Araştırma Makalesi
BibTex RIS Kaynak Göster

Peroksidisülfat ile arıtma çamuru oksidasyonu: Dezentegrasyon, anaerobik parçalanabilirlik ve filtrelenebilirlik özellikleri üzerine etkileri

Yıl 2022, Cilt: 28 Sayı: 3, 444 - 450, 30.06.2022

Öz

Yürütülen çalışmada Peroksidisülfat (PDS) oksidasyonu ile kentsel nitelikli atıksu arıtma tesisinde oluşan biyolojik çamurların anaerobik yöntemle stabilizasyonu öncesinde çamur dezentegrasyonu amacıyla kullanılabilirliği araştırılmıştır. Bunun yanı sıra PDS oksidasyonu, çamurların filtrelenebilirlik özelliklerini geliştirmek amacıyla bir şartlandırma işlemi olarak değerlendirilmiştir. Çalışmada PDS oksidasyonu Denizli’de bulunan kentsel atıksuların arıtıldığı Atıksu Arıtma Tesisi’nden alınan çamurlara uygulanmıştır. Yanıt yüzey istatiksel analizi kullanılarak proses koşulları (konsantrasyon ve sıcaklık) dezentegrasyon ve şartlandırma açısından optimize edilmiştir. Dezentegrasyon derecesi (DD), dezentegrasyon işlemi için ve Kapiler Emme Süresi (KES)’ndeki azalma, şartlandırma işlemi için verim olarak dikkate alınmıştır. Dezentegrasyon yöntemi için en uygun koşullar belirlendikten sonra çamurun anaerobik olarak parçalanabilirliğini belirlemek üzere biyokimyasal metan potansiyeli (BMP) testleri yürütülmüştür. En yüksek dezentegrasyon derecesi (DD) değeri 900 g/kg KM konsantrasyon ve 100°C sıcaklık uygulandığında elde edilmiş olup, DD değeri %51,5 olarak belirlenmiştir. Bu uygulama, ham çamura kıyasla %42,6 oranında metan gazı artışına olanak vermiştir. Çalışma sonucunda, PDS ile oksidasyon işleminin çamurun dezentegrasyonunu sağlayarak anaerobik çürüme işleminde daha fazla metan gazı oluşumuna neden olduğu belirlenmiştir. En düşük KES değeri 1100 g/ kg KM ve 20 °C uygulamasında elde edilmiş olup bu uygulamada KES değerindeki azalma %89 olarak hesaplanmıştır. Bu sonuç, PDS oksidasyonunun çamurların su verme özelliğini geliştirdiğini göstermiştir

Kaynakça

  • [1] Bougrier C, Carrère H, Delgenes JP. “Solubilisation of waste-activated sludge by ultrasonic treatment”. Chemical Engineering Journal, 106, 163-169, 2005.
  • [2] Weemaes M, Verstraete W. Sludge into Biosolids Processing, Disposal and Utilization. UK, IWA Publishing, 2001.
  • [3] Wang F, Wang Y, Ji M. “Mechanisms and kinetics models for ultrasonic waste activated sludge disintegration”. Journal of Hazardous Materials, B123(1-3), 145-150, 2005.
  • [4] Dauknys R, Mazeikiene A, Paliulis D. “Effect of ultrasound and high voltage disintegration on sludge digestion process”. Journal of Environmental Management, 270, 1-8, 2020.
  • [5] Xianga Y, Xiang Y, Wanga L. “Disintegration of waste activated sludge by a combined treatment of alkalinemodified eggshell and ultrasonic radiation”. Journal of Environmental Chemical Engineering 5(2), 1379-1385, 2017.
  • [6] Sahinkaya S, Kalıpcı E, Aras S. “Disintegration of waste activated sludge by different applications of Fenton process”. Process Safety and Environmental Protection, 93, 274-281, 2015.
  • [7] Criquet J, Nebout P, Vel Leitner NK. “Enhancement of carboxylic acid degradation with sulfate radical generated by persulfate activation”. Water Science and Technology, 61(5), 1221-26, 2010.
  • [8] Huang K, Zhao Z, Hoag GE, Dahmani A, Block PA. “Degradation of volatile organic compounds with thermally activated persulfate oxidation”. Chemosphere, 61(4), 551-560, 2005.
  • [9] Mora VC, Rosso JA, Le Roux GC, Martire DO, Gonzalez MC. “Thermally activated peroxydisulfate in the presence of additives: a clean method for the degradation of pollutants”. Chemosphere, 75(10), 1405-1409, 2009.
  • [10] Weichao R, Zhen Z, Yeye Z, Lu-Man J, Haijuan W, Tianhao N, Penghao F, Zhan Q. “Effect of sulfate radical oxidation on disintegration of waste activated sludge”. International Biodeterioration & Biodegradation 104, 384-390, 2015.
  • [11] Wang H, Cai WW, Liu WZ, Li JQ, Wang B, Yang SC, Wang Aj. “Application of sulfate radicals from ultrasonic activation: Disintegration of extracellular polymeric substances for enhanced anaerobic fermentation of sulfate-containing waste-activated sludge”. Chemical Engineering Journal, 352, 380-388, 2018.
  • [12] Zhen GY, Lu XQ, Zhao YC, Chai XL, Niu DJ. “Enhanced dewaterability of sewage sludge in the presence of Fe(II)- activated persulfate oxidation”. Bioresource Technology, 116, 259-265, 2012.
  • [13] Zhen GY, Lu XQ, Niu J, Su LH, Chai XL, Zhao YC, Li YY, Song Y, Niu DJ. “Inhibitory effects of a shock load of Fe(II)- mediated persulfate oxidation on waste activated sludge anaerobic digestion”. Chemical Engineering Journal, 233, 274-281, 2013.
  • [14] Shi YF, Yang JK, Mao W, Li YL, Xu X, Zhang H, Yu WB, Li Y, Yang CZ. “Influence of Fe2+-sodium persulfate on extracellular polymeric substances and dewaterability of sewage sludge”. Desalination and Water Treatment, 53(10), 2655-2663, 2015.
  • [15] Wacławek S, Grübel K, Dennis P, Vinod VTP, Černík M. “A novel approach for simultaneous improvement of dewaterability, post-digestion liquor properties and toluene removal from anaerobically digested sludge”. Chemical Engineering Journal, 291, 192-198 2016.
  • [16] Balcioglu IA, Oncu NB, Mercan N. “Beneficial effects of treating waste secondary sludge with thermally activated persulfate”. Journal of Chemical Technology and Biotechnology, 92(6), 1192-1202, 2017.
  • [17] APHA. Standard methods for the examination of water and wastewater. Washington, DC, 2005.
  • [18] Akay U. Tekstil Endüstrisindeki Atıksulardan Renk ve KOİ Gideriminin Yanıt Yüzey Yöntemi ile Eniyilenmesi. Yüksek Lisans Tezi, Eskişehir Osmangazi Üniversitesi, Eskişehir, Türkiye. 2013.
  • [19] Bezerra MA, Santelli RE, Oliveira EP, Villar MA, Escaleira LA. “Response Surface Methodology (RSM) as a tool for optimization in analytical chemistry”. Talanta, 76(5), 965-977, 2008.
  • [20] Müller JA, Winter A, Strünkmann G. “Investigation and assessment of sludge pre-treatment processes”. Water Science and Technology, 49(10), 97-104, 2004.
  • [21] Demirer GN, Speece RE. “Anaerobic biotransformation of four 3-carbon compounds (acrolein, acrylic acid, allyl alcohol and n- propanol) in UASB reactors”. Water Research, 32(3), 747-759, 1998.
  • [22] Razo-Flores E, Luijton M, Donlon BA, Lettinga G, Field JA. “Biodegradation of selected azo dye under methanogenic conditions”. Water Science and Technology, 36(6-7), 65-72, 1997.
  • [23] Erden G, Filibeli A. “Effects of Fenton pre-treatment on waste activated sludge properties”. Clean Soil Air Water, 39(7), 626-632, 2011.
  • [24] Erden G, Filibeli A. “Ozone oxidation of biological sludge: Effects on disintegration, anaerobic biodegradability, and filterability”. Environmental Progress & Sustainable Energy, 30(3), 377-383, 2011.
  • [25] Erden G, Filibeli A. “Ultrasonic pre-treatment of biological sludge: Consequences for disintegration, anaerobic biodegradability, and filterability”. Journal of Chemical Technology Biotechnology, 85(1), 145-150, 2010.
  • [26] Erden G. “Disintegration of biological sludge by electrooxidation process with different electrode couples”. Waste and Biomass Valorization 11, 2701-2707, 2020.
  • [27] Erkan HS, Engin GO. “A comparative study of waste activated sludge disintegration by electrochemical pretreatment process combined with hydroxyl and sulfate radical based oxidants”. Journal of Environmental Chemical Engineering, 8(4), 1-12, 2020.
  • [28] Zhang G, Yang J, Liu H, Zhang J. “Sludge ozonation: disintegration, supernatant changes and mechanisms”. Bioresource Technology, 100(3), 1505-1509, 2009.

Sludge oxidation with peroxydisulphate: Effects on disintegration, anaerobic degradability and filterability properties

Yıl 2022, Cilt: 28 Sayı: 3, 444 - 450, 30.06.2022

Öz

In this study, the usability of peroxydisulphate (PDS) oxidation for biological sludge obtained in municipal wastewater treatment plant for sludge disintegration prior to stabilization by anaerobic method was investigated. In addition, PDS oxidation has been evaluated as a conditioning process in order to improve the filterability properties of sludges. In this study, PDS oxidation was applied to sludges taken from Denizli Wastewater Treatment Plant where municipal wastewater is treated. Process conditions (concentration and temperature) were optimized using response surface statistical analysis in terms of disintegration and conditioning. Disintegration Degree (DD) for disintegration process and reduction in Capillary Suction Time (CST) are considered as efficiency for conditioning process. After determining the optimum conditions for the disintegration method, biochemical methane potential (BMP) tests were conducted to determine the anaerobic degradability of the sludge. The highest degree of disintegration (DD) was obtained when 900 g/kg DS concentration and 100°C temperature was applied and DD value was determined as 51.5%. This application enabled an increase of 42.6% methane gas compared to raw sludge. As a result of the study, It has been determined that oxidation process with PDS causes more methane gas formation in the anaerobic digestion process by providing disintegration of sludge. The lowest KES value was obtained in 1100 g/kg KM and 20 °C application, and the decrease in KES value was calculated as 89% in this application. This result showed that PDS oxidation improved the dewatering property of the sludges.

Kaynakça

  • [1] Bougrier C, Carrère H, Delgenes JP. “Solubilisation of waste-activated sludge by ultrasonic treatment”. Chemical Engineering Journal, 106, 163-169, 2005.
  • [2] Weemaes M, Verstraete W. Sludge into Biosolids Processing, Disposal and Utilization. UK, IWA Publishing, 2001.
  • [3] Wang F, Wang Y, Ji M. “Mechanisms and kinetics models for ultrasonic waste activated sludge disintegration”. Journal of Hazardous Materials, B123(1-3), 145-150, 2005.
  • [4] Dauknys R, Mazeikiene A, Paliulis D. “Effect of ultrasound and high voltage disintegration on sludge digestion process”. Journal of Environmental Management, 270, 1-8, 2020.
  • [5] Xianga Y, Xiang Y, Wanga L. “Disintegration of waste activated sludge by a combined treatment of alkalinemodified eggshell and ultrasonic radiation”. Journal of Environmental Chemical Engineering 5(2), 1379-1385, 2017.
  • [6] Sahinkaya S, Kalıpcı E, Aras S. “Disintegration of waste activated sludge by different applications of Fenton process”. Process Safety and Environmental Protection, 93, 274-281, 2015.
  • [7] Criquet J, Nebout P, Vel Leitner NK. “Enhancement of carboxylic acid degradation with sulfate radical generated by persulfate activation”. Water Science and Technology, 61(5), 1221-26, 2010.
  • [8] Huang K, Zhao Z, Hoag GE, Dahmani A, Block PA. “Degradation of volatile organic compounds with thermally activated persulfate oxidation”. Chemosphere, 61(4), 551-560, 2005.
  • [9] Mora VC, Rosso JA, Le Roux GC, Martire DO, Gonzalez MC. “Thermally activated peroxydisulfate in the presence of additives: a clean method for the degradation of pollutants”. Chemosphere, 75(10), 1405-1409, 2009.
  • [10] Weichao R, Zhen Z, Yeye Z, Lu-Man J, Haijuan W, Tianhao N, Penghao F, Zhan Q. “Effect of sulfate radical oxidation on disintegration of waste activated sludge”. International Biodeterioration & Biodegradation 104, 384-390, 2015.
  • [11] Wang H, Cai WW, Liu WZ, Li JQ, Wang B, Yang SC, Wang Aj. “Application of sulfate radicals from ultrasonic activation: Disintegration of extracellular polymeric substances for enhanced anaerobic fermentation of sulfate-containing waste-activated sludge”. Chemical Engineering Journal, 352, 380-388, 2018.
  • [12] Zhen GY, Lu XQ, Zhao YC, Chai XL, Niu DJ. “Enhanced dewaterability of sewage sludge in the presence of Fe(II)- activated persulfate oxidation”. Bioresource Technology, 116, 259-265, 2012.
  • [13] Zhen GY, Lu XQ, Niu J, Su LH, Chai XL, Zhao YC, Li YY, Song Y, Niu DJ. “Inhibitory effects of a shock load of Fe(II)- mediated persulfate oxidation on waste activated sludge anaerobic digestion”. Chemical Engineering Journal, 233, 274-281, 2013.
  • [14] Shi YF, Yang JK, Mao W, Li YL, Xu X, Zhang H, Yu WB, Li Y, Yang CZ. “Influence of Fe2+-sodium persulfate on extracellular polymeric substances and dewaterability of sewage sludge”. Desalination and Water Treatment, 53(10), 2655-2663, 2015.
  • [15] Wacławek S, Grübel K, Dennis P, Vinod VTP, Černík M. “A novel approach for simultaneous improvement of dewaterability, post-digestion liquor properties and toluene removal from anaerobically digested sludge”. Chemical Engineering Journal, 291, 192-198 2016.
  • [16] Balcioglu IA, Oncu NB, Mercan N. “Beneficial effects of treating waste secondary sludge with thermally activated persulfate”. Journal of Chemical Technology and Biotechnology, 92(6), 1192-1202, 2017.
  • [17] APHA. Standard methods for the examination of water and wastewater. Washington, DC, 2005.
  • [18] Akay U. Tekstil Endüstrisindeki Atıksulardan Renk ve KOİ Gideriminin Yanıt Yüzey Yöntemi ile Eniyilenmesi. Yüksek Lisans Tezi, Eskişehir Osmangazi Üniversitesi, Eskişehir, Türkiye. 2013.
  • [19] Bezerra MA, Santelli RE, Oliveira EP, Villar MA, Escaleira LA. “Response Surface Methodology (RSM) as a tool for optimization in analytical chemistry”. Talanta, 76(5), 965-977, 2008.
  • [20] Müller JA, Winter A, Strünkmann G. “Investigation and assessment of sludge pre-treatment processes”. Water Science and Technology, 49(10), 97-104, 2004.
  • [21] Demirer GN, Speece RE. “Anaerobic biotransformation of four 3-carbon compounds (acrolein, acrylic acid, allyl alcohol and n- propanol) in UASB reactors”. Water Research, 32(3), 747-759, 1998.
  • [22] Razo-Flores E, Luijton M, Donlon BA, Lettinga G, Field JA. “Biodegradation of selected azo dye under methanogenic conditions”. Water Science and Technology, 36(6-7), 65-72, 1997.
  • [23] Erden G, Filibeli A. “Effects of Fenton pre-treatment on waste activated sludge properties”. Clean Soil Air Water, 39(7), 626-632, 2011.
  • [24] Erden G, Filibeli A. “Ozone oxidation of biological sludge: Effects on disintegration, anaerobic biodegradability, and filterability”. Environmental Progress & Sustainable Energy, 30(3), 377-383, 2011.
  • [25] Erden G, Filibeli A. “Ultrasonic pre-treatment of biological sludge: Consequences for disintegration, anaerobic biodegradability, and filterability”. Journal of Chemical Technology Biotechnology, 85(1), 145-150, 2010.
  • [26] Erden G. “Disintegration of biological sludge by electrooxidation process with different electrode couples”. Waste and Biomass Valorization 11, 2701-2707, 2020.
  • [27] Erkan HS, Engin GO. “A comparative study of waste activated sludge disintegration by electrochemical pretreatment process combined with hydroxyl and sulfate radical based oxidants”. Journal of Environmental Chemical Engineering, 8(4), 1-12, 2020.
  • [28] Zhang G, Yang J, Liu H, Zhang J. “Sludge ozonation: disintegration, supernatant changes and mechanisms”. Bioresource Technology, 100(3), 1505-1509, 2009.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm İnşaat Müh. / Çevre Müh. / Jeoloji Müh.
Yazarlar

Gülbin Erden Bu kişi benim

Cihan Topuz Bu kişi benim

Yayımlanma Tarihi 30 Haziran 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 28 Sayı: 3

Kaynak Göster

APA Erden, G., & Topuz, C. (2022). Peroksidisülfat ile arıtma çamuru oksidasyonu: Dezentegrasyon, anaerobik parçalanabilirlik ve filtrelenebilirlik özellikleri üzerine etkileri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 28(3), 444-450.
AMA Erden G, Topuz C. Peroksidisülfat ile arıtma çamuru oksidasyonu: Dezentegrasyon, anaerobik parçalanabilirlik ve filtrelenebilirlik özellikleri üzerine etkileri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Haziran 2022;28(3):444-450.
Chicago Erden, Gülbin, ve Cihan Topuz. “Peroksidisülfat Ile arıtma çamuru Oksidasyonu: Dezentegrasyon, Anaerobik parçalanabilirlik Ve Filtrelenebilirlik özellikleri üzerine Etkileri”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 28, sy. 3 (Haziran 2022): 444-50.
EndNote Erden G, Topuz C (01 Haziran 2022) Peroksidisülfat ile arıtma çamuru oksidasyonu: Dezentegrasyon, anaerobik parçalanabilirlik ve filtrelenebilirlik özellikleri üzerine etkileri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 28 3 444–450.
IEEE G. Erden ve C. Topuz, “Peroksidisülfat ile arıtma çamuru oksidasyonu: Dezentegrasyon, anaerobik parçalanabilirlik ve filtrelenebilirlik özellikleri üzerine etkileri”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 28, sy. 3, ss. 444–450, 2022.
ISNAD Erden, Gülbin - Topuz, Cihan. “Peroksidisülfat Ile arıtma çamuru Oksidasyonu: Dezentegrasyon, Anaerobik parçalanabilirlik Ve Filtrelenebilirlik özellikleri üzerine Etkileri”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 28/3 (Haziran 2022), 444-450.
JAMA Erden G, Topuz C. Peroksidisülfat ile arıtma çamuru oksidasyonu: Dezentegrasyon, anaerobik parçalanabilirlik ve filtrelenebilirlik özellikleri üzerine etkileri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2022;28:444–450.
MLA Erden, Gülbin ve Cihan Topuz. “Peroksidisülfat Ile arıtma çamuru Oksidasyonu: Dezentegrasyon, Anaerobik parçalanabilirlik Ve Filtrelenebilirlik özellikleri üzerine Etkileri”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 28, sy. 3, 2022, ss. 444-50.
Vancouver Erden G, Topuz C. Peroksidisülfat ile arıtma çamuru oksidasyonu: Dezentegrasyon, anaerobik parçalanabilirlik ve filtrelenebilirlik özellikleri üzerine etkileri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2022;28(3):444-50.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.