Araştırma Makalesi
BibTex RIS Kaynak Göster

Hava ve polen örneklerindeki organoklorlu pestisit (OCP) kalıntıları ve bu ortamlar arasındaki kirletici geçişlerinin belirlenmesi

Yıl 2022, Cilt: 28 Sayı: 6, 881 - 887, 30.11.2022

Öz

Bu çalışmada, kentsel ve yarı kentsel bölgelerdeki hava ve polen örneklerinde organoklorlu pestisit (OCP) konsantrasyonlarının bölgesel ve zamansal değişimleri ile hava/polen arasındaki dağılımların belirlenmesi amaçlanmıştır. Örnekleme periyodu boyunca hava ve polen örneklerindeki toplam 10 OCP (∑10OCP) konsantrasyonları kentsel örnekleme noktası için sırasıyla 318.2±73.7 pg/m3 v 21.7±5.1 ng/g, yarı-kentsel örnekleme noktası için ise sırasıyla 390.1±103.5 pg/m3 ve 20.0±3.3 ng/g olarak belirlenmiştir. Ayrıca α-HCH ve endosülfan-ß bileşiklerinin hem polen hem de hava örneklerinde en baskın OCP bileşikleri olduğu belirlenmiştir. Her iki örnekleme noktasında genellikle yaz aylarında yüksek OCP konsantrasyonları ölçülmüştür. Hava ve polen arasındaki OCP geçişlerinin belirlenmesi için polen/hava dağılım katsayısı (𝐾𝑃𝐴) hesaplanmıştır. Elde edilen sonuçlara göre, hem kentsel hem de yarı-kentsel örnekleme noktasında genellikle polenden dış ortam havasına OCP geçişlerinin olduğu belirlenmiştir.

Kaynakça

  • 1] Alajmi R, Al-Shammari M, Abdel-Gaber R, Metwally D, ElKhadragy MF, Alrajeh A. “Effectiveness of naturally occurring aphis gossypii on tomato plants as a bioindicator for heavy metals in Riyadh and Hafar Al-Batin, Saudi Arabia”. Saudi Journal of Biological Sciences, 28(7), 4096-4101, 2021.
  • [2] Wang X, Zhou D. “Spatial agglomeration and driving factors of environmental pollution: A spatial analysis”. Journal of Cleaner Production, 279, 1-10, 2021.
  • [3] Stefănuț S, Öllerer K, Ion MC, Florescu LI, Constantin M, Banciu C, Onete M, Manu M, Vicol I, Moldoveanu MM, Maican S, Cobzaru I, Nicoară RG, Mogîldea ED, Purice DM, Nicolae CD, Catană RD, Teodosiu G, Dumitrache CA, Maria GM, Moroșanu AM, Paica IC, Bîrsan CC, Tamas G, Vladimirescu M, Manole A. “Country-scale complementary passive and active biomonitoring of airborne trace elements for environmental risk assessment”. Ecological Indicators, 2021. https://doi.org/10.1016/j.ecolind.2021.107357.
  • [4] Al-Alam J, Fajloun Z, Chbani A. “Millet, M. The use of conifer needles as biomonitor candidates for the study of temporal air pollution variation in the Strasbourg Region”. Chemosphere, 168, 1411-1421, 2017.
  • [5] Polechońska L, Klink, A. “Validation of hydrocharis morsus-ranae as a possible bioindicator of trace element pollution in freshwaters using ceratophyllum demersum as a reference species”. Environmental Pollution, 269, 1-11, 2021.
  • [6] Celis-Hernández O, Ávila E, Ward RD, Rodríguez-Santiago MA, Aguirre-Téllez JA. “Microplastic distribution in urban vs pristine mangroves: using marine sponges as bioindicators of environmental pollution”. Environmental Pollution, 284, 1-7, 2021.
  • [7] Al Naggar YA, Naiem EA, Seif AI, Mona MH. “Honey bees and their products as bio-ındicator of environmental pollution with heavy metals”. Mellifera, 20, 10-20, 2013.
  • [8] Ares, AM, Valverde S, Bernal JL, Nozal MJ, Bernal J. “Extraction and determination of bioactive compounds from bee pollen”. Journal of Pharmaceutical and Biomedical Analysis, 147, 110-124, 2018.
  • [9] Human H, Nicolson SW. “Nutritional content of fresh, beecollected and stored pollen of aloe greatheadii var. davyana (asphodelaceae)”. Phytochemistry, 67(14), 1486-1492, 2006.
  • [10] Li G, Zhang X, Liu T, Fan H, Liu H, Li S, Wang D, Ding L. “Dynamic microwave-assisted extraction combined with liquid phase microextraction based on the solidification of a floating drop for the analysis of organochlorine pesticides in grains followed by GC”. Food Science and Human Wellness, 10(3), 375-382, 2021.
  • [11] Tyagi H, Chawla H, Bhandari H, Garg S. “Recentenhancements in visible-light photocatalytic degradation of organochlorines pesticides: A Review”. Materials Today: Proceedings, 49(8), 3289-3305, 2021.
  • [12] Oyinloye JA, Oyekunle, JAO, Ogunfowokan AO, Msagati T, Adekunle AS, Nety SS. “Human health risk assessments of organochlorine pesticides in some food crops from esaoke farm settlement, Osun State, Nigeria”. Heliyon, 7(7), 1-8, 2021.
  • [13] Yang X, Jiang X, Yu G, Yao F, Bian Y, Wang F. “Leaf-Air transfer of organochlorine pesticides from three selected vegetables”. Environmental Pollution, 148(2), 555-561, 2007.
  • [14] Kömp P, Mclachlan MS. “Influence of temperature on the plant/air partitioning of semivolatile organic compounds”. Environmental Science and Technology, 31(3), 886-890, 1997.
  • [15] Kaur M, Nagpal AK. “Effect of vehicular traffic on pollen size and viability of apocynaceous plant species”. Tropical Plant Research, 4(2), 235-241, 2017.
  • [16] Iannotti O, Mincigrucci G, Bricchi E, Frenguelli G. “Pollen viability as a bio-ındicator of air quality”. Aerobiologia, 16, 361-365, 2000.
  • [17] Barber JL, Thomas GO, Kerstiens G, Jones KC. “Current ıssues and uncertainties in the measurement and modelling of air-vegetation exchange and within-plant processing of POPs”. Environmental Pollution, 128(1-2), 99-138, 2004.
  • [18] Kim SJ, Lee H, Kwon, JH. “Measurement of partition coefficients for selected polycyclic aromatic hydrocarbons between ısolated plant cuticles and water”. Science and the Total Environment, 494-495, 113-118, 2014.
  • [19] Müller JF, Hawker DW, Connel DW. “Calculation of bioconcentration factors of persistent hydrophobic compounds in the air/vegetation system”. Chemosphere, 29(4), 623-640, 1994.
  • [20] McLachlan MS. “Framework for the ınterpretation of measurements of SOCs in plants”. Environmental Science and Technology, 33(11), 1799-1804, 1999.
  • [21] Steyaert NLL, Hauck M, Van Hulle SWH, Jan Hendriks A. “Modelling bioaccumulation of Semi-Volatile Organic Compounds (SOCs) from Air in plants based on allometric principles”. Chemosphere, 77(6), 727-732, 2009.
  • [22] Odabasi M, Dumanoglu Y, Ozgunerge Falay E, Tuna G, Altiok H, Kara M, Bayram A, Tolunay D, Elbir T. “Investigation of spatial distributions and sources of persistent organic pollutants (POPs) in a heavily polluted ındustrial region using tree components”. Chemosphere, 160, 114-125, 2016.
  • [23] Sari, MF, Esen F, Tasdemir Y. “Characterization, source apportionment, air/plant partitioning and cancer risk assessment of atmospheric pahs measured with tree components and passive air sampler”. Environmental Research, 194, 1-11, 2021.
  • [24] Trapp S, Matthies M. “Generic one-compartment model for uptake of organic chemicals by foliar vegetation”. Environmental Science and Technology, 29(9), 2333-2338, 1995.
  • [25] Sari MF, Esen F, Cordova Del Aguila DA, Kurt Karakus PB. “Passive sampler derived polychlorinated biphenyls (PCBs) in ındoor and outdoor air in Bursa, Turkey: levels and an assessment of human exposure via ınhalation”. Atmospheric Pollution Research, 11(6), 71-80, 2020.
  • [26] Sari MF, Gurkan Ayyildiz E, Esen F. “Determination of polychlorinated biphenyls in honeybee, pollen, and honey samples from urban and semi-urban areas in Turkey”. Environmental Science and Pollution Research, 27(4), 4414-4422, 2020.
  • [27] Esen F, Tasdemir Y, Vardar N. “Atmospheric concentrations of PAHs, their possible sources and gas-toparticle partitioning at a residential site of Bursa, Turkey”. Atmospheric Research, 88(3-4), 243-255, 2008.
  • [28] Mackay D. 2001. Multimedia Environmental Models. The Fugacity Approach. 2nd ed. Lewis Publishers, Boca Raton, FL, USA, CRC Press, 2001.
  • [29] Thakur M, Nanda V. “Composition and functionality of bee pollen: A Review”. Trends in Food Science&Technology, 98, 82-106, 2020.
  • [30] Herkert NJ, Martinez A, Hornbuckle KC. “A model using local weather data to determine the effective sampling volume for PCB congeners collected on passive air samplers”. Environmental Science and Technology, 50, 6690-6697, 2016.
  • [31] Qu C, Xing X, Albanese S, Doherty A, Huang H, Lima A, Qi S, De Vivo B. “Spatial and seasonal variations of atmospheric organochlorine pesticides along the plain-mountain transect in central China: regional source vs. long-range transport and air-soil exchange”. Atmospheric Environment, 122, 31-40, 2015.
  • [32] Batterman SA, Chernyak SM, Gounden Y, Matooane M, Naidoo RN. “Organochlorine pesticides in ambient air in Durban, South Africa”. Science and the Total Environment, 397(1-3), 119-130, 2008.
  • [33] Cindoruk SS. “Atmospheric organochlorine pesticide (OCP) levels in a metropolitan city in Turkey”. Chemosphere, 82(1), 78-87, 2011.
  • [34] Esen F. “Development of a passive sampling device using polyurethane foam (PUF) to measure polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) near landfills”. Environmental Forensics, 14(1), 1-8, 2013.
  • [35] Gevao B, Porcelli M, Rajagopalan S, Krishnan D, MartinezGuijarro K, Alshemmari H, Bahloul M, Zafar J. “Spatial and temporal variations in the atmospheric concentrations of “Stockholm Convention” Organochlorine Pesticides in Kuwait”. Science and the Total Environment, 622-623, 1621-1629, 2018.
  • [36] Syed JH, Malik RN, Liu D, Xu Y, Wang Y, Li J, Zhang G, Jones KC. “Organochlorine pesticides in air and soil and estimated air-soil exchange in Punjab, Pakistan”. Science and the Total Environment, 444, 491-497, 2013.
  • [37] Vijgen J, De Borst B, Weber R, Stobiecki T, Forter M. “HCH and lindane contaminated sites: European and global need for a permanent solution for a long-time neglected issue”. Environmental Pollution, 248, 696-705, 2019.
  • [38] Sun Y, Liang Z, Xiang X, Lan J, Zhang Q, Yuan D. “Simulation of the transfer and fate of γ-hch in epikarst system”. Chemosphere, 148, 255-262, 2016.
  • [39] Calatayud-Vernich P, Calatayud F, Simó E, Picó Y. “Pesticide residues in honey bees, pollen and beeswax: assessing beehive exposure”. Environmental Pollution, 241, 106-114, 2018.
  • [40] Kasiotis, KM, Anagnostopoulos C, Anastasiadou P, Machera K. “Pesticide residues in honeybees , honey and bee pollen by lc-ms/ms screening : reported death incidents in honeybees”. Science and the Total Environment, 485-486, 633-642, 2014.
  • [41] Kuan AC, DeGrandi-Hoffman G, Curry RJ, Garber KV, Kanarek AR, Snyder MN, Wolfe KL, Purucker ST. “Sensitivity analyses for simulating pesticide ımpacts on honey bee colonies”. Ecological Modelling, 376, 15-27, 2018.
  • [42] Villalba A, Maggi M, Ondarza PM, Szawarski N, Miglioranza KSB. “Influence of land use on chlorpyrifos and persistent organic pollutant levels in honey bees, bee bread and honey: Beehive exposure assessment”. Science and the Total Environment, 713, 1-11, 2020.
  • [43] Blasco C, Lino CM, Picó Y, Pena A, Font G, Silveira MIN. “Determination of organochlorine pesticide residues in honey from the central zone of Portugal and the Valencian community of Spain”. Journal of Chromatography A, 1049(1-2), 155-160, 2004.
  • [44] Wang J, Kliks MM, Jun S, Li QX. “Residues of organochlorine pesticides in honeys from different geographic regions”. Food Research International, 43(9), 2329-2334, 2010.
  • [45] Erdoǧrul Ö. “Levels of selected pesticides in honeysamples from Kahramanmaraş, Turkey”. Food Control, 18(7), 866-871, 2007.
  • [46] Karnchanasest B, Satayavibul A. “orange jasmine leaves as an ındicator of atmospheric polycyclic aromatic hydrocarbons. Songklanakarin”. Journal of Science and Technology, 27, 877-888, 2005.
  • [47] Zhao Y, Yang L, Wang Q. “Modeling Persistent Organic Pollutant (POP) partitioning between tree bark and air and its application to spatial monitoring of atmospheric POPs in Mainland China”. Environmental Science and Technology, 42, 6046-6051, 2008.
  • [48] Sari MF, Esen F, Tasdemir Y. “Levels of polychlorinated biphenyls (PCBs) in honeybees and bee products and their evaluation with ambient air concentrations”. Atmospheric Environment, 244, 1-9, 2021.

Determination of organochlorine pesticide (OCP) residues in air and pollen samples and pollutant partition between these environments

Yıl 2022, Cilt: 28 Sayı: 6, 881 - 887, 30.11.2022

Öz

In this study, it was aimed to determine the regional and temporal variations of organochlorine pesticide (OCP) concentrations in air and pollen samples in urban and semi-urban areas and the distribution between air/pollen. A total of 10 OCP (∑10OCP) concentrations in air and pollen samples during the sampling period were determined as 318.2±73.7 pg/m3 and 21.7±5.1 ng/g for the urban sampling point and 390.1±103.5 pg/m3 and 20.0±3.3 ng/g for the semi-urban point, respectively. In addition, it was determined that α-HCH and endosulfanß compounds were the most dominant OCP compounds in both pollen and air samples. High OCP concentrations were measured at both sampling points, usually during the summer months. Pollen/air partition coefficient (𝐾𝑃𝐴) was calculated to determine OCP exchange between air and pollen. According to the results obtained, it has been determined that there are generally OCP transitions from pollen to ambient air at both urban and semi-urban sampling points.

Kaynakça

  • 1] Alajmi R, Al-Shammari M, Abdel-Gaber R, Metwally D, ElKhadragy MF, Alrajeh A. “Effectiveness of naturally occurring aphis gossypii on tomato plants as a bioindicator for heavy metals in Riyadh and Hafar Al-Batin, Saudi Arabia”. Saudi Journal of Biological Sciences, 28(7), 4096-4101, 2021.
  • [2] Wang X, Zhou D. “Spatial agglomeration and driving factors of environmental pollution: A spatial analysis”. Journal of Cleaner Production, 279, 1-10, 2021.
  • [3] Stefănuț S, Öllerer K, Ion MC, Florescu LI, Constantin M, Banciu C, Onete M, Manu M, Vicol I, Moldoveanu MM, Maican S, Cobzaru I, Nicoară RG, Mogîldea ED, Purice DM, Nicolae CD, Catană RD, Teodosiu G, Dumitrache CA, Maria GM, Moroșanu AM, Paica IC, Bîrsan CC, Tamas G, Vladimirescu M, Manole A. “Country-scale complementary passive and active biomonitoring of airborne trace elements for environmental risk assessment”. Ecological Indicators, 2021. https://doi.org/10.1016/j.ecolind.2021.107357.
  • [4] Al-Alam J, Fajloun Z, Chbani A. “Millet, M. The use of conifer needles as biomonitor candidates for the study of temporal air pollution variation in the Strasbourg Region”. Chemosphere, 168, 1411-1421, 2017.
  • [5] Polechońska L, Klink, A. “Validation of hydrocharis morsus-ranae as a possible bioindicator of trace element pollution in freshwaters using ceratophyllum demersum as a reference species”. Environmental Pollution, 269, 1-11, 2021.
  • [6] Celis-Hernández O, Ávila E, Ward RD, Rodríguez-Santiago MA, Aguirre-Téllez JA. “Microplastic distribution in urban vs pristine mangroves: using marine sponges as bioindicators of environmental pollution”. Environmental Pollution, 284, 1-7, 2021.
  • [7] Al Naggar YA, Naiem EA, Seif AI, Mona MH. “Honey bees and their products as bio-ındicator of environmental pollution with heavy metals”. Mellifera, 20, 10-20, 2013.
  • [8] Ares, AM, Valverde S, Bernal JL, Nozal MJ, Bernal J. “Extraction and determination of bioactive compounds from bee pollen”. Journal of Pharmaceutical and Biomedical Analysis, 147, 110-124, 2018.
  • [9] Human H, Nicolson SW. “Nutritional content of fresh, beecollected and stored pollen of aloe greatheadii var. davyana (asphodelaceae)”. Phytochemistry, 67(14), 1486-1492, 2006.
  • [10] Li G, Zhang X, Liu T, Fan H, Liu H, Li S, Wang D, Ding L. “Dynamic microwave-assisted extraction combined with liquid phase microextraction based on the solidification of a floating drop for the analysis of organochlorine pesticides in grains followed by GC”. Food Science and Human Wellness, 10(3), 375-382, 2021.
  • [11] Tyagi H, Chawla H, Bhandari H, Garg S. “Recentenhancements in visible-light photocatalytic degradation of organochlorines pesticides: A Review”. Materials Today: Proceedings, 49(8), 3289-3305, 2021.
  • [12] Oyinloye JA, Oyekunle, JAO, Ogunfowokan AO, Msagati T, Adekunle AS, Nety SS. “Human health risk assessments of organochlorine pesticides in some food crops from esaoke farm settlement, Osun State, Nigeria”. Heliyon, 7(7), 1-8, 2021.
  • [13] Yang X, Jiang X, Yu G, Yao F, Bian Y, Wang F. “Leaf-Air transfer of organochlorine pesticides from three selected vegetables”. Environmental Pollution, 148(2), 555-561, 2007.
  • [14] Kömp P, Mclachlan MS. “Influence of temperature on the plant/air partitioning of semivolatile organic compounds”. Environmental Science and Technology, 31(3), 886-890, 1997.
  • [15] Kaur M, Nagpal AK. “Effect of vehicular traffic on pollen size and viability of apocynaceous plant species”. Tropical Plant Research, 4(2), 235-241, 2017.
  • [16] Iannotti O, Mincigrucci G, Bricchi E, Frenguelli G. “Pollen viability as a bio-ındicator of air quality”. Aerobiologia, 16, 361-365, 2000.
  • [17] Barber JL, Thomas GO, Kerstiens G, Jones KC. “Current ıssues and uncertainties in the measurement and modelling of air-vegetation exchange and within-plant processing of POPs”. Environmental Pollution, 128(1-2), 99-138, 2004.
  • [18] Kim SJ, Lee H, Kwon, JH. “Measurement of partition coefficients for selected polycyclic aromatic hydrocarbons between ısolated plant cuticles and water”. Science and the Total Environment, 494-495, 113-118, 2014.
  • [19] Müller JF, Hawker DW, Connel DW. “Calculation of bioconcentration factors of persistent hydrophobic compounds in the air/vegetation system”. Chemosphere, 29(4), 623-640, 1994.
  • [20] McLachlan MS. “Framework for the ınterpretation of measurements of SOCs in plants”. Environmental Science and Technology, 33(11), 1799-1804, 1999.
  • [21] Steyaert NLL, Hauck M, Van Hulle SWH, Jan Hendriks A. “Modelling bioaccumulation of Semi-Volatile Organic Compounds (SOCs) from Air in plants based on allometric principles”. Chemosphere, 77(6), 727-732, 2009.
  • [22] Odabasi M, Dumanoglu Y, Ozgunerge Falay E, Tuna G, Altiok H, Kara M, Bayram A, Tolunay D, Elbir T. “Investigation of spatial distributions and sources of persistent organic pollutants (POPs) in a heavily polluted ındustrial region using tree components”. Chemosphere, 160, 114-125, 2016.
  • [23] Sari, MF, Esen F, Tasdemir Y. “Characterization, source apportionment, air/plant partitioning and cancer risk assessment of atmospheric pahs measured with tree components and passive air sampler”. Environmental Research, 194, 1-11, 2021.
  • [24] Trapp S, Matthies M. “Generic one-compartment model for uptake of organic chemicals by foliar vegetation”. Environmental Science and Technology, 29(9), 2333-2338, 1995.
  • [25] Sari MF, Esen F, Cordova Del Aguila DA, Kurt Karakus PB. “Passive sampler derived polychlorinated biphenyls (PCBs) in ındoor and outdoor air in Bursa, Turkey: levels and an assessment of human exposure via ınhalation”. Atmospheric Pollution Research, 11(6), 71-80, 2020.
  • [26] Sari MF, Gurkan Ayyildiz E, Esen F. “Determination of polychlorinated biphenyls in honeybee, pollen, and honey samples from urban and semi-urban areas in Turkey”. Environmental Science and Pollution Research, 27(4), 4414-4422, 2020.
  • [27] Esen F, Tasdemir Y, Vardar N. “Atmospheric concentrations of PAHs, their possible sources and gas-toparticle partitioning at a residential site of Bursa, Turkey”. Atmospheric Research, 88(3-4), 243-255, 2008.
  • [28] Mackay D. 2001. Multimedia Environmental Models. The Fugacity Approach. 2nd ed. Lewis Publishers, Boca Raton, FL, USA, CRC Press, 2001.
  • [29] Thakur M, Nanda V. “Composition and functionality of bee pollen: A Review”. Trends in Food Science&Technology, 98, 82-106, 2020.
  • [30] Herkert NJ, Martinez A, Hornbuckle KC. “A model using local weather data to determine the effective sampling volume for PCB congeners collected on passive air samplers”. Environmental Science and Technology, 50, 6690-6697, 2016.
  • [31] Qu C, Xing X, Albanese S, Doherty A, Huang H, Lima A, Qi S, De Vivo B. “Spatial and seasonal variations of atmospheric organochlorine pesticides along the plain-mountain transect in central China: regional source vs. long-range transport and air-soil exchange”. Atmospheric Environment, 122, 31-40, 2015.
  • [32] Batterman SA, Chernyak SM, Gounden Y, Matooane M, Naidoo RN. “Organochlorine pesticides in ambient air in Durban, South Africa”. Science and the Total Environment, 397(1-3), 119-130, 2008.
  • [33] Cindoruk SS. “Atmospheric organochlorine pesticide (OCP) levels in a metropolitan city in Turkey”. Chemosphere, 82(1), 78-87, 2011.
  • [34] Esen F. “Development of a passive sampling device using polyurethane foam (PUF) to measure polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) near landfills”. Environmental Forensics, 14(1), 1-8, 2013.
  • [35] Gevao B, Porcelli M, Rajagopalan S, Krishnan D, MartinezGuijarro K, Alshemmari H, Bahloul M, Zafar J. “Spatial and temporal variations in the atmospheric concentrations of “Stockholm Convention” Organochlorine Pesticides in Kuwait”. Science and the Total Environment, 622-623, 1621-1629, 2018.
  • [36] Syed JH, Malik RN, Liu D, Xu Y, Wang Y, Li J, Zhang G, Jones KC. “Organochlorine pesticides in air and soil and estimated air-soil exchange in Punjab, Pakistan”. Science and the Total Environment, 444, 491-497, 2013.
  • [37] Vijgen J, De Borst B, Weber R, Stobiecki T, Forter M. “HCH and lindane contaminated sites: European and global need for a permanent solution for a long-time neglected issue”. Environmental Pollution, 248, 696-705, 2019.
  • [38] Sun Y, Liang Z, Xiang X, Lan J, Zhang Q, Yuan D. “Simulation of the transfer and fate of γ-hch in epikarst system”. Chemosphere, 148, 255-262, 2016.
  • [39] Calatayud-Vernich P, Calatayud F, Simó E, Picó Y. “Pesticide residues in honey bees, pollen and beeswax: assessing beehive exposure”. Environmental Pollution, 241, 106-114, 2018.
  • [40] Kasiotis, KM, Anagnostopoulos C, Anastasiadou P, Machera K. “Pesticide residues in honeybees , honey and bee pollen by lc-ms/ms screening : reported death incidents in honeybees”. Science and the Total Environment, 485-486, 633-642, 2014.
  • [41] Kuan AC, DeGrandi-Hoffman G, Curry RJ, Garber KV, Kanarek AR, Snyder MN, Wolfe KL, Purucker ST. “Sensitivity analyses for simulating pesticide ımpacts on honey bee colonies”. Ecological Modelling, 376, 15-27, 2018.
  • [42] Villalba A, Maggi M, Ondarza PM, Szawarski N, Miglioranza KSB. “Influence of land use on chlorpyrifos and persistent organic pollutant levels in honey bees, bee bread and honey: Beehive exposure assessment”. Science and the Total Environment, 713, 1-11, 2020.
  • [43] Blasco C, Lino CM, Picó Y, Pena A, Font G, Silveira MIN. “Determination of organochlorine pesticide residues in honey from the central zone of Portugal and the Valencian community of Spain”. Journal of Chromatography A, 1049(1-2), 155-160, 2004.
  • [44] Wang J, Kliks MM, Jun S, Li QX. “Residues of organochlorine pesticides in honeys from different geographic regions”. Food Research International, 43(9), 2329-2334, 2010.
  • [45] Erdoǧrul Ö. “Levels of selected pesticides in honeysamples from Kahramanmaraş, Turkey”. Food Control, 18(7), 866-871, 2007.
  • [46] Karnchanasest B, Satayavibul A. “orange jasmine leaves as an ındicator of atmospheric polycyclic aromatic hydrocarbons. Songklanakarin”. Journal of Science and Technology, 27, 877-888, 2005.
  • [47] Zhao Y, Yang L, Wang Q. “Modeling Persistent Organic Pollutant (POP) partitioning between tree bark and air and its application to spatial monitoring of atmospheric POPs in Mainland China”. Environmental Science and Technology, 42, 6046-6051, 2008.
  • [48] Sari MF, Esen F, Tasdemir Y. “Levels of polychlorinated biphenyls (PCBs) in honeybees and bee products and their evaluation with ambient air concentrations”. Atmospheric Environment, 244, 1-9, 2021.
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm İnşaat Müh. / Çevre Müh. / Jeoloji Müh.
Yazarlar

Mehmet Ferhat Sarı Bu kişi benim

Fatma Esen Bu kişi benim

Yayımlanma Tarihi 30 Kasım 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 28 Sayı: 6

Kaynak Göster

APA Sarı, M. F., & Esen, F. (2022). Hava ve polen örneklerindeki organoklorlu pestisit (OCP) kalıntıları ve bu ortamlar arasındaki kirletici geçişlerinin belirlenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 28(6), 881-887.
AMA Sarı MF, Esen F. Hava ve polen örneklerindeki organoklorlu pestisit (OCP) kalıntıları ve bu ortamlar arasındaki kirletici geçişlerinin belirlenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Kasım 2022;28(6):881-887.
Chicago Sarı, Mehmet Ferhat, ve Fatma Esen. “Hava Ve Polen örneklerindeki Organoklorlu Pestisit (OCP) kalıntıları Ve Bu Ortamlar arasındaki Kirletici geçişlerinin Belirlenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 28, sy. 6 (Kasım 2022): 881-87.
EndNote Sarı MF, Esen F (01 Kasım 2022) Hava ve polen örneklerindeki organoklorlu pestisit (OCP) kalıntıları ve bu ortamlar arasındaki kirletici geçişlerinin belirlenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 28 6 881–887.
IEEE M. F. Sarı ve F. Esen, “Hava ve polen örneklerindeki organoklorlu pestisit (OCP) kalıntıları ve bu ortamlar arasındaki kirletici geçişlerinin belirlenmesi”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 28, sy. 6, ss. 881–887, 2022.
ISNAD Sarı, Mehmet Ferhat - Esen, Fatma. “Hava Ve Polen örneklerindeki Organoklorlu Pestisit (OCP) kalıntıları Ve Bu Ortamlar arasındaki Kirletici geçişlerinin Belirlenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 28/6 (Kasım 2022), 881-887.
JAMA Sarı MF, Esen F. Hava ve polen örneklerindeki organoklorlu pestisit (OCP) kalıntıları ve bu ortamlar arasındaki kirletici geçişlerinin belirlenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2022;28:881–887.
MLA Sarı, Mehmet Ferhat ve Fatma Esen. “Hava Ve Polen örneklerindeki Organoklorlu Pestisit (OCP) kalıntıları Ve Bu Ortamlar arasındaki Kirletici geçişlerinin Belirlenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 28, sy. 6, 2022, ss. 881-7.
Vancouver Sarı MF, Esen F. Hava ve polen örneklerindeki organoklorlu pestisit (OCP) kalıntıları ve bu ortamlar arasındaki kirletici geçişlerinin belirlenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2022;28(6):881-7.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.