Araştırma Makalesi
BibTex RIS Kaynak Göster

Gökkuşağı alabalığı tesislerinden kaynaklanan tat ve koku sorununun çok kriterli karar verme metotları ile değerlendirilmesi

Yıl 2022, Cilt: 28 Sayı: 6, 888 - 900, 30.11.2022

Öz

2-Methylisoborneol (2-MIB) ve geosminden kaynaklanan tat ve koku sorunu, su kaynaklarında görülen en yaygın problemlerden biridir. Doğal ve antropojenik kirlik kaynakları neticesinde su kaynakları kirlenmekte ve sularda topraksı-küflü tat ve koku oluşmaktadır. Su kaynaklarında tat ve koku oluşumuna neden olan antropojenik kaynakların başında kültür balıkçılığı üretim tesisleri yer almaktadır. Bu çalışmada, ülkemizde faaliyet gösteren ve özellikle gökkuşağı alabalığı üretimi gerçekleştirilen tesislerde 2-MIB ve geosmin oluşumundan kaynaklanan tat ve koku sorununun giderimine yönelik kullanılabilecek en iyi arıtma prosesini çok ölçütlü karar verme metotları (ÇÖKVM) kullanılarak belirlenmesi amaçlanmıştır. Çalışma kapsamında; ozon tabanlı prosesler, ultraviyole (UV) tabanlı prosesler, aktif karbon adsorbsiyonu, alüminyum koagülasyonu, kum filtrasyonu, klor, klor dioksit, potasyum permanganat, fenton tabanlı prosesler ve foto-fenton prosesleri alternatif prosesler olarak değerlendirilmiştir. En iyi arıtma prosesinin belirlenmesinde analitik hiyerarşi süreci (AHS) kullanılmıştır. Alt kriterler olarak ise giderim performansı, güvenilirlik ve dayanıklılık, karmaşıklık, planlı bakım kolaylığı, inşa kolaylığı, çeşitli kimyasal kullanımı, ön arıtma gereksinimi, yan ürün oluşumu ve uygunluk belirlenmiştir. Alt kriterlerin sıralamasında TOPSIS ve VIKOR karar verme modelleri kullanılmıştır. TOPSIS ve VIKOR metodları kullanılarak elde edilen sonuçlara göre, beton havuzlarda gökkuşağı alabalığı üretiminden kaynaklanan 2-MIB ve geosmin gibi tat ve koku bileşenlerinin gideriminde kullanılabilecek en iyi arıtma yönteminin ozon tabanlı prosesler olduğu tespit edilmiştir.

Kaynakça

  • [1] Arslan G, Yağanoğlu E. “Toprak ve beton havuzlarda yapılan alabalık yetiştiriciliğinin su ve topraktaki bazı fiziko-kimyasal parametrelere etkisi”. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi. 6(1), 1-5, 2020.
  • [2] Tokgöz Yayan D. Durgun Sularda Balık Yetiştiriciliğinin Besin Elementleri Açısından Etkilerinin Azaltılması. Uzmanlık Tezi, T.C. Orman ve Su İşleri Bakanlığı, Ankara, Türkiye, 2015.
  • [3] Aydın F. “Alabalık Biyolojisi ve Yetiştirme Teknikleri”. Kayseri İl Tarım ve Orman Müdürlüğü Tarım ve Orman Bakanlığı, Ankara, Türkiye, 2020.
  • [4] Kiriş GA, Dikel S. “Fiber tank ve beton havuza yerleştirilmiş ağ kafeslerdeki gökkuşağı alabalıklarının (oncorhynchus mykiss walbaum. 1792) besi performansları ve karkas kompozisyonları”. Ege University Journal of Fisheries & Aquatic Sciences, 19, (3-4), 371-380, 2002.
  • [5] Atamanalp M, Kocaman EM, Dağdemir V. “Farklı tip havuzların yavru alabalık yetiştiriciliğinde karlılık üzerine etkisinin ekonomik analizi”. Ondokuz Mayıs Üniversitesi Ziraat Fakültesi Dergisi, 22(1), 1-4, 2007.
  • [6] Robin J, Cravedi JP, Hillenweck A, Deshayes C, Vallod D. “Off flavor characterization and origin in French trout farming”. Aquaculture, 260, 128-138, 2006.
  • [7] Gonçalves AA, Gagnon GA. “Ozone application in recirculating aquaculture system: An overview”. Ozone: Science & Engineering, 33, 345-367, 2011.
  • [8] Barrett SE, Krasner SW, Amy GL. “Natural Organic Matter and Disinfection By-Products: Characterization and Control in Drinking Water-An Overview. Editors: Barrett SE,Krasner SW, Amy GL. Natural Organic Matter and Disinfection By-Products. 2-14, Washington DC, USA, American Chemical Society, 2000.
  • [9] Özgür C. Farklı Su Kaynaklarında ve Şebekelerde Karbonlu ve Azotlu Dezenfeksiyon Yan Ürünlerinin Oluşumu. Doktora Tezi, Süleyman Demirel Üniversitesi, Isparta, Türkiye, 2019.
  • [10] Fakıoğlu M, Karpuzcu ME, Öztürk İ. “İçme sularında alg kaynaklı tat ve koku sorununun değerlendirilmesi”. Pamukkale Universitesi Mühendislik Bilimleri Dergisi 24(6), 1141-1156, 2018.
  • [11] Reilly A. “Discussion Paper on The Use of Chlorinated Water. Codex Committee on Fish and Fishery Products”. Food and Agriculture Organization of the United Nations. Norway, CX-722, 2019.
  • [12] Park JA, Nam HL, Choi JW, Ha J, Lee SH. “Oxidation of geosmin and 2-methylisoborneol by the photo-Fenton process: Kinetics. degradation intermediates. and the removal of microcystin-LR and trihalomethane from Nak-Dong River water”. Chemical Engineering Journal, 13, 345-354, 2017.
  • [13] Tan F, Chen H, Wu D, Wang N, Gao Z, Wang L. “Optimization of geosmin removal from drinking water using UV/H2O2”. Journal of Residuals Science and Techonology, 13(1), 23-30, 2016.
  • [14] Wang D, Bolton JR, Andrews SA, Hofmann R. “UV/chlorine control of drinking water taste and odour at pilot and fullscale”. Chemosphere, 136, 239, 244, 2015.
  • [15] Xie P, Ma J, Liu W, Zou J, Yue S, Li X, Wiesner MR, Fang J. “Removal of 2-MIB and geosmin using UV/persulfate: contributions of hydroxyl and sulphate radicals”. Water Research, 69, 223-232, 2015.
  • [16] Fotiou T, Triantis TM, Kaloudis T, Papaconstantinou E, Hiskia A. “Photocatalytic degradation of water taste and odour compounds in the presence of polyoxometalates and TiO2: intermediates and degradation pathways”. Journal of Photochemistry and Photobiology A: Chemistry, 286, 1-9, 2014.
  • [17] Wee LH, Janssens N, Vercammen J, Tamaraschi L, Thomassen LCJ, Martens JA. “Stable TiO2 USY zeolite composite coatings for efficient adsorptive and photocatalytic elimination of geosmin from water”. Journal of Materials Chemistry A, 3, 2258-2264, 2015.
  • [18] Pestana CJ, Robertson PKJ, Edwards C, Wilhelm W, Mckenzie C, Lawton LA. “A continuous flow packed bed photocatalytic reactor for the destruction of 2- methylisoborneol and geosmin utilizing pelletised TiO2”. Chemical Engineering Journal, 235, 293-298, 2014.
  • [19] Pettit S, Rodriguez-Gonzalez L, Michaels J, Alcantar N, Ergas S, Kuhn J. “Parameters influencing the photocatalytic degradation of geosmin and 2- methylisoborneol utilizing immobilized TiO2”. Catalysis Letters, 144, 1460-1465, 2014.
  • [20] Xu Β, Qi F. “Reaction mechanism of 2-methylisoborneol and 2.4.6-trichloroanisole in catalytic ozonation by γAlOOH: role of adsorption”. Clean Soil Air Water, 44(9), 1099-1105, 2016.
  • [21] Yao W, Qu Q, von Gunten U, Chen C, Yu G, Wang Y. “Comparison of methylisoborneol and geosmin abatement in surface water by conventional ozonation and an electro-peroxone process”. Water Research, 108, 373-382, 2017.
  • [22] Bu L, Zhou S, Shi Z, Deng L, Gao N. “Removal of 2-MIB and geosmin by electrogenerated persulfate: performance. mechanism and pathways”. Chemosphere, 168, 1309-1316, 2017.
  • [23] Almansa-Ortegon M, Machuca-Martinez F, Manyoma PC. “Multi-criteria analysis for the selection of advanced oxidation technologies in the treatment of emerging pollutants”. Respuestas, 25(2), 16-25, 2020.
  • [24] Yılmaz N, Şenol MB. “A model and application of occupational health and safety risk assessment”. Journal of the Faculty of Engineering and Architecture of Gazi University, 32(1), 77-87, 2017.
  • [25] İç YT, Yurdakul M. “Analysis of the effect of the number of criteria and alternatives on the ranking results in applications of the multi criteria decision making approaches in machining center selection problems”. Journal of the Faculty of Engineering and Architecture of Gazi University, 35(2), 991-1001, 2020.
  • [26] T.C. Tarım Orman Bakanlığı. “Su Ürünleri Yetiştiricilik Tesisleri”. www.tarimorman.gov.tr. https://www.tarimorman.gov.tr/BSGM/Belgeler/Icerikl er/Su%20%C3%9Cr%C3%BCnleri%20Yeti%C5%9Ftiric ili%C4%9Fi/Su-Urunleri-Tesisleri-2019.pdf. (14.02.2021)
  • [27] Wind Y, Saaty TL. “Marketing Applications of the Analytic Hierarchy Process”. Management Science, 26, 641-658, 1980.
  • [28] Ozturk E. “Applying analytical decision methods for determination of the best treatment alternative to remove emerging micropollutants from drinking water and wastewater: triclosan example”. Environmental Science and Pollution Research, 25, 30517-30546, 2018.
  • [29] Özgür C. “Düşük bromür ve organik madde içeren su kaynakları için ön dezenfektan seçiminde çok ölçütlü karar verme metotlarının uygulanması”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 25(2), 1039-1058, 2020.
  • [30] Hwang CL, Yoon K. Methods for Multiple Attribute Decision Making. Editors: Beckman M, Künzi HP. Lecture Notes in Economics and Mathematical Systems, 58-191, Berlin, Germany, Springer Berlin, Heidelberg 1981.
  • [31] Özbek A. Çok Kriterli Karar Verme Yöntemleri ve Excel ile Problem Çözümü. 3. baskı. Ankara, Türkiye, Seçkin Akademik ve Mesleki Yayınlar, 2017.
  • [32] Opricovic S, Tzeng GH. “Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS”. European Journal of Operational Research, 156(2), 445-455, 2004.
  • [33] Ates N, Kaplan SS, Sahinkaya E, Kitis M, Dilek FB, Yetis Ü. “Occurrence of disinfection by-products in low DOC surface waters in Turkey”. Journal of Hazardous Materials. 142, 526-534, 2007.
  • [34] Jung SW, Baek KH, Yu MJ. “Treatment of taste and odor material by oxidation and adsorption”. Water Science and Technology, 49(9), 289-295, 2004.
  • [35] Cook D, Newcombe G, Sztajnbok P. “The application of powdered activated carbon for mib and geosmin removal: predicting pac doses in four raw waters”. Water Research, 35(5), 1325-1333, 2001.
  • [36] Bulut C, Akçimen U, Uysal K, Çınar Ş, Küçükkara R, Savaşer S, Tokatlı C, Öztürk GN, Köse E. “Kestel deresi (Burdur) su kalitesinin belirlenmesi ve alabalık yetiştiriciliği açısından değerlendirilmesi”. Dumlupınar Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28, 1302-3055, 2012.
  • [37] Antonopoulou M, Evgenidou E, Lambropoulou D, Konstantinou I. “A review on advanced oxidation processes for the removal of taste and odor compounds from aqueous media”. Water Research, 53, 215-234, 2014.
  • [38] Huber MM, Korhonen S, Ternes TA, von Gunten U. “Oxidation of pharmaceuticals during water treatment with chlorine dioxide”. Water Research, 39, 3607-3617, 2005.
  • [39] Jiang. J, Pang SY, Ma J, Liu H. “Oxidation of phenolic endocrine disrupting chemicals by potassium permanganate in synthetic and real waters”. Environmental Science and Technology, 46, 1774-1781, 2012.
  • [40] Rosenfeldt EJ, Melcher B, Linden KG. “UV and UV/H2O2 treatment of methylisoborneol (MIB) and geosmin in water”. Journal of Water Supply: Research and Technology-AQUA, 54 (7), 423-434, 2005.
  • [41] Riberio AR, Nunes OC, Pereira MFR, Silva MT. “An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU”. Environment International, 75, 33-51, 2015.
  • [42] Antonopoulou M. Konstantinou I. AOPs Methods for the Removal of Taste and Odor Compounds. Editors: Gil A, Galeano LA, Vicente MA. Applications of Advanced Oxidation Processes (AOPs) in Drinking Water Treatment, 179-210, Cham, Switzerland, Springer Cham Press, 2019.
  • [43] Klausen MM, Gronborg O. “Pilot scale testing of advanced oxidation processes for degradation of geosmin and MIB in recirculated aquaculture”. Water Science & Technology: Water Supply-WSTWS, 10(2), 217-225, 2010.
  • [44] Mizuno T, Ohara S, Nishimura F, Tsuno H. “O3/H2O2 process for both removal of odorous algal-derived compounds and control of bromate ion formation”. Ozone: Science & Engineering, 33, 121-135, 2011.
  • [45] Alver A, Altınışık Tağaç A, Kılıç A. “Removal of natural organic matters from aquatic environment by catalytic ozonation processes with silver nanoparticles: Determination of ozonation products”. Journal of the Faculty of Engineering and Architecture of Gazi University, 35(3), 1285-1295, 2020.
  • [46] Dinç Ö. “Tannic acid oxidation by electroperoxone”. Journal of the Faculty of Engineering and Architecture of Gazi University 35(1), 51-60, 2020.

Evaluation of taste and odor problems caused by rainbow trout facilities with multi-criteria decision-making methods

Yıl 2022, Cilt: 28 Sayı: 6, 888 - 900, 30.11.2022

Öz

Taste and odor problem caused by 2-MIB and geosmin is one of the most common problems seen in water resources. As a result of natural and anthropogenic pollution sources, water resources are polluted, and an earthy-moldy taste and odor occurs in the water. Aquaculture production facilities are the leading anthropogenic sources that cause taste and odor formation in water resources. In this study, it is aimed to determine the best treatment methods that can be used to eliminate the taste and odor problems caused by the formation of 2-MIB and geosmin by using multi-criteria decision making (MCDM) methods in facilities operating in Turkey and where especially rainbow trout is produced. In the study, ozone-based processes, UV-based processes, activated carbon adsorption, aluminum coagulation, sand filtration, chlorination, chlorine dioxide, potassium permanganate, fenton-based processes and photo-fenton processes were used as alternative processes. The criteria chosen for the study were removal performance, reliability and durability, complexity, ease of planned maintenance, ease of construction, use of various chemicals, pre-treatment requirement, by-product formation, and suitability. Analytical hierarchy process (AHP) was used in weighting the criteria in the study, TOPSIS and VIKOR methods were used in ordering the alternatives. According to the results obtained using TOPSIS and VIKOR methods, ozone-based processes were found to be the best treatment method that can be used for the removal of taste and odor components such as 2-MIB and geosmin resulting from rainbow trout production in concrete ponds.

Kaynakça

  • [1] Arslan G, Yağanoğlu E. “Toprak ve beton havuzlarda yapılan alabalık yetiştiriciliğinin su ve topraktaki bazı fiziko-kimyasal parametrelere etkisi”. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi. 6(1), 1-5, 2020.
  • [2] Tokgöz Yayan D. Durgun Sularda Balık Yetiştiriciliğinin Besin Elementleri Açısından Etkilerinin Azaltılması. Uzmanlık Tezi, T.C. Orman ve Su İşleri Bakanlığı, Ankara, Türkiye, 2015.
  • [3] Aydın F. “Alabalık Biyolojisi ve Yetiştirme Teknikleri”. Kayseri İl Tarım ve Orman Müdürlüğü Tarım ve Orman Bakanlığı, Ankara, Türkiye, 2020.
  • [4] Kiriş GA, Dikel S. “Fiber tank ve beton havuza yerleştirilmiş ağ kafeslerdeki gökkuşağı alabalıklarının (oncorhynchus mykiss walbaum. 1792) besi performansları ve karkas kompozisyonları”. Ege University Journal of Fisheries & Aquatic Sciences, 19, (3-4), 371-380, 2002.
  • [5] Atamanalp M, Kocaman EM, Dağdemir V. “Farklı tip havuzların yavru alabalık yetiştiriciliğinde karlılık üzerine etkisinin ekonomik analizi”. Ondokuz Mayıs Üniversitesi Ziraat Fakültesi Dergisi, 22(1), 1-4, 2007.
  • [6] Robin J, Cravedi JP, Hillenweck A, Deshayes C, Vallod D. “Off flavor characterization and origin in French trout farming”. Aquaculture, 260, 128-138, 2006.
  • [7] Gonçalves AA, Gagnon GA. “Ozone application in recirculating aquaculture system: An overview”. Ozone: Science & Engineering, 33, 345-367, 2011.
  • [8] Barrett SE, Krasner SW, Amy GL. “Natural Organic Matter and Disinfection By-Products: Characterization and Control in Drinking Water-An Overview. Editors: Barrett SE,Krasner SW, Amy GL. Natural Organic Matter and Disinfection By-Products. 2-14, Washington DC, USA, American Chemical Society, 2000.
  • [9] Özgür C. Farklı Su Kaynaklarında ve Şebekelerde Karbonlu ve Azotlu Dezenfeksiyon Yan Ürünlerinin Oluşumu. Doktora Tezi, Süleyman Demirel Üniversitesi, Isparta, Türkiye, 2019.
  • [10] Fakıoğlu M, Karpuzcu ME, Öztürk İ. “İçme sularında alg kaynaklı tat ve koku sorununun değerlendirilmesi”. Pamukkale Universitesi Mühendislik Bilimleri Dergisi 24(6), 1141-1156, 2018.
  • [11] Reilly A. “Discussion Paper on The Use of Chlorinated Water. Codex Committee on Fish and Fishery Products”. Food and Agriculture Organization of the United Nations. Norway, CX-722, 2019.
  • [12] Park JA, Nam HL, Choi JW, Ha J, Lee SH. “Oxidation of geosmin and 2-methylisoborneol by the photo-Fenton process: Kinetics. degradation intermediates. and the removal of microcystin-LR and trihalomethane from Nak-Dong River water”. Chemical Engineering Journal, 13, 345-354, 2017.
  • [13] Tan F, Chen H, Wu D, Wang N, Gao Z, Wang L. “Optimization of geosmin removal from drinking water using UV/H2O2”. Journal of Residuals Science and Techonology, 13(1), 23-30, 2016.
  • [14] Wang D, Bolton JR, Andrews SA, Hofmann R. “UV/chlorine control of drinking water taste and odour at pilot and fullscale”. Chemosphere, 136, 239, 244, 2015.
  • [15] Xie P, Ma J, Liu W, Zou J, Yue S, Li X, Wiesner MR, Fang J. “Removal of 2-MIB and geosmin using UV/persulfate: contributions of hydroxyl and sulphate radicals”. Water Research, 69, 223-232, 2015.
  • [16] Fotiou T, Triantis TM, Kaloudis T, Papaconstantinou E, Hiskia A. “Photocatalytic degradation of water taste and odour compounds in the presence of polyoxometalates and TiO2: intermediates and degradation pathways”. Journal of Photochemistry and Photobiology A: Chemistry, 286, 1-9, 2014.
  • [17] Wee LH, Janssens N, Vercammen J, Tamaraschi L, Thomassen LCJ, Martens JA. “Stable TiO2 USY zeolite composite coatings for efficient adsorptive and photocatalytic elimination of geosmin from water”. Journal of Materials Chemistry A, 3, 2258-2264, 2015.
  • [18] Pestana CJ, Robertson PKJ, Edwards C, Wilhelm W, Mckenzie C, Lawton LA. “A continuous flow packed bed photocatalytic reactor for the destruction of 2- methylisoborneol and geosmin utilizing pelletised TiO2”. Chemical Engineering Journal, 235, 293-298, 2014.
  • [19] Pettit S, Rodriguez-Gonzalez L, Michaels J, Alcantar N, Ergas S, Kuhn J. “Parameters influencing the photocatalytic degradation of geosmin and 2- methylisoborneol utilizing immobilized TiO2”. Catalysis Letters, 144, 1460-1465, 2014.
  • [20] Xu Β, Qi F. “Reaction mechanism of 2-methylisoborneol and 2.4.6-trichloroanisole in catalytic ozonation by γAlOOH: role of adsorption”. Clean Soil Air Water, 44(9), 1099-1105, 2016.
  • [21] Yao W, Qu Q, von Gunten U, Chen C, Yu G, Wang Y. “Comparison of methylisoborneol and geosmin abatement in surface water by conventional ozonation and an electro-peroxone process”. Water Research, 108, 373-382, 2017.
  • [22] Bu L, Zhou S, Shi Z, Deng L, Gao N. “Removal of 2-MIB and geosmin by electrogenerated persulfate: performance. mechanism and pathways”. Chemosphere, 168, 1309-1316, 2017.
  • [23] Almansa-Ortegon M, Machuca-Martinez F, Manyoma PC. “Multi-criteria analysis for the selection of advanced oxidation technologies in the treatment of emerging pollutants”. Respuestas, 25(2), 16-25, 2020.
  • [24] Yılmaz N, Şenol MB. “A model and application of occupational health and safety risk assessment”. Journal of the Faculty of Engineering and Architecture of Gazi University, 32(1), 77-87, 2017.
  • [25] İç YT, Yurdakul M. “Analysis of the effect of the number of criteria and alternatives on the ranking results in applications of the multi criteria decision making approaches in machining center selection problems”. Journal of the Faculty of Engineering and Architecture of Gazi University, 35(2), 991-1001, 2020.
  • [26] T.C. Tarım Orman Bakanlığı. “Su Ürünleri Yetiştiricilik Tesisleri”. www.tarimorman.gov.tr. https://www.tarimorman.gov.tr/BSGM/Belgeler/Icerikl er/Su%20%C3%9Cr%C3%BCnleri%20Yeti%C5%9Ftiric ili%C4%9Fi/Su-Urunleri-Tesisleri-2019.pdf. (14.02.2021)
  • [27] Wind Y, Saaty TL. “Marketing Applications of the Analytic Hierarchy Process”. Management Science, 26, 641-658, 1980.
  • [28] Ozturk E. “Applying analytical decision methods for determination of the best treatment alternative to remove emerging micropollutants from drinking water and wastewater: triclosan example”. Environmental Science and Pollution Research, 25, 30517-30546, 2018.
  • [29] Özgür C. “Düşük bromür ve organik madde içeren su kaynakları için ön dezenfektan seçiminde çok ölçütlü karar verme metotlarının uygulanması”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 25(2), 1039-1058, 2020.
  • [30] Hwang CL, Yoon K. Methods for Multiple Attribute Decision Making. Editors: Beckman M, Künzi HP. Lecture Notes in Economics and Mathematical Systems, 58-191, Berlin, Germany, Springer Berlin, Heidelberg 1981.
  • [31] Özbek A. Çok Kriterli Karar Verme Yöntemleri ve Excel ile Problem Çözümü. 3. baskı. Ankara, Türkiye, Seçkin Akademik ve Mesleki Yayınlar, 2017.
  • [32] Opricovic S, Tzeng GH. “Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS”. European Journal of Operational Research, 156(2), 445-455, 2004.
  • [33] Ates N, Kaplan SS, Sahinkaya E, Kitis M, Dilek FB, Yetis Ü. “Occurrence of disinfection by-products in low DOC surface waters in Turkey”. Journal of Hazardous Materials. 142, 526-534, 2007.
  • [34] Jung SW, Baek KH, Yu MJ. “Treatment of taste and odor material by oxidation and adsorption”. Water Science and Technology, 49(9), 289-295, 2004.
  • [35] Cook D, Newcombe G, Sztajnbok P. “The application of powdered activated carbon for mib and geosmin removal: predicting pac doses in four raw waters”. Water Research, 35(5), 1325-1333, 2001.
  • [36] Bulut C, Akçimen U, Uysal K, Çınar Ş, Küçükkara R, Savaşer S, Tokatlı C, Öztürk GN, Köse E. “Kestel deresi (Burdur) su kalitesinin belirlenmesi ve alabalık yetiştiriciliği açısından değerlendirilmesi”. Dumlupınar Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28, 1302-3055, 2012.
  • [37] Antonopoulou M, Evgenidou E, Lambropoulou D, Konstantinou I. “A review on advanced oxidation processes for the removal of taste and odor compounds from aqueous media”. Water Research, 53, 215-234, 2014.
  • [38] Huber MM, Korhonen S, Ternes TA, von Gunten U. “Oxidation of pharmaceuticals during water treatment with chlorine dioxide”. Water Research, 39, 3607-3617, 2005.
  • [39] Jiang. J, Pang SY, Ma J, Liu H. “Oxidation of phenolic endocrine disrupting chemicals by potassium permanganate in synthetic and real waters”. Environmental Science and Technology, 46, 1774-1781, 2012.
  • [40] Rosenfeldt EJ, Melcher B, Linden KG. “UV and UV/H2O2 treatment of methylisoborneol (MIB) and geosmin in water”. Journal of Water Supply: Research and Technology-AQUA, 54 (7), 423-434, 2005.
  • [41] Riberio AR, Nunes OC, Pereira MFR, Silva MT. “An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU”. Environment International, 75, 33-51, 2015.
  • [42] Antonopoulou M. Konstantinou I. AOPs Methods for the Removal of Taste and Odor Compounds. Editors: Gil A, Galeano LA, Vicente MA. Applications of Advanced Oxidation Processes (AOPs) in Drinking Water Treatment, 179-210, Cham, Switzerland, Springer Cham Press, 2019.
  • [43] Klausen MM, Gronborg O. “Pilot scale testing of advanced oxidation processes for degradation of geosmin and MIB in recirculated aquaculture”. Water Science & Technology: Water Supply-WSTWS, 10(2), 217-225, 2010.
  • [44] Mizuno T, Ohara S, Nishimura F, Tsuno H. “O3/H2O2 process for both removal of odorous algal-derived compounds and control of bromate ion formation”. Ozone: Science & Engineering, 33, 121-135, 2011.
  • [45] Alver A, Altınışık Tağaç A, Kılıç A. “Removal of natural organic matters from aquatic environment by catalytic ozonation processes with silver nanoparticles: Determination of ozonation products”. Journal of the Faculty of Engineering and Architecture of Gazi University, 35(3), 1285-1295, 2020.
  • [46] Dinç Ö. “Tannic acid oxidation by electroperoxone”. Journal of the Faculty of Engineering and Architecture of Gazi University 35(1), 51-60, 2020.
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm İnşaat Müh. / Çevre Müh. / Jeoloji Müh.
Yazarlar

Cihan Özgür

Emrah Öztürk Bu kişi benim

Yayımlanma Tarihi 30 Kasım 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 28 Sayı: 6

Kaynak Göster

APA Özgür, C., & Öztürk, E. (2022). Gökkuşağı alabalığı tesislerinden kaynaklanan tat ve koku sorununun çok kriterli karar verme metotları ile değerlendirilmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 28(6), 888-900.
AMA Özgür C, Öztürk E. Gökkuşağı alabalığı tesislerinden kaynaklanan tat ve koku sorununun çok kriterli karar verme metotları ile değerlendirilmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Kasım 2022;28(6):888-900.
Chicago Özgür, Cihan, ve Emrah Öztürk. “Gökkuşağı alabalığı Tesislerinden Kaynaklanan Tat Ve Koku Sorununun çok Kriterli Karar Verme Metotları Ile değerlendirilmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 28, sy. 6 (Kasım 2022): 888-900.
EndNote Özgür C, Öztürk E (01 Kasım 2022) Gökkuşağı alabalığı tesislerinden kaynaklanan tat ve koku sorununun çok kriterli karar verme metotları ile değerlendirilmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 28 6 888–900.
IEEE C. Özgür ve E. Öztürk, “Gökkuşağı alabalığı tesislerinden kaynaklanan tat ve koku sorununun çok kriterli karar verme metotları ile değerlendirilmesi”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 28, sy. 6, ss. 888–900, 2022.
ISNAD Özgür, Cihan - Öztürk, Emrah. “Gökkuşağı alabalığı Tesislerinden Kaynaklanan Tat Ve Koku Sorununun çok Kriterli Karar Verme Metotları Ile değerlendirilmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 28/6 (Kasım 2022), 888-900.
JAMA Özgür C, Öztürk E. Gökkuşağı alabalığı tesislerinden kaynaklanan tat ve koku sorununun çok kriterli karar verme metotları ile değerlendirilmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2022;28:888–900.
MLA Özgür, Cihan ve Emrah Öztürk. “Gökkuşağı alabalığı Tesislerinden Kaynaklanan Tat Ve Koku Sorununun çok Kriterli Karar Verme Metotları Ile değerlendirilmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 28, sy. 6, 2022, ss. 888-00.
Vancouver Özgür C, Öztürk E. Gökkuşağı alabalığı tesislerinden kaynaklanan tat ve koku sorununun çok kriterli karar verme metotları ile değerlendirilmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2022;28(6):888-900.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.