Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of over-exploited groundwater in Çumra Plain (Konya-Turkey) with environmental isotopes

Yıl 2022, Cilt: 28 Sayı: 3, 483 - 492, 30.06.2022

Öz

The groundwater in the Çumra plain, a semi-arid climate region, is intensively exploited for human needs due to especially agricultural and demographic development. In the study area, there are two main aquifers which are the semi-confined Neogene aquifer and the unconfined Quaternary aquifer. This paper presents isotopic characteristics of groundwater of the over-exploited two aquifer systems in the Çumra Plain of Konya. δ18O and δD contents of the Neogene aquifer samples respectively range from -9.89‰ to -6.76‰ and -68.30‰ to -47.50‰ in dry season and range from -10.32‰ to -7.61‰ and -68.63‰ to -53.11‰ in wet season. δ18O and δD contents of the Quaternary aquifer samples respectively range from -8.43‰ to -5.53‰ and -58.67‰ to -45.61‰ in dry season and range from - 8.77‰ to -5.89‰ and -60.18‰ to -46.45‰ in wet season. The δ18O and δD contents of groundwater samples in two aquifers indicate a meteoric origin. The average lower Oxygen-18 values of the Neogene aquifer samples indicate recharge from higher elevations while more enriched Oxygen-18 values of the Quaternary aquifer samples show recharged from lower elevation. The groundwater of the Quaternary aquifer was more affected by the evaporation eventuated during or after recharge. Besides, positive correlation of δ18O with both Cl and total dissolved solids (TDS) in the Quaternary aquifer samples reveals that the evaporation caused salinity increases of the Quaternary aquifer samples. Tritium contents of the Neogene aquifer samples vary from 0.22 to 2.15TU in dry season and from 0.85 to 2.64TU in wet season, while tritium contents of the Quaternary aquifer samples vary from 1.18 to 4.37TU and from 1.52 to 5.48TU in dry and wet seasons, respectively. Accordingly, the samples of the Neogene aquifer reflect relatively higher residence time. Besides, the Neogene aquifer is under the influence of relatively recent precipitation, but recent precipitation has contributed more to the Quaternary aquifer.

Kaynakça

  • [1] Clark ID, Fritz P. Environmental Isotopes in Hydrogeology. 1st ed. New York, USA, CRC press, 1997.
  • [2] Edmunds WM. Contribution of Isotopic and Nuclear Tracers to Study of Groundwaters. Editors: Aggarwal PK, Gat JR, Froehlich KF. Isotopes in the Water Cycle, 171-192, Oxford, United Kingdom, Springer, Dordrecht, 2005.
  • [3] Aggarwal PK, Froehlich K, Kulkarni KM. Environmental Isotopes in Groundwater Studies. Editors: Silveria L. Usunoff EJ. Groundwater, 69-92, Oxford, United Kingdom, Eolss, 2009.
  • [4] Arslan Ş. “Investigation of the water resources in Köprüören Basin (Kütahya) with environmental isotopes”. Maden Tetkik ve Arama Dergisi, 153(153), 169-183, 2016.
  • [5] Somay-Altaş MA. “Hydrogeochemical fingerprints of a mixohaline wetland in the Mediterranean: Güllük coastal wetland systems-GCWS (Muğla, Turkey)”. Turkish Journal of Earth Sciences, 30, 38-58, 2021.
  • [6] Bozan Ç, Avcı P, Özyurt NN, Bayarı CS. “Gazipaşa (Antalya) kıyı akiferinin hidrojeolojik kavramsal modeli”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25(3), 352-363, 2019.
  • [7] Gökgöz A, Tabancalı Y. “Böceli ve Kazanpınar karst kaynaklarının (Denizli) hidrojeolojik ve hidrokimyasal özellikleri”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 27(3), 420-430, 2021.
  • [8] Ali KK, Al-Kubaisi QY, Al-Paruany KB. “Isotopic study of water resources in a semi-arid region, western Iraq”. Environmental Earth Sciences, 74(2), 1671-1686, 2015.
  • [9] Bozdağ A. “Assessment of the hydrogeochemical characteristics of groundwater in two aquifer systems in Çumra Plain, Central Anatolia”. Environmental Earth Sciences, 78(2), 674, 2-15, 2016.
  • [10] Bayari CS, Ozyurt NN, Kilani S. “Radiocarbon age distribution of groundwater in the Konya Closed Basin, central Anatolia, Turkey”. Hydrogeology Journal, 17(2), 347-365, 2009.
  • [11] Devlet Su İşleri. “Konya-Çumra-Karapınar Ovası Hidrojeoloji Etüt Raporu”. DSİ Genel Müdürlüğü, Jeoteknik Hizmetler ve Yeraltısuları Dairesi Başkanlığı, Ankara, Türkiye, 3246, 1975.
  • [12] Hakyemez HY, Elibol E, Umut M, Bakırhan B, Kara İ, Dağıstan H, Metin T, Erdoğan N. “Konya-Çumra-Akören Dolayının Jeolojisi”. Maden Tetkik ve Arama Raporu, Ankara, Türkiye, 9449, 1992.
  • [13] Eren Y. “Konya'da deprem riski”. Yer Bilimi ve Tekniği Dergisi, 1(1), 12-16, 2004.
  • [14] Bozdağ A. “Combining AHP with GIS for assessment of irrigation water quality in Çumra irrigation district (Konya), Central Anatolia, Turkey”. Environmental Earth Sciences, 73, 8217-8236, 2015.
  • [15] Ulu Ü, Bulduk AK, Ekmekçi E, Karakaş M, Öcal H, Abbas A, Saçlı L, Taşkıran MA, Adır M, Sözeri Ş, Karabıyıkoğlu M. “İnlice-Akkise ve Cihanbeyli-Karapınar alanının jeolojisi”. Maden Tetkik ve Arama Raporu, Ankara, Türkiye, 9720, 1994.
  • [16] Yavuz S. Konya-Karapınar Havzasının Karstik Özelliklerinin Belirlenmesinde Kullanılan Hidrojeolojik Parametreler. Yüksek Lisans Tezi, Çukurova Universitesi, Adana, Türkiye, 2010.
  • [17] Varol S, Davraz A. “Assessment of geochemistry and hydrogeochemical processes in groundwater of the Tefenni plain (Burdur/Turkey)”. Environmental Earth Sciences, 71, 4657-4673. 2014.
  • [18] Ngabirano H, Byamugisha D, Ntambi E. “Effects of seasonal variations in physical parameters on quality of gravity flow water in Kyanamira Sub-County, Kabale District, Uganda”. Journal of Water Resource and Protection, 8(13), 1297-1309, 2016.
  • [19] Singh K, Hundal HS, Singh D. “Geochemistry and assessment of hydrogeochemical processes in groundwater in the southern part of Bathinda district of Punjab, northwest India”. Environmental Earth Sciences, 64, 1823-1833, 2011.
  • [20] Rao T, Rao VG, Rao YS, Ramesh G. “Study of hydrogeochemical processes of the groundwater in Ghatprabha river sub-basin, Bagalkot District, Karnataka, India”. Arabian Journal of Geosciences, 6(7), 2447-2459, 2013.
  • [21] Li X, Zhang L, Hou X. “Use of hydrogeochemistry and environmental isotopes for evaluation of groundwater in Qingshuihe Basin, northwestern China”. Hydrogeology Journal, 16(2), 335-348, 2008.
  • [22] Craig H. “Isotopic variations in meteoric waters”. Science, 133(3465), 1702-1703, 1961.
  • [23] Senturk F, Bursali S, Omay Y, Ertan I, Guler S, Yalcin H, Onhan E. “Isotope techniques applied to groundwater movement in the Konya plain”. A Symposium on Use of Isotopes in Hydrology, Vienna, Austria, 9-13 March 1970.
  • [24] Singh KP. “Temporal changes in the chemical quality of groundwater in Ludhiana area, Punjab, India”. Current Science, 66(5), 375-378, 1994.
  • [25] Payne BR. “The status of isotope hydrology today”. Journal of Hydrology, 100(1-3), 207-237, 1988.
  • [26] Dansgaard W. “Stable isotopes in precipitation”. Tellus, 16(4), 436-468, 1964.
  • [27] Cappa CD, Hendricks MB, DePaolo DJ, Cohen RC. “Isotopic fractionation of water during evaporation”. Journal of Geophysical Research: Atmospheres, 108(D16), 1-10, 2003.
  • [28] Yuan F, Miyamoto S. “Characteristics of oxygen-18 and deuterium composition in waters from the Pecos River in American Southwest”. Chemical Geology, 255(1-2), 220-230, 2008.
  • [29] Welker JM. “Isotopic (δ18O) characteristics of weekly precipitation collected across the USA: an initial analysis with application to water source studies”. Hydrological Processes, 14 (8), 1449-1464, 2000.
  • [30] Harvey FE. “Harvey, Edwin F. "Stable hydrogen and oxygen isotope composition of precipitation in Northeastern Colorado 1”. Journal of the American Water Resources Association, 41(2), 447-459, 2005.
  • [31] Gammons CH, Poulson SR, Pellicori DA, Reed PJ, Roesler AJ, Petrescu EM. “The hydrogen and oxygen isotopic composition of precipitation, evaporated mine water, and river water in Montana, USA”. Journal of Hydrology, 328(1-2), 319-330, 2006.
  • [32] Yurtsever Y. “Models for tracer data analysis”. In: Guidebook on nuclear techniques in hydrology. International Atomic Energy Agency (IAEA)”. Vienna, Austria, Tecnical Report, 91, 1983.
  • [33] Lee J, Jung B, Kim JH, Ko KS, Chang HW. “Determination of groundwater flow regimes in underground storage caverns using tritium and helium isotopes”. Environmental Earth Sciences, 63, 763-770, 2011.
  • [34] Mazor E. Chemical and Isotopic Groundwater Hydrology. 3rd ed. New York, USA, CRC Press, 2004.

Çumra Ovası'nda (Konya-Türkiye) aşırı tüketilen yeraltısularının çevresel izotoplar ile incelemesi

Yıl 2022, Cilt: 28 Sayı: 3, 483 - 492, 30.06.2022

Öz

Yarı kurak bir iklim bölgesi olan Çumra ovasındaki yeraltısuları, özellikle tarımsal ve demografik gelişmeden dolayı yoğun olarak insan ihtiyaçları için kullanılmaktadır. Çalışma alanında yarı basınçlı Neojen akiferi ve serbest Kuvaterner akiferi olmak üzere iki ana akifer sistemi bulunmaktadır. Bu çalışmada, Konya'nın Çumra Ovası'ndaki iki akifer sisteminin aşırı çekilen yeraltısuyunun izotopik özellikleri değerlendirilmektedir. Neojen akifer örneklerinin δ18O ve δD içerikleri sırasıyla kurak dönemde -9.89‰ ile -6.76‰ ve -68.30‰ ile -47.50‰ arasında, yağışlı dönemde ise -10.32‰ ile -7.61‰ ve -68.63‰ ile -53.11‰ arasında değişmektedir. Kuvaterner akifer örneklerinin δ18O ve δD içerikleri ise sırasıyla kurak dönemde -8.43‰ ile -5.53‰ ve -58.67‰ ile -45.61‰ arasında, yağışlı dönemde -8.77‰ ile -5.89‰ ve -60.18‰ ile -46.45‰ arasında değişmektedir. İki akiferdeki yeraltısuyu örneklerinin δ18O ve δD değerleri, meteorik bir kökene işaret etmektedir. Neojen akifer örneklerinin ortalama daha düşük Oksijen-18 değerleri, daha yüksek kotlardan beslenmeyi gösterirken, Kuvaterner akifer örneklerinin daha yüksek Oksijen-18 değerleri, daha düşük kottan beslenmeye işaret etmektedir. Kuvaterner akiferinin yeraltısuyu, beslenme sırasında veya sonrasında meydana gelen buharlaşmadan daha fazla etkilenmiştir. Bununla birlikte Kuvaterner akifer örneklerinin δ18O değerinin hem Cl hem de toplam çözünmüş katılar (TDS) ile pozitif korelasyonu, buharlaşmanın çalışma alanındaki Kuvaterner akiferinin yeraltısuyunda tuzluluk artışına neden olduğunu ortaya koymaktadır. Neojen akifer örneklerinin trityum içeriği kurak dönemde 0.22 ile 2.15TU, yağışlı dönemde 0.85 ile 2.64TU arasında değişirken, Kuvaterner akifer örneklerinin trityum içeriği kurak ve yağışlı dönemlerde sırasıyla 1.18 ile 4.37TU ve 1.52 ile 5.48TU arasında değişmektedir. Bu verilere göre, Neojen akiferinin yeraltısuyu, nispeten daha uzun dolaşımlıdır. Ayrıca Neojen akiferi nispeten güncel yağışların etkisi altındadır fakat güncel yağışlar Kuvaterner akiferine daha çok katkıda bulunmuştur.

Kaynakça

  • [1] Clark ID, Fritz P. Environmental Isotopes in Hydrogeology. 1st ed. New York, USA, CRC press, 1997.
  • [2] Edmunds WM. Contribution of Isotopic and Nuclear Tracers to Study of Groundwaters. Editors: Aggarwal PK, Gat JR, Froehlich KF. Isotopes in the Water Cycle, 171-192, Oxford, United Kingdom, Springer, Dordrecht, 2005.
  • [3] Aggarwal PK, Froehlich K, Kulkarni KM. Environmental Isotopes in Groundwater Studies. Editors: Silveria L. Usunoff EJ. Groundwater, 69-92, Oxford, United Kingdom, Eolss, 2009.
  • [4] Arslan Ş. “Investigation of the water resources in Köprüören Basin (Kütahya) with environmental isotopes”. Maden Tetkik ve Arama Dergisi, 153(153), 169-183, 2016.
  • [5] Somay-Altaş MA. “Hydrogeochemical fingerprints of a mixohaline wetland in the Mediterranean: Güllük coastal wetland systems-GCWS (Muğla, Turkey)”. Turkish Journal of Earth Sciences, 30, 38-58, 2021.
  • [6] Bozan Ç, Avcı P, Özyurt NN, Bayarı CS. “Gazipaşa (Antalya) kıyı akiferinin hidrojeolojik kavramsal modeli”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25(3), 352-363, 2019.
  • [7] Gökgöz A, Tabancalı Y. “Böceli ve Kazanpınar karst kaynaklarının (Denizli) hidrojeolojik ve hidrokimyasal özellikleri”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 27(3), 420-430, 2021.
  • [8] Ali KK, Al-Kubaisi QY, Al-Paruany KB. “Isotopic study of water resources in a semi-arid region, western Iraq”. Environmental Earth Sciences, 74(2), 1671-1686, 2015.
  • [9] Bozdağ A. “Assessment of the hydrogeochemical characteristics of groundwater in two aquifer systems in Çumra Plain, Central Anatolia”. Environmental Earth Sciences, 78(2), 674, 2-15, 2016.
  • [10] Bayari CS, Ozyurt NN, Kilani S. “Radiocarbon age distribution of groundwater in the Konya Closed Basin, central Anatolia, Turkey”. Hydrogeology Journal, 17(2), 347-365, 2009.
  • [11] Devlet Su İşleri. “Konya-Çumra-Karapınar Ovası Hidrojeoloji Etüt Raporu”. DSİ Genel Müdürlüğü, Jeoteknik Hizmetler ve Yeraltısuları Dairesi Başkanlığı, Ankara, Türkiye, 3246, 1975.
  • [12] Hakyemez HY, Elibol E, Umut M, Bakırhan B, Kara İ, Dağıstan H, Metin T, Erdoğan N. “Konya-Çumra-Akören Dolayının Jeolojisi”. Maden Tetkik ve Arama Raporu, Ankara, Türkiye, 9449, 1992.
  • [13] Eren Y. “Konya'da deprem riski”. Yer Bilimi ve Tekniği Dergisi, 1(1), 12-16, 2004.
  • [14] Bozdağ A. “Combining AHP with GIS for assessment of irrigation water quality in Çumra irrigation district (Konya), Central Anatolia, Turkey”. Environmental Earth Sciences, 73, 8217-8236, 2015.
  • [15] Ulu Ü, Bulduk AK, Ekmekçi E, Karakaş M, Öcal H, Abbas A, Saçlı L, Taşkıran MA, Adır M, Sözeri Ş, Karabıyıkoğlu M. “İnlice-Akkise ve Cihanbeyli-Karapınar alanının jeolojisi”. Maden Tetkik ve Arama Raporu, Ankara, Türkiye, 9720, 1994.
  • [16] Yavuz S. Konya-Karapınar Havzasının Karstik Özelliklerinin Belirlenmesinde Kullanılan Hidrojeolojik Parametreler. Yüksek Lisans Tezi, Çukurova Universitesi, Adana, Türkiye, 2010.
  • [17] Varol S, Davraz A. “Assessment of geochemistry and hydrogeochemical processes in groundwater of the Tefenni plain (Burdur/Turkey)”. Environmental Earth Sciences, 71, 4657-4673. 2014.
  • [18] Ngabirano H, Byamugisha D, Ntambi E. “Effects of seasonal variations in physical parameters on quality of gravity flow water in Kyanamira Sub-County, Kabale District, Uganda”. Journal of Water Resource and Protection, 8(13), 1297-1309, 2016.
  • [19] Singh K, Hundal HS, Singh D. “Geochemistry and assessment of hydrogeochemical processes in groundwater in the southern part of Bathinda district of Punjab, northwest India”. Environmental Earth Sciences, 64, 1823-1833, 2011.
  • [20] Rao T, Rao VG, Rao YS, Ramesh G. “Study of hydrogeochemical processes of the groundwater in Ghatprabha river sub-basin, Bagalkot District, Karnataka, India”. Arabian Journal of Geosciences, 6(7), 2447-2459, 2013.
  • [21] Li X, Zhang L, Hou X. “Use of hydrogeochemistry and environmental isotopes for evaluation of groundwater in Qingshuihe Basin, northwestern China”. Hydrogeology Journal, 16(2), 335-348, 2008.
  • [22] Craig H. “Isotopic variations in meteoric waters”. Science, 133(3465), 1702-1703, 1961.
  • [23] Senturk F, Bursali S, Omay Y, Ertan I, Guler S, Yalcin H, Onhan E. “Isotope techniques applied to groundwater movement in the Konya plain”. A Symposium on Use of Isotopes in Hydrology, Vienna, Austria, 9-13 March 1970.
  • [24] Singh KP. “Temporal changes in the chemical quality of groundwater in Ludhiana area, Punjab, India”. Current Science, 66(5), 375-378, 1994.
  • [25] Payne BR. “The status of isotope hydrology today”. Journal of Hydrology, 100(1-3), 207-237, 1988.
  • [26] Dansgaard W. “Stable isotopes in precipitation”. Tellus, 16(4), 436-468, 1964.
  • [27] Cappa CD, Hendricks MB, DePaolo DJ, Cohen RC. “Isotopic fractionation of water during evaporation”. Journal of Geophysical Research: Atmospheres, 108(D16), 1-10, 2003.
  • [28] Yuan F, Miyamoto S. “Characteristics of oxygen-18 and deuterium composition in waters from the Pecos River in American Southwest”. Chemical Geology, 255(1-2), 220-230, 2008.
  • [29] Welker JM. “Isotopic (δ18O) characteristics of weekly precipitation collected across the USA: an initial analysis with application to water source studies”. Hydrological Processes, 14 (8), 1449-1464, 2000.
  • [30] Harvey FE. “Harvey, Edwin F. "Stable hydrogen and oxygen isotope composition of precipitation in Northeastern Colorado 1”. Journal of the American Water Resources Association, 41(2), 447-459, 2005.
  • [31] Gammons CH, Poulson SR, Pellicori DA, Reed PJ, Roesler AJ, Petrescu EM. “The hydrogen and oxygen isotopic composition of precipitation, evaporated mine water, and river water in Montana, USA”. Journal of Hydrology, 328(1-2), 319-330, 2006.
  • [32] Yurtsever Y. “Models for tracer data analysis”. In: Guidebook on nuclear techniques in hydrology. International Atomic Energy Agency (IAEA)”. Vienna, Austria, Tecnical Report, 91, 1983.
  • [33] Lee J, Jung B, Kim JH, Ko KS, Chang HW. “Determination of groundwater flow regimes in underground storage caverns using tritium and helium isotopes”. Environmental Earth Sciences, 63, 763-770, 2011.
  • [34] Mazor E. Chemical and Isotopic Groundwater Hydrology. 3rd ed. New York, USA, CRC Press, 2004.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm İnşaat Müh. / Çevre Müh. / Jeoloji Müh.
Yazarlar

Ayla Bozdağ Bu kişi benim

Yayımlanma Tarihi 30 Haziran 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 28 Sayı: 3

Kaynak Göster

APA Bozdağ, A. (2022). Investigation of over-exploited groundwater in Çumra Plain (Konya-Turkey) with environmental isotopes. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 28(3), 483-492.
AMA Bozdağ A. Investigation of over-exploited groundwater in Çumra Plain (Konya-Turkey) with environmental isotopes. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Haziran 2022;28(3):483-492.
Chicago Bozdağ, Ayla. “Investigation of over-Exploited Groundwater in Çumra Plain (Konya-Turkey) With Environmental Isotopes”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 28, sy. 3 (Haziran 2022): 483-92.
EndNote Bozdağ A (01 Haziran 2022) Investigation of over-exploited groundwater in Çumra Plain (Konya-Turkey) with environmental isotopes. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 28 3 483–492.
IEEE A. Bozdağ, “Investigation of over-exploited groundwater in Çumra Plain (Konya-Turkey) with environmental isotopes”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 28, sy. 3, ss. 483–492, 2022.
ISNAD Bozdağ, Ayla. “Investigation of over-Exploited Groundwater in Çumra Plain (Konya-Turkey) With Environmental Isotopes”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 28/3 (Haziran 2022), 483-492.
JAMA Bozdağ A. Investigation of over-exploited groundwater in Çumra Plain (Konya-Turkey) with environmental isotopes. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2022;28:483–492.
MLA Bozdağ, Ayla. “Investigation of over-Exploited Groundwater in Çumra Plain (Konya-Turkey) With Environmental Isotopes”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 28, sy. 3, 2022, ss. 483-92.
Vancouver Bozdağ A. Investigation of over-exploited groundwater in Çumra Plain (Konya-Turkey) with environmental isotopes. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2022;28(3):483-92.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.