Araştırma Makalesi
BibTex RIS Kaynak Göster

MATLAB/Simmechanics ortamında VSAnkleExo’nun konum kontrolü için bir simülasyon çalışması

Yıl 2022, Cilt: 28 Sayı: 4, 506 - 515, 31.08.2022

Öz

İnsan biyomekanik çalışmalarına göre, ayak bileği eklemi kas-iskelet yapısı yürüme sırasında eklem sertliğini anlık olarak değiştirmektedir. İnsanın vücudunun bu biyomekaniğinden esinlenilerek, VS-AnkleExo isimli ayarlanabilir sertliğe sahip bir dış iskelet robot tasarlanmış ve bu çalışmada MATLAB/SimMechanics simülasyon ortamı kullanılarak robotun pozisyon takip simülasyon testleri gerçekleştirilmiştir. VSAnkleExo yürüme yardımı ve rehabilitasyon amaçları için kullanılması düşünülmektedir. Robotun bu amaçları yerine getirebilmesi için etkili bir pozisyon kontrolü gerekmektedir. Bu nedenle, gerçek robot üzerinde önerilen kontrolcüleri test etmeden önce, robotun MATLAB/SimMechanics modeli üzerinde pozisyon kontrol simülasyonları bu çalışmada sunulmuştur. VS-AnkleExo kompleks bir yapıya sahiptir. Bu yüzden robotun matematiksel modeline ihtiyaç duymayan kontrol yöntemleri burada test edilmiştir. Çalışmada ilk olarak MATLAB/SimMechanics kullanılarak robot modeli kurulmuştur. Daha sonra, önerilen bulanık kontrolcülerin etkinliğini ortaya koymak için yörünge takip ve bozuculu cevap deneyleri gerçekleştirilmiştir. Ayrıca deneyler geleneksel PID kontrolcü ile de gerçekleştirilmiş ve deney sonuçları karşılaştırılmıştır. Deney sonuçları, önerilen bulanık PD+PID kontrolcünün etkili bir şekilde pozisyon takip hatasını azaltabildiğini ve uygun kontrol performansı sunduğunu göstermiştir. Ayrıca önerilen kontrolcü bozuculara karşı sağlamdır.

Kaynakça

  • [1] Tran HT, Cheng H, Rui H, Lin X, Duong MK, Chen Q. “Evaluation of a fuzzy-based impedance control strategy on a powered lower exoskeleton”. International Journal of Social Robotics, 8(1), 103-123, 2016.
  • [2] Bruni MF, Melegari C, De Cola MC, Bramanti A, Bramanti P, Calabro RS. “What does best evidence tell us about robotic gait rehabilitation in stroke patients: A systematic review and meta-analysis”. Journal of Clinical Neuroscience, 48, 11-17, 2018.
  • [3] Aguirre-Güemez AV, Perez-Sanpablo AI, QuinzanosFresnedo J, Perez-Zavala R, Barrera-Ortiz A. “Walking speed is not the best outcome to evaluate the effect of robotic assisted gait training in people with motor incomplete spinal cord injury: A systematic review with meta-analysis”. The journal of Spinal Cord Medicine, 42(2), 142-154, 2017.
  • [4] Cheung EYY, Ng TKW, Yu KKK, Kwan RLC, Cheing GLY. “Robot assisted training for people with spinal cord injury: a meta-analysis”. Achieves of Physical Medicine Rehabilitation, 98(11), 2320-2331, 2017.
  • [5] Van Ham R, Sugar TG, Vanderborght B, Hollander KW, Lefeber D. “Compliant actuator designs”. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, 18-22 April 2005.
  • [6] Migliore SA, Brown EA, DeWeerth SP. “Biologically inspired joint stiffness control”. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, 18-22 April 2005.
  • [7] Yıldırım M, Şendur P, Uğurlu B. “Seri elastik eyleyiciler için mekanik tasarım süreçleri”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25(1), 34-42, 2019.
  • [8] Chen T, Casas R, Lum PS. “An elbow exoskeleton for upper limb rehabilitation with series elastic actuator and cabledriven differential”. IEEE Transactions on Robotics, 35(6), 1464-1474, 2019.
  • [9] Vantilt J, Tanghe K, Afschrift M, Bruijnes A K, Junius K, Geeroms J, De Schutter J. “Model-based control for exoskeletons with series elastic actuators evaluated on sit-to-stand movements”. Journal of NeuroEngineering And Rehabilitation, 16(1), 1-21, 2019.
  • [10] Cestari M, Sanz-Merodio D, Arevalo JC and Garcia E. “An adjustable compliant joint for lower-limb exoskeletons”. IEEE/ASME Transactions on Mechatronics, 20(2), 889-898, 2015.
  • [11] Zhu J, Wang Y, Jiang J, Sun B and Cao H. “Unidirectional variable stiffness hydraulic actuator for load-carrying knee exoskeleton”. International Journal of Advanced Robotic Systems, 14(1), 1-12, 2017.
  • [12] Geeroms J, Flynn L, Jimenez-Fabian R, Vanderborght B, Lefeber D. “Energetic analysis and optimization of a MACCEPA actuator in an ankle prosthesis”. Autonomous Robots, 42(1), 147-158, 2018.
  • [13] Li Z, Bai S, Madsen O, Chen W, Zhang J. “Design, modeling and testing of a compact variable stiffness mechanism for exoskeletons”. Mechanism and Machine Theory, 151, 1-23, 2020.
  • [14] Beil J, Perner G, Asfour T. “Design and control of the lower limb exoskeleton KIT-EXO-1”. In 2015 IEEE International Conference Rehabilitation Robotics (ICORR), Nanyang Avenue, Singapore, 11-14 August 2015.
  • [15] Sun J, Zhang Y, Zhang C, Guo Z, Xiao X. “Mechanical design of a compact Serial Variable Stiffness Actuator (SVSA) based on lever mechanism”. 2017 IEEE International Conference on In Robotics and Automation (ICRA), Marina Bay Sands, Singapore, 29 May-03 June 2017.
  • [16] Schiavi R, Grioli G, Sen S, Bicchi, A. “VSA-II: A novel prototype of variable stiffness actuator for safe and performing robots interacting with humans”. 2008 IEEE International Conference on Robotics and Automation (ICRA), Pasadena, CA, USA, 19-23 May 2008.
  • [17] Metin M, Ulu A. “Control of railway vehicle vibrations due to the effect of different superstructure stiffness in transition zones with rail irregularities”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(4), 709-719, 2020.
  • [18] Zhang C, Liu G, Li C, Zhao J, Yu H, Zhu Y. “Development of a lower limb rehabilitation exoskeleton based on realtime gait detection and gait tracking”. Advances in Mechanical Engineering, 8(1), 1-9, 2016.
  • [19] Madani T, Daachi B, Djouani, K. “Non-singular terminal sliding mode controller: Application to an actuated exoskeleton”. Mechatronics, 33, 136-145, 2016.
  • [20] Cao F, Li C, Li Y. “Robust sliding mode adaptive control for lower extremity exoskeleton”. 2015 Chinese Automation Congress (CAC), Wuhan, China, 27-29 November 2015.
  • [21] Guo Z, Pan Y, Sun T, Zhang Y, Xiao X. “Adaptive neural network control of serial variable stiffness actuators”. Complexity, 2017, 1-9, 2017.
  • [22] Shi P, Lei C, Zhang Y, Wang Y, Wang F. “PID control of the mechanical legs based on fuzzy adaptive”. 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), Shenyang, China, 8-12 June 2015.
  • [23] Al Rezage G, Tokhi MO. “Fuzzy PID control of lower limb exoskeleton for elderly mobility”. IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), Cluj-Napoca, Romania, 19-21 May 2016.
  • [24] Niu J, Song Q, Wang X. “Fuzzy PID control for passive lower extremity exoskeleton in swing phase”. In IEEE 4th International Conference on Electronics Information and Emergency Communication (ICEIEC), Beijing, China, 15-17 November 2013.
  • [25] Singla A, Singh G, Virk GS. “Matlab/SimMechanics based control of four-bar passive lower-body mechanism for rehabilitation”. Perspectives in Science, 8, 351-354, 2016.
  • [26] Kılıç E, Şekerci B, Kizilhan H, Başer, Ö. “Evaluation of position tracking control performance of a variable stiffness ankle exoskeleton robot with various controller types”. Journal of the Faculty of Engineering and Architecture of Gazi University, 35(3), 1551-1563, 2020.
  • [27] Baser O, Kizilhan H. “Mechanical design and preliminary tests of VS-AnkleExo”. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(442), 1-16, 2018.
  • [28] MathWorks C. “Get Started with Simscape Multibody”. https://www.mathworks.com/products/simscape.html. (20.02.2018).
  • [29] Shamaei K, Sawicki GS, Dollar AM. “Estimation of quasistiffness and propulsive work of the human ankle in the stance phase of walking”. Plos One, 8(3), 1-12, 2013.
  • [30] Pan D, Gao F, Miao Y, Cao R. “Co-simulation research of a novel exoskeleton-human robot system on humanoid gaits with fuzzy-PID/PID algorithms,” Advances in Engineering Software, 79, 36-46, 2015.
  • [31] Khosla A, Leena G, Soni K. “Performance evaluation of various control techniques for inverted pendulum”. Performance Evaluation, 3(4), 1096-1102, 2013.

A simulation study for position control of VSAnkleExo in MATLAB/SimMechanics environment

Yıl 2022, Cilt: 28 Sayı: 4, 506 - 515, 31.08.2022

Öz

According to human biomechanics study, ankle joint musculoskeletal structure constantly changes joint stiffness during walking. Being inspired by human biomechanics, an ankle exoskeleton robot with an adjustable stiffness, named VSAnkleExo was designed and by using Simulation Environment MATLAB/SimMechanics, its position tracking simulation tests were carried out in this study. VSAnkleExo is intended to be used for the purposes of walking aid and rehabilitation. An effective position control of the robot is required for these purposes. Therefore, in this study, before testing the recommended controllers on the real robot, the position control simulations were applied on MATLAB/SimMechanics model of the robot. It is not easy to obtain the mathematical model of the robot because VSAnkleExo has a complex structure. For this reason, the control methods that do not need the mathematical model of the robot are tested here. In this study, firstly, a robot model was created by using MATLAB/SimMechanics. Then, trajectory tracking experiments and response experiments with disturbance were carry out on the model in order to reveal the efficiency of proposed fuzzy logic controllers. Besides, these experiments were performed with conventional PID and the all experiment results were compared. Experimental results show that proposed fuzzy PD+PID controller can influentially decrease reference tracking errors and acquire appropriate control performance. Furthermore, the controller is robust against external forces.

Kaynakça

  • [1] Tran HT, Cheng H, Rui H, Lin X, Duong MK, Chen Q. “Evaluation of a fuzzy-based impedance control strategy on a powered lower exoskeleton”. International Journal of Social Robotics, 8(1), 103-123, 2016.
  • [2] Bruni MF, Melegari C, De Cola MC, Bramanti A, Bramanti P, Calabro RS. “What does best evidence tell us about robotic gait rehabilitation in stroke patients: A systematic review and meta-analysis”. Journal of Clinical Neuroscience, 48, 11-17, 2018.
  • [3] Aguirre-Güemez AV, Perez-Sanpablo AI, QuinzanosFresnedo J, Perez-Zavala R, Barrera-Ortiz A. “Walking speed is not the best outcome to evaluate the effect of robotic assisted gait training in people with motor incomplete spinal cord injury: A systematic review with meta-analysis”. The journal of Spinal Cord Medicine, 42(2), 142-154, 2017.
  • [4] Cheung EYY, Ng TKW, Yu KKK, Kwan RLC, Cheing GLY. “Robot assisted training for people with spinal cord injury: a meta-analysis”. Achieves of Physical Medicine Rehabilitation, 98(11), 2320-2331, 2017.
  • [5] Van Ham R, Sugar TG, Vanderborght B, Hollander KW, Lefeber D. “Compliant actuator designs”. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, 18-22 April 2005.
  • [6] Migliore SA, Brown EA, DeWeerth SP. “Biologically inspired joint stiffness control”. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, 18-22 April 2005.
  • [7] Yıldırım M, Şendur P, Uğurlu B. “Seri elastik eyleyiciler için mekanik tasarım süreçleri”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25(1), 34-42, 2019.
  • [8] Chen T, Casas R, Lum PS. “An elbow exoskeleton for upper limb rehabilitation with series elastic actuator and cabledriven differential”. IEEE Transactions on Robotics, 35(6), 1464-1474, 2019.
  • [9] Vantilt J, Tanghe K, Afschrift M, Bruijnes A K, Junius K, Geeroms J, De Schutter J. “Model-based control for exoskeletons with series elastic actuators evaluated on sit-to-stand movements”. Journal of NeuroEngineering And Rehabilitation, 16(1), 1-21, 2019.
  • [10] Cestari M, Sanz-Merodio D, Arevalo JC and Garcia E. “An adjustable compliant joint for lower-limb exoskeletons”. IEEE/ASME Transactions on Mechatronics, 20(2), 889-898, 2015.
  • [11] Zhu J, Wang Y, Jiang J, Sun B and Cao H. “Unidirectional variable stiffness hydraulic actuator for load-carrying knee exoskeleton”. International Journal of Advanced Robotic Systems, 14(1), 1-12, 2017.
  • [12] Geeroms J, Flynn L, Jimenez-Fabian R, Vanderborght B, Lefeber D. “Energetic analysis and optimization of a MACCEPA actuator in an ankle prosthesis”. Autonomous Robots, 42(1), 147-158, 2018.
  • [13] Li Z, Bai S, Madsen O, Chen W, Zhang J. “Design, modeling and testing of a compact variable stiffness mechanism for exoskeletons”. Mechanism and Machine Theory, 151, 1-23, 2020.
  • [14] Beil J, Perner G, Asfour T. “Design and control of the lower limb exoskeleton KIT-EXO-1”. In 2015 IEEE International Conference Rehabilitation Robotics (ICORR), Nanyang Avenue, Singapore, 11-14 August 2015.
  • [15] Sun J, Zhang Y, Zhang C, Guo Z, Xiao X. “Mechanical design of a compact Serial Variable Stiffness Actuator (SVSA) based on lever mechanism”. 2017 IEEE International Conference on In Robotics and Automation (ICRA), Marina Bay Sands, Singapore, 29 May-03 June 2017.
  • [16] Schiavi R, Grioli G, Sen S, Bicchi, A. “VSA-II: A novel prototype of variable stiffness actuator for safe and performing robots interacting with humans”. 2008 IEEE International Conference on Robotics and Automation (ICRA), Pasadena, CA, USA, 19-23 May 2008.
  • [17] Metin M, Ulu A. “Control of railway vehicle vibrations due to the effect of different superstructure stiffness in transition zones with rail irregularities”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(4), 709-719, 2020.
  • [18] Zhang C, Liu G, Li C, Zhao J, Yu H, Zhu Y. “Development of a lower limb rehabilitation exoskeleton based on realtime gait detection and gait tracking”. Advances in Mechanical Engineering, 8(1), 1-9, 2016.
  • [19] Madani T, Daachi B, Djouani, K. “Non-singular terminal sliding mode controller: Application to an actuated exoskeleton”. Mechatronics, 33, 136-145, 2016.
  • [20] Cao F, Li C, Li Y. “Robust sliding mode adaptive control for lower extremity exoskeleton”. 2015 Chinese Automation Congress (CAC), Wuhan, China, 27-29 November 2015.
  • [21] Guo Z, Pan Y, Sun T, Zhang Y, Xiao X. “Adaptive neural network control of serial variable stiffness actuators”. Complexity, 2017, 1-9, 2017.
  • [22] Shi P, Lei C, Zhang Y, Wang Y, Wang F. “PID control of the mechanical legs based on fuzzy adaptive”. 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), Shenyang, China, 8-12 June 2015.
  • [23] Al Rezage G, Tokhi MO. “Fuzzy PID control of lower limb exoskeleton for elderly mobility”. IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), Cluj-Napoca, Romania, 19-21 May 2016.
  • [24] Niu J, Song Q, Wang X. “Fuzzy PID control for passive lower extremity exoskeleton in swing phase”. In IEEE 4th International Conference on Electronics Information and Emergency Communication (ICEIEC), Beijing, China, 15-17 November 2013.
  • [25] Singla A, Singh G, Virk GS. “Matlab/SimMechanics based control of four-bar passive lower-body mechanism for rehabilitation”. Perspectives in Science, 8, 351-354, 2016.
  • [26] Kılıç E, Şekerci B, Kizilhan H, Başer, Ö. “Evaluation of position tracking control performance of a variable stiffness ankle exoskeleton robot with various controller types”. Journal of the Faculty of Engineering and Architecture of Gazi University, 35(3), 1551-1563, 2020.
  • [27] Baser O, Kizilhan H. “Mechanical design and preliminary tests of VS-AnkleExo”. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(442), 1-16, 2018.
  • [28] MathWorks C. “Get Started with Simscape Multibody”. https://www.mathworks.com/products/simscape.html. (20.02.2018).
  • [29] Shamaei K, Sawicki GS, Dollar AM. “Estimation of quasistiffness and propulsive work of the human ankle in the stance phase of walking”. Plos One, 8(3), 1-12, 2013.
  • [30] Pan D, Gao F, Miao Y, Cao R. “Co-simulation research of a novel exoskeleton-human robot system on humanoid gaits with fuzzy-PID/PID algorithms,” Advances in Engineering Software, 79, 36-46, 2015.
  • [31] Khosla A, Leena G, Soni K. “Performance evaluation of various control techniques for inverted pendulum”. Performance Evaluation, 3(4), 1096-1102, 2013.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makine Müh. / Endüstri Müh.
Yazarlar

Hasbi Kızılhan Bu kişi benim

Bahri Şekerci Bu kişi benim

Ergin Kılıç Bu kişi benim

Özgür Başer Bu kişi benim

Yayımlanma Tarihi 31 Ağustos 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 28 Sayı: 4

Kaynak Göster

APA Kızılhan, H., Şekerci, B., Kılıç, E., Başer, Ö. (2022). A simulation study for position control of VSAnkleExo in MATLAB/SimMechanics environment. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 28(4), 506-515.
AMA Kızılhan H, Şekerci B, Kılıç E, Başer Ö. A simulation study for position control of VSAnkleExo in MATLAB/SimMechanics environment. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Ağustos 2022;28(4):506-515.
Chicago Kızılhan, Hasbi, Bahri Şekerci, Ergin Kılıç, ve Özgür Başer. “A Simulation Study for Position Control of VSAnkleExo in MATLAB/SimMechanics Environment”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 28, sy. 4 (Ağustos 2022): 506-15.
EndNote Kızılhan H, Şekerci B, Kılıç E, Başer Ö (01 Ağustos 2022) A simulation study for position control of VSAnkleExo in MATLAB/SimMechanics environment. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 28 4 506–515.
IEEE H. Kızılhan, B. Şekerci, E. Kılıç, ve Ö. Başer, “A simulation study for position control of VSAnkleExo in MATLAB/SimMechanics environment”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 28, sy. 4, ss. 506–515, 2022.
ISNAD Kızılhan, Hasbi vd. “A Simulation Study for Position Control of VSAnkleExo in MATLAB/SimMechanics Environment”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 28/4 (Ağustos 2022), 506-515.
JAMA Kızılhan H, Şekerci B, Kılıç E, Başer Ö. A simulation study for position control of VSAnkleExo in MATLAB/SimMechanics environment. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2022;28:506–515.
MLA Kızılhan, Hasbi vd. “A Simulation Study for Position Control of VSAnkleExo in MATLAB/SimMechanics Environment”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 28, sy. 4, 2022, ss. 506-15.
Vancouver Kızılhan H, Şekerci B, Kılıç E, Başer Ö. A simulation study for position control of VSAnkleExo in MATLAB/SimMechanics environment. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2022;28(4):506-15.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.