Araştırma Makalesi
BibTex RIS Kaynak Göster

Vibration analysis of a pre-stressed curved thin plate

Yıl 2022, Cilt: 28 Sayı: 1, 72 - 80, 28.02.2022

Öz

In this study, the free vibration analysis of cantilever isotropic thin plate, which is a large deflected, is investigated. The large deflection is obtained by applying an external distributed vertical load on the cantilever plate then fixing from the other end as the deflection is large. The non - linear deflection curve of the largely deflected flexible plate is obtained from the large deflection equation of the beams. The curved thin plate is modeled by using the finite element method considering a four-node quadrilateral flat shell element. The effects of the load parameter on the natural frequency parameters and mode shapes are investigated. The results are given in tables and graphics. In addition, the natural frequency parameters obtained from the present model are compared with those of ANSYS software to verify the reliability and validity of the present model. The load parameter that forms the curved thin plate changes mode shapes of the plate structure.

Kaynakça

  • [1] Iyengar KR, Naqvi M. “Large deflections of rectangular plates”. International Journal of Non-Linear Mechanics, 1(2), 109-122, 1966.
  • [2] Olson MD, Lindberg GM. “Vibration analysis of cantilevered curved plates using a new cylindrical shell finite element”. Proceedings of the Conference on Matrix Methods in Structural Mechanics (2nd), Ottawa, Canada, 15-17 October 1968.
  • [3] Petyt M, Nath JD. “Vibration analysis of singly curved rectangular plates”. Journal of Sound and Vibration, 13(4), 485-497, 1970.
  • [4] Bhattacharya M. “Static and dynamic deflections of plates of arbitrary geometry by a new finite difference approach”. Journal of Sound and Vibration, 107(3), 507-521, 1986.
  • [5] Wang D, El-Sheikh A. “Large-deflection mathematical analysis of rectangular plates”. Journal of Engineering Mechanics, 131(8), 809-821, 2005.
  • [6] Gorman D. “Exact solutions for the free in-plane vibration of rectangular plates with two opposite edges simply supported”. Journal of Sound and Vibration, 294, 131-161, 2006.
  • [7] Kim J, Park J, Lee K, Kim JH, Kim MH, Lee JM. “Computational analysis and design formula development for the design of curved plates for ships and offshore structures”. Structural Engineering and Mechanics, 49(6), 705-726, 2014.
  • [8] Senjanovic I, Tomic M, Vladimir N, Hadzic N. “An approximate analytical procedure for natural vibration analysis of free rectangular plates”. Thin-Walled Structures, 95, 101-114, 2015.
  • [9] Rawat A, Matsagar V, Nagpal A. “Finite element analysis of thin circular cylindrical shells”. Proceedings of the Indian National Science Academy, 82(2), 349-355, 2016.
  • [10] Amabili M, Balasubramanian P, Breslavsky I, Giovanni F, Garziera R, Riabova K. “Experimental and numerical study on vibrations and static deflection of a thin hyperelastic plate”. Journal of Sound and Vibration, 385, 81-92, 2016.
  • [11] Demir C, Mercan K, Ersoy H, Civalek O. “Vibration analysis of graphene sheets using membrane model”. Pamukkale University Journal of Engineering Sciences, 23(6), 652-658, 2017.
  • [12] Qin X, Dong C, Wang F, Qu XY. “Static and dynamic analyses of isogeometric curvilinearly stiffened plates”. Applied Mathematical Modelling, 45, 336-364, 2017.
  • [13] Dogan A. “The effect of curvature on transient analysis of laminated composite cylindrical shells on elastic foundation”. Pamukkale University Journal of Engineering Sciences, 24(6), 960-966, 2018.
  • [14] Rezaiefar A, Galal K. “Free vibration of thin rectangular steel plates with geometrically-nonlinear loaddisplacement behavior”. Thin-Walled Structures, 129, 381-390, 2018.
  • [15] Park J, Paik J, Seo J. “Numerical investigation and development of design formula for cylindrically curved plates on ships and offshore structures”. Thin-Walled Structures, 132, 93-110, 2018.
  • [16] Eisenberger M, Deutsch A. “Solution of thin rectangular plate vibrations for all combinations of boundary conditions”. Journal of Sound and Vibration, 452, 1-12, 2019.
  • [17] Spagnoli A, Brighenti R, Biancopsino M, Rossi M, Roncella R. “Geometrically non-linear bending of plates: Implications in curved building facades”. Construction and Building Materials, 214, 698-708, 2019.
  • [18] Guo X, Zhang Y, Zhang W, Sun L. “Theoretical and experimental investigation on the nonlinear vibration behavior of z-shaped folded plates with inner resonance”. Engineering Structures, 182, 123-140, 2019.
  • [19] Guo H, Zheng H, Zhuang X. “Numerical manifold method for vibration analysis of Kirchhoff’s plates of arbitrary geometry”. Applied Mathematical Modelling, 66, 695-727, 2019.
  • [20] Liu L, Corradi R, Ripamonti F, Rao Z. “Wave based method for flexural vibration of thin plate with general elastically restrained edges”. Journal of Sound and Vibration, 483, 1-24, 2020.
  • [21] Xue J, Wang Y, Chen L. “Nonlinear vibration of cracked rectangular Mindlin plate with in-plane preload”. Journal of Sound and Vibration, 481, 1-22, 2020.
  • [22] He Q, Dai HL, Gui QF, Li JJ. “Analysis of vibration characteristics of joined cylindrical-spherical shells”. Engineering Structures, 218, 1-14, 2020.
  • [23] Ozturk H. “In-plane free vibration of a pre-stressed curved beam obtained from a large deflected cantilever beam”. Finite Elements in Analysis and Design, 47, 229-236, 2011.
  • [24] Jairazbhoy V, Petukhov P, Qu J. “Large deflection of thin plates in convex or concave cylindrical bending”. Journal of Engineering Mechanics, 138(2), 230-234, 2012.
  • [25] Petyt M. Introduction to Finite Element Vibration Analysis. 2nd ed. New York, USA, Cambridge University Press, 2010.
  • [26] Chandrupatla T, Belegundu A. Introduction to Finite Elements in Engineering. 3rd ed. New Jersey, USA, Prentice Hall, 2002.
  • [27] Niyogi A, Laha M, Sinha P. “Finite element vibration analysis of laminated composite folded plate structures”. Shock and Vibration, 6(5-6), 273-283, 1999.
  • [28] Yang T. “Matrix displacement solution to elastica problems of beams and frames”. International Journal of Solids and Structures, 9(7), 829-842, 1973.

Ön gerilmeli eğri ince plakanin titreşim analizi

Yıl 2022, Cilt: 28 Sayı: 1, 72 - 80, 28.02.2022

Öz

Bu çalışmada, büyük çökmeli izotropik ince plakanın serbest titreşim analizi incelenmiştir. Büyük çökme, tek tarafı sabitlenmiş plakaya harici bir dağıtılmış dikey yük uygulanarak ve ardından diğer uçtan sabitlenerek elde edilir. Bükülmüş esnek levhanın doğrusal olmayan çökme eğrisi, kirişlerin büyük çökme denkleminden elde edilir. Eğri ince levha, dört düğümlü dörtgen yassı kabuk eleman dikkate alınarak sonlu elemanlar yöntemi kullanılarak modellenmiştir. Yük parametresinin doğal frekans parametreleri ve mod şekilleri üzerindeki etkileri incelenmiştir. Sonuçlar, tablolar ve grafikler halinde verilmiştir. Ek olarak, mevcut modelden elde edilen doğal frekans parametreleri, mevcut modelin güvenilirliğini ve geçerliliğini doğrulamak için ANSYS yazılımı ile karşılaştırılır. Eğri ince levhayı oluşturan yük parametresi, levha yapısının mod şekillerini değiştirir.

Kaynakça

  • [1] Iyengar KR, Naqvi M. “Large deflections of rectangular plates”. International Journal of Non-Linear Mechanics, 1(2), 109-122, 1966.
  • [2] Olson MD, Lindberg GM. “Vibration analysis of cantilevered curved plates using a new cylindrical shell finite element”. Proceedings of the Conference on Matrix Methods in Structural Mechanics (2nd), Ottawa, Canada, 15-17 October 1968.
  • [3] Petyt M, Nath JD. “Vibration analysis of singly curved rectangular plates”. Journal of Sound and Vibration, 13(4), 485-497, 1970.
  • [4] Bhattacharya M. “Static and dynamic deflections of plates of arbitrary geometry by a new finite difference approach”. Journal of Sound and Vibration, 107(3), 507-521, 1986.
  • [5] Wang D, El-Sheikh A. “Large-deflection mathematical analysis of rectangular plates”. Journal of Engineering Mechanics, 131(8), 809-821, 2005.
  • [6] Gorman D. “Exact solutions for the free in-plane vibration of rectangular plates with two opposite edges simply supported”. Journal of Sound and Vibration, 294, 131-161, 2006.
  • [7] Kim J, Park J, Lee K, Kim JH, Kim MH, Lee JM. “Computational analysis and design formula development for the design of curved plates for ships and offshore structures”. Structural Engineering and Mechanics, 49(6), 705-726, 2014.
  • [8] Senjanovic I, Tomic M, Vladimir N, Hadzic N. “An approximate analytical procedure for natural vibration analysis of free rectangular plates”. Thin-Walled Structures, 95, 101-114, 2015.
  • [9] Rawat A, Matsagar V, Nagpal A. “Finite element analysis of thin circular cylindrical shells”. Proceedings of the Indian National Science Academy, 82(2), 349-355, 2016.
  • [10] Amabili M, Balasubramanian P, Breslavsky I, Giovanni F, Garziera R, Riabova K. “Experimental and numerical study on vibrations and static deflection of a thin hyperelastic plate”. Journal of Sound and Vibration, 385, 81-92, 2016.
  • [11] Demir C, Mercan K, Ersoy H, Civalek O. “Vibration analysis of graphene sheets using membrane model”. Pamukkale University Journal of Engineering Sciences, 23(6), 652-658, 2017.
  • [12] Qin X, Dong C, Wang F, Qu XY. “Static and dynamic analyses of isogeometric curvilinearly stiffened plates”. Applied Mathematical Modelling, 45, 336-364, 2017.
  • [13] Dogan A. “The effect of curvature on transient analysis of laminated composite cylindrical shells on elastic foundation”. Pamukkale University Journal of Engineering Sciences, 24(6), 960-966, 2018.
  • [14] Rezaiefar A, Galal K. “Free vibration of thin rectangular steel plates with geometrically-nonlinear loaddisplacement behavior”. Thin-Walled Structures, 129, 381-390, 2018.
  • [15] Park J, Paik J, Seo J. “Numerical investigation and development of design formula for cylindrically curved plates on ships and offshore structures”. Thin-Walled Structures, 132, 93-110, 2018.
  • [16] Eisenberger M, Deutsch A. “Solution of thin rectangular plate vibrations for all combinations of boundary conditions”. Journal of Sound and Vibration, 452, 1-12, 2019.
  • [17] Spagnoli A, Brighenti R, Biancopsino M, Rossi M, Roncella R. “Geometrically non-linear bending of plates: Implications in curved building facades”. Construction and Building Materials, 214, 698-708, 2019.
  • [18] Guo X, Zhang Y, Zhang W, Sun L. “Theoretical and experimental investigation on the nonlinear vibration behavior of z-shaped folded plates with inner resonance”. Engineering Structures, 182, 123-140, 2019.
  • [19] Guo H, Zheng H, Zhuang X. “Numerical manifold method for vibration analysis of Kirchhoff’s plates of arbitrary geometry”. Applied Mathematical Modelling, 66, 695-727, 2019.
  • [20] Liu L, Corradi R, Ripamonti F, Rao Z. “Wave based method for flexural vibration of thin plate with general elastically restrained edges”. Journal of Sound and Vibration, 483, 1-24, 2020.
  • [21] Xue J, Wang Y, Chen L. “Nonlinear vibration of cracked rectangular Mindlin plate with in-plane preload”. Journal of Sound and Vibration, 481, 1-22, 2020.
  • [22] He Q, Dai HL, Gui QF, Li JJ. “Analysis of vibration characteristics of joined cylindrical-spherical shells”. Engineering Structures, 218, 1-14, 2020.
  • [23] Ozturk H. “In-plane free vibration of a pre-stressed curved beam obtained from a large deflected cantilever beam”. Finite Elements in Analysis and Design, 47, 229-236, 2011.
  • [24] Jairazbhoy V, Petukhov P, Qu J. “Large deflection of thin plates in convex or concave cylindrical bending”. Journal of Engineering Mechanics, 138(2), 230-234, 2012.
  • [25] Petyt M. Introduction to Finite Element Vibration Analysis. 2nd ed. New York, USA, Cambridge University Press, 2010.
  • [26] Chandrupatla T, Belegundu A. Introduction to Finite Elements in Engineering. 3rd ed. New Jersey, USA, Prentice Hall, 2002.
  • [27] Niyogi A, Laha M, Sinha P. “Finite element vibration analysis of laminated composite folded plate structures”. Shock and Vibration, 6(5-6), 273-283, 1999.
  • [28] Yang T. “Matrix displacement solution to elastica problems of beams and frames”. International Journal of Solids and Structures, 9(7), 829-842, 1973.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makine Müh. / Endüstri Müh.
Yazarlar

Can Gonenlı Bu kişi benim

Hasan Ozturk Bu kişi benim

Oguzhan Das Bu kişi benim

Yayımlanma Tarihi 28 Şubat 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 28 Sayı: 1

Kaynak Göster

APA Gonenlı, C., Ozturk, H., & Das, O. (2022). Vibration analysis of a pre-stressed curved thin plate. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 28(1), 72-80.
AMA Gonenlı C, Ozturk H, Das O. Vibration analysis of a pre-stressed curved thin plate. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Şubat 2022;28(1):72-80.
Chicago Gonenlı, Can, Hasan Ozturk, ve Oguzhan Das. “Vibration Analysis of a Pre-Stressed Curved Thin Plate”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 28, sy. 1 (Şubat 2022): 72-80.
EndNote Gonenlı C, Ozturk H, Das O (01 Şubat 2022) Vibration analysis of a pre-stressed curved thin plate. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 28 1 72–80.
IEEE C. Gonenlı, H. Ozturk, ve O. Das, “Vibration analysis of a pre-stressed curved thin plate”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 28, sy. 1, ss. 72–80, 2022.
ISNAD Gonenlı, Can vd. “Vibration Analysis of a Pre-Stressed Curved Thin Plate”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 28/1 (Şubat 2022), 72-80.
JAMA Gonenlı C, Ozturk H, Das O. Vibration analysis of a pre-stressed curved thin plate. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2022;28:72–80.
MLA Gonenlı, Can vd. “Vibration Analysis of a Pre-Stressed Curved Thin Plate”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 28, sy. 1, 2022, ss. 72-80.
Vancouver Gonenlı C, Ozturk H, Das O. Vibration analysis of a pre-stressed curved thin plate. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2022;28(1):72-80.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.