Araştırma Makalesi
BibTex RIS Kaynak Göster

LC/S kompanzasyonu kullanan sekonder taraf kontrollü bir kablosuz güç transfer dönüştürücüsünün sabit gerilim kontrolü

Yıl 2022, Cilt: 28 Sayı: 5, 668 - 675, 31.10.2022

Öz

Bu çalışmada, sekonder taraf kontrollü bir kablosuz güç aktarım (WPT) dönüştürücüsünün sabit gerilim kontrolü, verime dayalı olarak değerlendirilmiştir. WPT dönüştürücünün tasarımında güçlü sabit akım karakteristiğine sahip LC/S kompanzasyon topolojisi kullanılmıştır. LC/S kompanzasyon topolojisinin sabit gerilim performansını iyileştirmek için, kontrollü doğrultucu dönüştürücüye uyarlanmıştır. PSM kontrolü doğrultucu anahtarlarına primer taraftan bağımsız olarak uygulanmıştır. Böylece, geniş bir yük aralığında sabit çalışma frekansında sabit gerilim regülasyonu elde edilir. Sunulan dönüştürücünün performansı, 2.5 kW çıkış gücü ve 450 V çıkış geriliminde simulasyon çalışmasıyla doğrulanmıştır. Yük durumunun fonksiyonu olarak dönüştürücünün verim değerleri simulasyon ile çıkarılmış ve frekans modülasyonu ile karşılaştırılmıştır. İlaveten, güç kaybı dağılımı ve frekans modülasyonu ile karşılaştırması incelenmiştir. Dönüştürücünün maksimum verimi, tam yük durumunda %96.4 olarak elde edilmiştir.

Kaynakça

  • [1] Li S, Mi CC. “Wireless power transfer for electric vehicle applications”. IEEE Journal Emerging and Selected Topics in Power Electronics, 3(1), 4-17, 2015.
  • [2] Miller JM, Jones PT, Li JM, Onar OC. “ORNL experience and challenges facing dynamic wireless power charging of EV’s”. IEEE Circuits and Systems Magazine, 15(2), 40-53, 2015.
  • [3] Xiao C, Cheng D, Wei K. “An LCC-C compensated wireless charging system for implantable cardiac pacemakers: Theory, experiment, and safety evaluation”. IEEE Transactions on Power Electronics, 33(6), 4894-4905, 2018.
  • [4] Chen M, Rincón-Mora GA. “Accurate, compact and powerefficient li-ion battery charger circuit”. IEEE Transactions on Circuits Systems II: Express Briefs, 53(11), 1180-1184, 2006.
  • [5] Dearborn S. “Charging li-ion batteries for maximum run times”. Power Electronics Technology Magazine, 31(4), 40-49, 2005.
  • [6] Andrea D. “Battery Management Systems for Large Lithium-Ion Battery Packs”. 1st ed. Boston, MA, USA: Artech House, 2010.
  • [7] Covic GA, Boys JT. “Modern trends in inductive power transfer for transportation applications”. IEEE Journal of Emerging and Selected Topics in Power Electronics, 1(1), 28-41, 2013.
  • [8] Zhou W, Ma H. “Design considerations of compensation topologies in ICPT system”. APEC 07-Twenty-Second Annual IEEE Applied Power Electronics Conference and Exposition, Anaheim, CA, USA, 25 February-1 March 2007.
  • [9] Sallán J, Villa JL, Llombart A, Sanz JF. “Optimal design of ICPT systems applied to electric vehicle battery charge”. IEEE Transactions on Industrial Electronics, 56(6), 2140-2149, 2009.
  • [10] Villa JL, Sallán J, Llombart A, Sanz JF. “Design of a high frequency inductively coupled power transfer system for electric vehicle battery charge”. Applied Energy, 86(3), 355-363, 2009.
  • [11] Wang CS, Stielau OH, Covic GA. “Design considerations for a contactless electric vehicle battery charger”. IEEE Transactions on Power Electronics, 52(5), 1308-1314, 2005.
  • [12] Hou J, Chen Q, Wong SC, Tse CK, Ruan X. “Analysis and control of series/series-parallel compensated resonant converter for contactless power transfer”. IEEE Journal of Emerging and Selected Topics in Power Electronics, 3(1), 124-136, 2015.
  • [13] Zhang W, Wong SC, Chi KT, Chen Q. “Load-independent duality of current and voltage outputs of a series or parallel compensated inductive power transfer converter with optimized efficiency”. IEEE Journal of Emerging and Selected Topics in Power Electronics, 3(1), 137-146, 2015.
  • [14] Qu X, Han H, Wong SC, Chi KT, Chen W. “Hybrid IPT topologies with constant-current or constant-voltage output for battery charging applications”. IEEE Transactions on Power Electronics, 30(11), 6329-6337, 2015.
  • [15] Chen Q, Wong SC, Chi KT, Ruan X. “Analysis, design, and control of a transcutaneous power regulator for artificial hearts”. IEEE Transactions on Biomedical Circuit and System, 3(1), 23-31, 2009.
  • [16] Zheng C, Lai JS, Chen R, Faraci WE, Zahid ZU, Gu B, Zhang L, Lisi G, Anderson D. “High-efficiency contactless power transfer system for electric vehicle battery charging application”. IEEE Journal Emerging and Selected Topics in Power Electronics, 3(1), 65-74, 2015.
  • [17] Vu VB, Tran DH, Choi W. “Implementation of the constant current and constant voltage charge of inductive power transfer systems with the double-sided LCC compensation topology for electric vehicle battery charge applications”. IEEE Transactions on Power Electronics, 33(9), 7398-7410, 2018.
  • [18] Wang CS, Covic GA, Stielau OH. “Investigating an LCL load resonant inverter for inductive power transfer applications”. IEEE Transactions on Power Electronics, 19(4), 995-1002, 2004.
  • [19] Voglitsis D, Todorčeviá T, Prasanth V, Bauer P. “Loss model and control stability of bidirectional LCL-IPT system”. 4th International Electric Drives Production Conference (EDPC), Nuremberg, Germany, 30 September-1 October 2014.
  • [20] Keeling NA, Covic GA, Boys JT. “A unity-power-factor IPT pickup for high-power applications”. IEEE Transactions on Industrial Electronics, 57(2), 744-751, 2010.
  • [21] Pantic Z, Bai S, Lukic SM. “ZCS LCC-compensated resonant inverter for inductive-power-transfer application”. IEEE Transactions on Industrial Electronics, 58(8), 3500-3510, 2011.
  • [22] Li S, Li W, Deng J, Nguyen TD, Mi CC. “A double-sided LCC compensation network and its tuning method for wireless power transfer”. IEEE Transactions on Vehicular Technology, 64(6), 2261-2273, 2015.
  • [23] Wang Y, Yao Y, Liu X, Xu D, Cai L. “LC/S compensation topology and coil design technique for wireless power transfer”. IEEE Transactions on Power Electronics, 33(3), 2007-2024, 2018.
  • [24] Yao Y, Wang Y, Liu X, Xu D. “Analysis, design, and optimization of LC/S compensation topology with excellent load-independent voltage output for inductive power transfer”. IEEE Transactions on Transportation Electrification, 4(3), 767-777, 2018.
  • [25] Cetin S, Yenil V. “Performance evaluation of constant current and constant voltage charge control modes of an inductive power transfer circuit with double-sided inductor-capacitor-capacitor and inductorcapacitor/series compensations for electrical vehicle battery charge applications”. Transactions of the Institute of Measurement and Control, 43(8), 1710–1721, 2021.
  • [26] Kato M, Imura T, Hori Y. “Study on maximize efficiency by secondary side control using DC-DC converter in wireless power transfer via magnetic resonant coupling”. World Electric Vehicle Symposium and Exhibition (EVS27), Barcelona, Spain, 17-20 November 2013.
  • [27] Colak K, Bojarski M, Asa E, Czarkowski D. “A constant resistance analysis and control of cascaded buck and boost converter for wireless EV chargers”. IEEE 2015 Applied Power Electronics Conference and Exposition (APEC), Charlotte, NC, USA, 15-19 March 2015.
  • [28] Diekhans T, De Doncker RW. “A dual-side controlled inductive power transfer system optimized for large coupling factor variations and partial load”. IEEE Transactions on Power Electronics, 30(11), 6320-6328, 2015.
  • [29] Colak K, Asa E, Bojarski M, Czarkowski D, Onar OC. “A novel phase-shift control of semibridgeless active rectifier for wireless power transfer”. IEEE Transactions on Power Electronics, 30(11), 6288-6297, 2015.
  • [30] Ann S, Lee BK. “Analysis of Impedance tuning control and synchronous switching technique for a semibridgeless active rectifier in inductive power transfer systems for electric vehicles”. IEEE Transactions on Power Electronics, 36(8), 8786-8798, 2021.

Constant voltage control of a secondary side controlled wireless power transfer converter using LC/S compensation

Yıl 2022, Cilt: 28 Sayı: 5, 668 - 675, 31.10.2022

Öz

In this study, constant voltage control of a secondary side controlled wireless power transfer (WPT) converter is evaluated based on efficiency. The LC/S compensation network which has perfect constant current characteristic is used in the design of the WPT converter. In order to improve the constant voltage performance of the LC/S compensation network, controlled rectifier is adapted to the converter. The phase shift modulation (PSM) control is applied to the switches of the rectifier as independent of the primary side. Thus, constant voltage regulation is achieved at constant operation frequency in a wide load range. The performance of the proposed converter is verified by a simulation work at 2.5 kW output power and 450 V output voltage. The efficiency values of the converter, as function of the load condition, is extracted by simulation and compared to frequency modulation control. In addition, power loss distribution and its comparison with frequency modulation is also discussed. The maximum efficiency of the converter is obtained 96.4% at full load condition.

Kaynakça

  • [1] Li S, Mi CC. “Wireless power transfer for electric vehicle applications”. IEEE Journal Emerging and Selected Topics in Power Electronics, 3(1), 4-17, 2015.
  • [2] Miller JM, Jones PT, Li JM, Onar OC. “ORNL experience and challenges facing dynamic wireless power charging of EV’s”. IEEE Circuits and Systems Magazine, 15(2), 40-53, 2015.
  • [3] Xiao C, Cheng D, Wei K. “An LCC-C compensated wireless charging system for implantable cardiac pacemakers: Theory, experiment, and safety evaluation”. IEEE Transactions on Power Electronics, 33(6), 4894-4905, 2018.
  • [4] Chen M, Rincón-Mora GA. “Accurate, compact and powerefficient li-ion battery charger circuit”. IEEE Transactions on Circuits Systems II: Express Briefs, 53(11), 1180-1184, 2006.
  • [5] Dearborn S. “Charging li-ion batteries for maximum run times”. Power Electronics Technology Magazine, 31(4), 40-49, 2005.
  • [6] Andrea D. “Battery Management Systems for Large Lithium-Ion Battery Packs”. 1st ed. Boston, MA, USA: Artech House, 2010.
  • [7] Covic GA, Boys JT. “Modern trends in inductive power transfer for transportation applications”. IEEE Journal of Emerging and Selected Topics in Power Electronics, 1(1), 28-41, 2013.
  • [8] Zhou W, Ma H. “Design considerations of compensation topologies in ICPT system”. APEC 07-Twenty-Second Annual IEEE Applied Power Electronics Conference and Exposition, Anaheim, CA, USA, 25 February-1 March 2007.
  • [9] Sallán J, Villa JL, Llombart A, Sanz JF. “Optimal design of ICPT systems applied to electric vehicle battery charge”. IEEE Transactions on Industrial Electronics, 56(6), 2140-2149, 2009.
  • [10] Villa JL, Sallán J, Llombart A, Sanz JF. “Design of a high frequency inductively coupled power transfer system for electric vehicle battery charge”. Applied Energy, 86(3), 355-363, 2009.
  • [11] Wang CS, Stielau OH, Covic GA. “Design considerations for a contactless electric vehicle battery charger”. IEEE Transactions on Power Electronics, 52(5), 1308-1314, 2005.
  • [12] Hou J, Chen Q, Wong SC, Tse CK, Ruan X. “Analysis and control of series/series-parallel compensated resonant converter for contactless power transfer”. IEEE Journal of Emerging and Selected Topics in Power Electronics, 3(1), 124-136, 2015.
  • [13] Zhang W, Wong SC, Chi KT, Chen Q. “Load-independent duality of current and voltage outputs of a series or parallel compensated inductive power transfer converter with optimized efficiency”. IEEE Journal of Emerging and Selected Topics in Power Electronics, 3(1), 137-146, 2015.
  • [14] Qu X, Han H, Wong SC, Chi KT, Chen W. “Hybrid IPT topologies with constant-current or constant-voltage output for battery charging applications”. IEEE Transactions on Power Electronics, 30(11), 6329-6337, 2015.
  • [15] Chen Q, Wong SC, Chi KT, Ruan X. “Analysis, design, and control of a transcutaneous power regulator for artificial hearts”. IEEE Transactions on Biomedical Circuit and System, 3(1), 23-31, 2009.
  • [16] Zheng C, Lai JS, Chen R, Faraci WE, Zahid ZU, Gu B, Zhang L, Lisi G, Anderson D. “High-efficiency contactless power transfer system for electric vehicle battery charging application”. IEEE Journal Emerging and Selected Topics in Power Electronics, 3(1), 65-74, 2015.
  • [17] Vu VB, Tran DH, Choi W. “Implementation of the constant current and constant voltage charge of inductive power transfer systems with the double-sided LCC compensation topology for electric vehicle battery charge applications”. IEEE Transactions on Power Electronics, 33(9), 7398-7410, 2018.
  • [18] Wang CS, Covic GA, Stielau OH. “Investigating an LCL load resonant inverter for inductive power transfer applications”. IEEE Transactions on Power Electronics, 19(4), 995-1002, 2004.
  • [19] Voglitsis D, Todorčeviá T, Prasanth V, Bauer P. “Loss model and control stability of bidirectional LCL-IPT system”. 4th International Electric Drives Production Conference (EDPC), Nuremberg, Germany, 30 September-1 October 2014.
  • [20] Keeling NA, Covic GA, Boys JT. “A unity-power-factor IPT pickup for high-power applications”. IEEE Transactions on Industrial Electronics, 57(2), 744-751, 2010.
  • [21] Pantic Z, Bai S, Lukic SM. “ZCS LCC-compensated resonant inverter for inductive-power-transfer application”. IEEE Transactions on Industrial Electronics, 58(8), 3500-3510, 2011.
  • [22] Li S, Li W, Deng J, Nguyen TD, Mi CC. “A double-sided LCC compensation network and its tuning method for wireless power transfer”. IEEE Transactions on Vehicular Technology, 64(6), 2261-2273, 2015.
  • [23] Wang Y, Yao Y, Liu X, Xu D, Cai L. “LC/S compensation topology and coil design technique for wireless power transfer”. IEEE Transactions on Power Electronics, 33(3), 2007-2024, 2018.
  • [24] Yao Y, Wang Y, Liu X, Xu D. “Analysis, design, and optimization of LC/S compensation topology with excellent load-independent voltage output for inductive power transfer”. IEEE Transactions on Transportation Electrification, 4(3), 767-777, 2018.
  • [25] Cetin S, Yenil V. “Performance evaluation of constant current and constant voltage charge control modes of an inductive power transfer circuit with double-sided inductor-capacitor-capacitor and inductorcapacitor/series compensations for electrical vehicle battery charge applications”. Transactions of the Institute of Measurement and Control, 43(8), 1710–1721, 2021.
  • [26] Kato M, Imura T, Hori Y. “Study on maximize efficiency by secondary side control using DC-DC converter in wireless power transfer via magnetic resonant coupling”. World Electric Vehicle Symposium and Exhibition (EVS27), Barcelona, Spain, 17-20 November 2013.
  • [27] Colak K, Bojarski M, Asa E, Czarkowski D. “A constant resistance analysis and control of cascaded buck and boost converter for wireless EV chargers”. IEEE 2015 Applied Power Electronics Conference and Exposition (APEC), Charlotte, NC, USA, 15-19 March 2015.
  • [28] Diekhans T, De Doncker RW. “A dual-side controlled inductive power transfer system optimized for large coupling factor variations and partial load”. IEEE Transactions on Power Electronics, 30(11), 6320-6328, 2015.
  • [29] Colak K, Asa E, Bojarski M, Czarkowski D, Onar OC. “A novel phase-shift control of semibridgeless active rectifier for wireless power transfer”. IEEE Transactions on Power Electronics, 30(11), 6288-6297, 2015.
  • [30] Ann S, Lee BK. “Analysis of Impedance tuning control and synchronous switching technique for a semibridgeless active rectifier in inductive power transfer systems for electric vehicles”. IEEE Transactions on Power Electronics, 36(8), 8786-8798, 2021.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Elektrik Elektornik Müh. / Bilgisayar Müh.
Yazarlar

Veli Yenil Bu kişi benim

Sevilay Çetin Bu kişi benim

Yayımlanma Tarihi 31 Ekim 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 28 Sayı: 5

Kaynak Göster

APA Yenil, V., & Çetin, S. (2022). Constant voltage control of a secondary side controlled wireless power transfer converter using LC/S compensation. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 28(5), 668-675.
AMA Yenil V, Çetin S. Constant voltage control of a secondary side controlled wireless power transfer converter using LC/S compensation. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Ekim 2022;28(5):668-675.
Chicago Yenil, Veli, ve Sevilay Çetin. “Constant Voltage Control of a Secondary Side Controlled Wireless Power Transfer Converter Using LC/S Compensation”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 28, sy. 5 (Ekim 2022): 668-75.
EndNote Yenil V, Çetin S (01 Ekim 2022) Constant voltage control of a secondary side controlled wireless power transfer converter using LC/S compensation. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 28 5 668–675.
IEEE V. Yenil ve S. Çetin, “Constant voltage control of a secondary side controlled wireless power transfer converter using LC/S compensation”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 28, sy. 5, ss. 668–675, 2022.
ISNAD Yenil, Veli - Çetin, Sevilay. “Constant Voltage Control of a Secondary Side Controlled Wireless Power Transfer Converter Using LC/S Compensation”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 28/5 (Ekim 2022), 668-675.
JAMA Yenil V, Çetin S. Constant voltage control of a secondary side controlled wireless power transfer converter using LC/S compensation. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2022;28:668–675.
MLA Yenil, Veli ve Sevilay Çetin. “Constant Voltage Control of a Secondary Side Controlled Wireless Power Transfer Converter Using LC/S Compensation”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 28, sy. 5, 2022, ss. 668-75.
Vancouver Yenil V, Çetin S. Constant voltage control of a secondary side controlled wireless power transfer converter using LC/S compensation. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2022;28(5):668-75.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.