Araştırma Makalesi
BibTex RIS Kaynak Göster

Hidrojen depolama sistemi için indüksiyon ısıtmalı metal hidrür tüp

Yıl 2022, Cilt: 28 Sayı: 5, 676 - 680, 31.10.2022

Öz

Bu çalışmada metal tüp, içerisine metal hidrür yöntemi ile depolanan hidrojenin deşarj edilebilmesi için indüksiyon ısıtma yöntemi ile belirli bir sıcaklığa kadar ısıtılmıştır. Sistemin güç katında gerilim beslemeli seri rezonans inverter (SRI) kullanılmış ve güç anahtarları yumuşak anahtarlama şartlarında iletime geçirilmiştir. Metal tüpün sıcaklığını referans sıcaklığı olan 250 °C’e sabitlemek için kapalı çevrim kontrollü 300 W’lik SRI tasarlanmıştır. SRI’nın güç kontrolü frekans kontrol tekniği ile gerçekleştirilmiştir. Tüpün sıcaklığı, basit yapısından ve kolay uygulanabilir olduğundan dolayı histerezis on-off kontrol ile denetlenmiştir. Sistemin kontrolünde 16-bit DSPIC33FJ16GS502 kullanılmıştır.

Kaynakça

  • [1] Boztepe C. “Synthesis of magnetic field sensitive poly(AAm-co-VSA)-PVA/Fe3O4 nanospheres and investigation of their drug release behaviors under AMF”. European Journal of Science and Technology, 24, 93-97, 2021.
  • [2] Olgun ÖH, Çavdar U. “Effects of induction heating in welding of carbon fiber reinforced thermoplastic composites”. Journal of Balıkesir University Institute of Science and Technology, 20(2), 591-604, 2018.
  • [3] Taştan M. “Adaptive notch filter bank based power quality analysis of an ultra-high frequency induction heating system”. Balkan Journal of Electrical & Computer Engineering, 7(2), 131-136, 2019.
  • [4] Çivi C, Yılmaz T, Başaran A. “Evaluation of using induction heating in food processing”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 7(2019), 158-168, 2019.
  • [5] Gökozan, H. “The effect of an induction heating system on power quality parameters”. European Journal of Science and Technology, 21, 25-30, 2021.
  • [6] Kawashima R, Mishima T, Ide C. “Three-phase to singlephase multiresonant direct AC-AC converter for metal hardening high-frequency induction heating applications”. IEEE Transactions on Power Electronics, 36(1), 639-653, 2021.
  • [7] Sarnago H, Lucia O, Perez-Tarragona M, Burdio JM. “Dualoutput boost resonant full-bridge topology and its modulation strategies for high-performance induction heating applications”. IEEE Transactions on Industrial Electronics, 63(6), 3554-3561, 2016.
  • [8] Çalık H, Yalçın G, Şehirli E. “Power factor correction in induction heating system using PFC boost converter”. European Journal of Technique, 10(2), 464-475, 2020.
  • [9] Baranoğlu B, Özbek ME, Aydın E. “Experimental analysis of an electromagnetic pulse forming systems pre-heated by induction”. Journal of The Faculty of Engineering and Architecture of Gazi University, 35(4), 2101-2112, 2020.
  • [10] Nagarajan B, Sath RR, Vishnuram P. “Fuzzy logic based voltage control scheme for improvement in dynamic response of the class D inverter based high frequency induction heating system”. Turkish Journal of Electrical Engineering & Computer Sciences, 24(2016), 2556-2574, 2016.
  • [11] Başkurt Y, Karaca H. “Evaluation of half-bridge resonant inverter topologies”. Dokuz Eylul University Faculty of Engineering Journal of Science and Engineering, 22(65), 505-515, 2020.
  • [12] Sarnago H, Lucia O, Mediano A, Burdio JM. “Analytical model of the half-bridge series resonant inverter for improved power conversion efficiency and performance”. IEEE Transactions on Power Electronics, 30(8), 4128-4143, 2015.
  • [13] Dominguez A, Barragan LA, Artigas JI, Otin A, Urriza I, Navarro D, “Reduced-order models of series resonant inverters in induction heating applications”. IEEE Transactions on Power Electronics, 32(3), 2300-2311, 2017.
  • [14] Mishima T, Takami C, Nakaoka M. “A new current phasorcontrolled ZVS twin half-bridge high-frequency resonant inverter for induction heating”. IEEE Transactions on Industrial Electronics, 61(5) 2531-2545, 2014.
  • [15] Huang, M, Liao C, Li Z, Shih Z, Hsueh H. “Quantitative design and implementation of an induction cooker for a copper pan”. IEEE Access, 9(2021), 5105-5118, 2021.
  • [16] Oh Y, Yeon J, Kang J, Galkin I, Oh W, Cho K. “Sensorless control of voltage peaks in class-E single-ended resonant inverter for induction heating rice cooker”. Energies, 14(15), 1-12, 2021.
  • [17] Charoenwiangnuea P, Ekkaravarodome C, Boonyaroonate I, Thounthong P, Jirasereeamornkul K. “Design of domestic induction cooker based on optimal operation class-E inverter with parallel load network under large-signal excitation”. Journal of Power Electronics, 17(4), 892-904, 2017.
  • [18] Mangkalajarn S, Ekkaravarodome C, Sukanna S, Bilsalam A, Jirasereemongkul K, Higuchi K. “Comparative study of Si IGBT and Sic MOSFET in optimal operation class-E inverter for domestic induction cooker”. 2019 Research, Invention and Innovation Congress, Bangkok, Thailand, 11-13 December 2019.
  • [19] Öncü S. Bir Fazlı Yüksek Verimli Ev Tipi Bir Indüksiyon Isıtma Sistemi. Yüksek Lisans Tezi, Pamukkale Üniversitesi, Denizli, Türkiye, 2005.
  • [20] Nacar S, Oncu S. “Hydrogen production system with fuzzy logic-controlled converter”. Turkish Journal of Electrical Engineering & Computer Sciences, 27(2019), 1885-1995, 2019.
  • [21] Veziroğlu A. “Why to select hydrogen as a potential transportation fuel?”. Niğde Ömer Halisdemir Üniversity Journal of Engineering Sciences, 10(1), 404-411, 2021.
  • [22] Teng Y, Wang Z, Li Y, Ma Q, Hui Q, Li S. “Multi-energy storage system model based on electricity heat and hydrogen coordinated optimization for power grid flexibility”. CSEE Journal of Power and Energy Systems, 5(2), 266-274, 2019.
  • [23] Elhamshri FAM, Kayfeci M, Matik U, Alous S. “Thermo fluid dynamic modeling of hydrogen absorption in metal hydride beds by using multiphysics software”. International Journal of Hydrogen Energy, 45(60), 34956-34971, 2020.
  • [24] Kayfeci M, Bedir F, Kurt H. “Experiment investigation of the effects of vessel design and hydrogen charge pressure on metal hydride based hydrogen storage parameters”. Journal of Thermal Science and Technology, 34(2), 83-90, (2014).

Induction heated metal hydride tube for hydrogen storage system

Yıl 2022, Cilt: 28 Sayı: 5, 676 - 680, 31.10.2022

Öz

In this study, the metal tube is heated up to a certain temperature by induction heating method so that the hydrogen stored by metal hydride method in it can be discharged. The voltage fed series resonant inverter (SRI) is used in the power stage of the system and the power switches are turned on under soft-switching conditions. The closed loop controlled 300 W SRI is designed to set the temperature of the tube to the reference temperature of 250 °C. The power control of SRI is realized by frequency control. The temperature of the tube is controlled by hysteresis on-off control due to its simple structure and easy applicability. 16-bit DSPIC33FJ16GS502 is used in the control of the system.

Kaynakça

  • [1] Boztepe C. “Synthesis of magnetic field sensitive poly(AAm-co-VSA)-PVA/Fe3O4 nanospheres and investigation of their drug release behaviors under AMF”. European Journal of Science and Technology, 24, 93-97, 2021.
  • [2] Olgun ÖH, Çavdar U. “Effects of induction heating in welding of carbon fiber reinforced thermoplastic composites”. Journal of Balıkesir University Institute of Science and Technology, 20(2), 591-604, 2018.
  • [3] Taştan M. “Adaptive notch filter bank based power quality analysis of an ultra-high frequency induction heating system”. Balkan Journal of Electrical & Computer Engineering, 7(2), 131-136, 2019.
  • [4] Çivi C, Yılmaz T, Başaran A. “Evaluation of using induction heating in food processing”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 7(2019), 158-168, 2019.
  • [5] Gökozan, H. “The effect of an induction heating system on power quality parameters”. European Journal of Science and Technology, 21, 25-30, 2021.
  • [6] Kawashima R, Mishima T, Ide C. “Three-phase to singlephase multiresonant direct AC-AC converter for metal hardening high-frequency induction heating applications”. IEEE Transactions on Power Electronics, 36(1), 639-653, 2021.
  • [7] Sarnago H, Lucia O, Perez-Tarragona M, Burdio JM. “Dualoutput boost resonant full-bridge topology and its modulation strategies for high-performance induction heating applications”. IEEE Transactions on Industrial Electronics, 63(6), 3554-3561, 2016.
  • [8] Çalık H, Yalçın G, Şehirli E. “Power factor correction in induction heating system using PFC boost converter”. European Journal of Technique, 10(2), 464-475, 2020.
  • [9] Baranoğlu B, Özbek ME, Aydın E. “Experimental analysis of an electromagnetic pulse forming systems pre-heated by induction”. Journal of The Faculty of Engineering and Architecture of Gazi University, 35(4), 2101-2112, 2020.
  • [10] Nagarajan B, Sath RR, Vishnuram P. “Fuzzy logic based voltage control scheme for improvement in dynamic response of the class D inverter based high frequency induction heating system”. Turkish Journal of Electrical Engineering & Computer Sciences, 24(2016), 2556-2574, 2016.
  • [11] Başkurt Y, Karaca H. “Evaluation of half-bridge resonant inverter topologies”. Dokuz Eylul University Faculty of Engineering Journal of Science and Engineering, 22(65), 505-515, 2020.
  • [12] Sarnago H, Lucia O, Mediano A, Burdio JM. “Analytical model of the half-bridge series resonant inverter for improved power conversion efficiency and performance”. IEEE Transactions on Power Electronics, 30(8), 4128-4143, 2015.
  • [13] Dominguez A, Barragan LA, Artigas JI, Otin A, Urriza I, Navarro D, “Reduced-order models of series resonant inverters in induction heating applications”. IEEE Transactions on Power Electronics, 32(3), 2300-2311, 2017.
  • [14] Mishima T, Takami C, Nakaoka M. “A new current phasorcontrolled ZVS twin half-bridge high-frequency resonant inverter for induction heating”. IEEE Transactions on Industrial Electronics, 61(5) 2531-2545, 2014.
  • [15] Huang, M, Liao C, Li Z, Shih Z, Hsueh H. “Quantitative design and implementation of an induction cooker for a copper pan”. IEEE Access, 9(2021), 5105-5118, 2021.
  • [16] Oh Y, Yeon J, Kang J, Galkin I, Oh W, Cho K. “Sensorless control of voltage peaks in class-E single-ended resonant inverter for induction heating rice cooker”. Energies, 14(15), 1-12, 2021.
  • [17] Charoenwiangnuea P, Ekkaravarodome C, Boonyaroonate I, Thounthong P, Jirasereeamornkul K. “Design of domestic induction cooker based on optimal operation class-E inverter with parallel load network under large-signal excitation”. Journal of Power Electronics, 17(4), 892-904, 2017.
  • [18] Mangkalajarn S, Ekkaravarodome C, Sukanna S, Bilsalam A, Jirasereemongkul K, Higuchi K. “Comparative study of Si IGBT and Sic MOSFET in optimal operation class-E inverter for domestic induction cooker”. 2019 Research, Invention and Innovation Congress, Bangkok, Thailand, 11-13 December 2019.
  • [19] Öncü S. Bir Fazlı Yüksek Verimli Ev Tipi Bir Indüksiyon Isıtma Sistemi. Yüksek Lisans Tezi, Pamukkale Üniversitesi, Denizli, Türkiye, 2005.
  • [20] Nacar S, Oncu S. “Hydrogen production system with fuzzy logic-controlled converter”. Turkish Journal of Electrical Engineering & Computer Sciences, 27(2019), 1885-1995, 2019.
  • [21] Veziroğlu A. “Why to select hydrogen as a potential transportation fuel?”. Niğde Ömer Halisdemir Üniversity Journal of Engineering Sciences, 10(1), 404-411, 2021.
  • [22] Teng Y, Wang Z, Li Y, Ma Q, Hui Q, Li S. “Multi-energy storage system model based on electricity heat and hydrogen coordinated optimization for power grid flexibility”. CSEE Journal of Power and Energy Systems, 5(2), 266-274, 2019.
  • [23] Elhamshri FAM, Kayfeci M, Matik U, Alous S. “Thermo fluid dynamic modeling of hydrogen absorption in metal hydride beds by using multiphysics software”. International Journal of Hydrogen Energy, 45(60), 34956-34971, 2020.
  • [24] Kayfeci M, Bedir F, Kurt H. “Experiment investigation of the effects of vessel design and hydrogen charge pressure on metal hydride based hydrogen storage parameters”. Journal of Thermal Science and Technology, 34(2), 83-90, (2014).
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Elektrik Elektornik Müh. / Bilgisayar Müh.
Yazarlar

Salih Nacar Bu kişi benim

Selim Öncü Bu kişi benim

Muhammet Kayfeci Bu kişi benim

Yayımlanma Tarihi 31 Ekim 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 28 Sayı: 5

Kaynak Göster

APA Nacar, S., Öncü, S., & Kayfeci, M. (2022). Induction heated metal hydride tube for hydrogen storage system. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 28(5), 676-680.
AMA Nacar S, Öncü S, Kayfeci M. Induction heated metal hydride tube for hydrogen storage system. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Ekim 2022;28(5):676-680.
Chicago Nacar, Salih, Selim Öncü, ve Muhammet Kayfeci. “Induction Heated Metal Hydride Tube for Hydrogen Storage System”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 28, sy. 5 (Ekim 2022): 676-80.
EndNote Nacar S, Öncü S, Kayfeci M (01 Ekim 2022) Induction heated metal hydride tube for hydrogen storage system. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 28 5 676–680.
IEEE S. Nacar, S. Öncü, ve M. Kayfeci, “Induction heated metal hydride tube for hydrogen storage system”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 28, sy. 5, ss. 676–680, 2022.
ISNAD Nacar, Salih vd. “Induction Heated Metal Hydride Tube for Hydrogen Storage System”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 28/5 (Ekim 2022), 676-680.
JAMA Nacar S, Öncü S, Kayfeci M. Induction heated metal hydride tube for hydrogen storage system. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2022;28:676–680.
MLA Nacar, Salih vd. “Induction Heated Metal Hydride Tube for Hydrogen Storage System”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 28, sy. 5, 2022, ss. 676-80.
Vancouver Nacar S, Öncü S, Kayfeci M. Induction heated metal hydride tube for hydrogen storage system. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2022;28(5):676-80.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.