion exchange properties”. Applied Clay Science, 43(3-4), 459-464, 2009.
  • [38] Nogueira KA, Cecilia JA, Santos SO, Aguiar JE, VilarrasaGarcía E, Rodríguez-Castellón E, Silva IJ. “Adsorption behavior of bovine serum albumin on Zn-Al and Mg-Al layered double hydroxides”. Journal of Sol-Gel Science and Technology, 80(3), 748-758, 2016.
  • [39] Wang SL, Wang PC. “In situ XRD and ATR-FTIR study on the molecular orientation of interlayer nitrate in Mg/Allayered double hydroxides in water”. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 292(2-3), 131-138, 2007.
  • [40] Chubar N. “EXAFS and FTIR studies of selenite and selenate sorption by alkoxide-free sol-gel generated Mg-Al-CO 3 layered double hydroxide with very labile interlayer anions”. Journal of Materials Chemistry A, 2(38), 15995-16007, 2014.
  • [41] Shafiei SS, Shavandi M, Ahangari G, Shokrolahi F. “Electrospun layered double hydroxide/poly (ε-caprolactone) nanocomposite scaffolds for adipogenic differentiation of adipose-derived mesenchymal stem cells”. Applied Clay Science, 127, 52-63, 2016.
  • [42] Fayyazbakhsh F, Solati-Hashjin M, Keshtkar A, Shokrgozar MA, Dehghan MM, Larijani B. “Release behavior and signaling effect of vitamin D3 in layered double hydroxides-hydroxyapatite/gelatin bone tissue engineering scaffold: an in vitro evaluation”. Colloids and Surfaces B: Biointerfaces, 158, 697-708, 2017.
  • [43] Theiss FL, Ayoko GA, Frost RL. “Removal of iodate (IO3-) from aqueous solution using LDH technology”. Materials Chemistry and Physics, 202, 65-75, 2017.
  • [44] Theiss FL, Ayoko GA, Frost RL. “Iodide removal using LDH technology”. Chemical Engineering Journal, 296, 300-309, 2016.
  • [45] Fayyazbakhsh F, Solati-Hashjin M, Keshtkar A, Shokrgozar MA, Dehghan MM, Larijani B. “Novel layered double hydroxides-hydroxyapatite/gelatin bone tissue engineering scaffolds: Fabrication, characterization, and in vivo study”. Materials Science and Engineering: C, 76, 701-714, 2017.
  • [46] Dasgupta, S. “Controlled release of ibuprofen using Mg Al LDH nano carrier”. In IOP Conference Series: Materials Science and Engineering, 225(1), 1-11, 2017.
  • [47] Almeida JF, Ferreira P, Lopes A, Gil MH. “Photocrosslinkable biodegradable responsive hydrogels as drug delivery systems”. International Journal of Biological Macromolecules, 49(5), 948-954, 2011.
  • [48] Xiao W, Li J, Qu X, Wang L, Tan Y, Li K, Liao X. “Cell-laden interpenetrating network hydrogels formed from methacrylated gelatin and silk fibroin via a combination of sonication and photocrosslinking approaches”. Materials Science and Engineering: C, 99, 57-67, 2019.
  • [49] Zheng J, Zhao F, Zhang W, Mo Y, Zeng L, Li X, Chen X. “Sequentially-crosslinked biomimetic bioactive glass/gelatin methacryloyl composites hydrogels for bone regeneration”. Materials Science and Engineering: C, 89, 119-127, 2018.
  • [50] Liu J, Li L, Suo H, Yan M, Yin J, Fu J. “3D printing of biomimetic multi-layered GelMA/nHA scaffold for osteochondral defect repair”. Materials & Design, 171, 1-9, 2019.
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Kimya Müh. / Tekstil Müh. / Gıda Müh.
Yazarlar

Zeynep Püren Akgüner Bu kişi benim

Ayça Bal Öztürk Bu kişi benim

Yayımlanma Tarihi 31 Aralık 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 27 Sayı: 7

Kaynak Göster

APA Akgüner, Z. P., & Bal Öztürk, A. (2021). Kemik doku mühendisliği uygulamalarında kullanılmak üzere nanopartikül katkılı doku iskelelerinin geliştirilmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 27(7), 842-850.
AMA Akgüner ZP, Bal Öztürk A. Kemik doku mühendisliği uygulamalarında kullanılmak üzere nanopartikül katkılı doku iskelelerinin geliştirilmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Aralık 2021;27(7):842-850.
Chicago Akgüner, Zeynep Püren, ve Ayça Bal Öztürk. “Kemik Doku mühendisliği uygulamalarında kullanılmak üzere nanopartikül katkılı Doku Iskelelerinin geliştirilmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 27, sy. 7 (Aralık 2021): 842-50.
EndNote Akgüner ZP, Bal Öztürk A (01 Aralık 2021) Kemik doku mühendisliği uygulamalarında kullanılmak üzere nanopartikül katkılı doku iskelelerinin geliştirilmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 27 7 842–850.
IEEE Z. P. Akgüner ve A. Bal Öztürk, “Kemik doku mühendisliği uygulamalarında kullanılmak üzere nanopartikül katkılı doku iskelelerinin geliştirilmesi”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 27, sy. 7, ss. 842–850, 2021.
ISNAD Akgüner, Zeynep Püren - Bal Öztürk, Ayça. “Kemik Doku mühendisliği uygulamalarında kullanılmak üzere nanopartikül katkılı Doku Iskelelerinin geliştirilmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 27/7 (Aralık 2021), 842-850.
JAMA Akgüner ZP, Bal Öztürk A. Kemik doku mühendisliği uygulamalarında kullanılmak üzere nanopartikül katkılı doku iskelelerinin geliştirilmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2021;27:842–850.
MLA Akgüner, Zeynep Püren ve Ayça Bal Öztürk. “Kemik Doku mühendisliği uygulamalarında kullanılmak üzere nanopartikül katkılı Doku Iskelelerinin geliştirilmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 27, sy. 7, 2021, ss. 842-50.
Vancouver Akgüner ZP, Bal Öztürk A. Kemik doku mühendisliği uygulamalarında kullanılmak üzere nanopartikül katkılı doku iskelelerinin geliştirilmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2021;27(7):842-50.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.