Araştırma Makalesi
BibTex RIS Kaynak Göster

Kükürt bazlı ototrofik ve metanol bazlı heterotrofik denitrifikasyon süreçlerinin çevresel etkileri

Yıl 2022, Cilt: 28 Sayı: 6, 912 - 919, 30.11.2022

Öz

Denitrifikasyonda inorganik elektron vericilerinin kullanılması, organik elektron vericilerine göre düşük maliyetli ve daha az atık organik kirlenme riski gibi avantajları nedeniyle popülerlik kazanmaktadır. Kükürt, ototrofik denitrifikasyonda yaygın olarak kullanılmaktadır, ancak asit ve sülfat üretimi, ana dezavantajlarıdır. Gerekli alkaliniteyi sağlamak için kireçtaşı veya çözünmüş alkalinite kaynakları kullanılır. Bu çalışmada, çevresel etkilerini (abiyotik tükenme, küresel ısınma potansiyeli, ozon tabakasının incelmesi, insan toksisitesi, tatlı su sucul ekotoksisitesi, deniz suyu ekotoksisitesi, karasal ekotoksisite, fotokimyasal oksidasyon (POCP), asitleşme ve ötrofikasyon) belirlemek için üç denitrifikasyon işleminin (kireçtaşı destekli S0 bazlı, bikarbonat bazlı S0 bazlı ve metanol bazlı denitrifikasyon) yaşam döngüsü değerlendirmesi (YDD) yapılmıştır. Bu çalışmada YDD için, SimaPro 9.1.1 yazılımının CML 1A baseline, su ayak izi için ise AWARE V1.03 metodu kullanılmıştır. Her üç grupta da başarıyla 25 mg NO3 - -N/L giderimi sağlanmış, ancak S0 bazlı denitrifikasyonda alkalinite kaynağı olarak NaHCO3'ün kullanılması durumunda çevresel etkinin diğer proseslere göre daha yüksek olduğu belirlenmiştir. YDD ‘ye göre çevresel etkinin en düşük olduğu durum kükürtün elektron kaynağı olarak ve kireçtaşının alkalinite kaynağı olarak kullanılmasında gerçekleşmiştir. En yüksek çevresel etki elektrik kullanımı kaynaklı olup, bikarbonat beslemeli grupta toplam 75.38 kg CO2 eşdeğerindeki küresel ısınma potansiyelinin 65 kg’lık kısmı elektrik kullanımından kaynaklanmaktadır. Hetetrofik denitrifikasyonda 1 kg NO3 - -N/m3 fonksiyonel birim için su ayak izi 24.3 m3 iken kireçtaşı ve bikarbonat bazlı ototorofiklerde sırasıyla 30.7 m3 ve 45.1 m3 tir. Çalışma, ototrofik denitrifikasyonun maliyet ve su kalitesi açısından heterotrofik denitrifikasyona göre avantajları olmasına rağmen, alkalinite kaynağı olarak NaHCO3 kullanımından kaçınılması gerektiğini göstermektedir.

Kaynakça

  • [1] Karunanidhi D, Aravinthasamy P, Subramani T, Kumar M. “Human health risks associated with multipath exposure of groundwater nitrate and environmental friendly actions for quality improvement and sustainable management: a case study from Texvalley (Tiruppur region) of India”. Chemosphere, 265, 1-11, 2021.
  • [2] Kwon E, Park J, Park WB, Kang BR, Woo NC. “Nitrate contamination of coastal groundwater: Sources and transport mechanisms along a volcanic aquifer”. Science of the Total Environment, 768, 1-11, 2021.
  • [3] Wang H, Lu K, Shen C, Song X, Hu B, Liu, G. “Human health risk assessment of groundwater nitrate at a two geomorphic units transition zone in northern China”. Journal of Environmental Sciences, 110, 38-47, 2021.
  • [4] Adimalla N, Qian H, Tiwari DM. “Groundwater chemistry, distribution and potential health risk appraisal of nitrate enriched groundwater: A case study from the semi-urban region of South India”. Ecotoxicology and Environmental Safety, 207, 1-10, 2021.
  • [5] Hatipoglu G, Kurt Z. “Modeling irrigation with nitrate contaminated groundwater”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(3), 468-480, 2020.
  • [6] Della Rocca C, Belgiorno V, Meriç S. “Overview of in-situ applicable nitrate removal processes”. Desalination, 204(1-3), 46-62, 2007.
  • [7] Türk Standartları Enstitüsü. "Sular-İçme ve Kullanma Suları." Ankara, Türkiye, 266, 1997.
  • [8] Ucar D, Di F, Yücel A, Nacar T, Sahinkaya E. “Effect of nitrogen loading on denitrification, denitritation and filtration performances of membrane bioreactors fed with biogenic and chemical elemental sulfur”. Chemical Engineering Journal, 419, 1-10, 2021.
  • [9] Ucar D, Cokgor EU, Sahinkaya E, Cetin U, Bereketoglu C, Calimlioglu B, Goncu B, Yurtsever A. “Simultaneous nitrate and perchlorate removal from groundwater by heterotrophic-autotrophic sequential system”. International Biodeterioration & Biodegradation, 116, 83-90, 2017.
  • [10] Büyük G, Akça E, Kume T, Nagano T. “Investigation of nitrate pollution in groundwater used for irrigation in Konya Karapinar region, central Anatolia”. KSÜ Doğa Bilimleri Dergisi, 19(2), 168-173, 2016.
  • [11] Davraz A, Batur B. “Hydrogeochemistry characteristics of groundwater and health risk assessment in YalvaçGelendost basin (Turkey)”. Applied Water Science, 11(4), 1-21, 2021.
  • [12] Oh SE, Bum MS, Yoo YB, Zubair A, Kim IS. “Nitrate removal by simultaneous sulfur utilizing autotrophic and heterotrophic denitrification under different organics and alkalinity conditions: Batch experiments”. Water Science and Technology, 47(1), 237-244, 2003.
  • [13] Ağıl Z, Akgul V, Duyar A, Cirik K. “Nitrat gideriminde kullanılan biyo reaktörlerde heterotrofik, ototrofik ve miksotrofik proseslerin değerlendirilmesi”. KSÜ Mühendislik Bilimleri Dergisi, 21(3), 217-225, 2018.
  • [14] Ucar D, Cokgor EU, Şahinkaya E. “Simultaneous nitrate and perchlorate reduction using sulfur-based autotrophic and heterotrophic denitrifying processes”. Journal of Chemical Technology & Biotechnology, 91(5), 1471-1477, 2016.
  • [15] Sahinkaya E, Dursun N. “Sulfur-oxidizing autotrophic and mixotrophic denitrification processes for drinking water treatment: Elimination of excess sulfate production and alkalinity requirement”. Chemosphere, 89(2), 144-149, 2012.
  • [16] Asik G, Yilmaz T, Di Capua F, Ucar D, Esposito E, Sahinkaya E. “Sequential sulfur-based denitrification/denitritation and nanofiltration processes for drinking water treatment”. Journal of Environmental Management, 295, 1-9, 2021.
  • [17] Zhu, J, Wang Q, Yuan M, Tan GY, A, Sun F, Wang C., Lee PH. "Microbiology and potential applications of aerobic methane oxidation coupled to denitrification (AME-D) process: a review". Water Research, 90, 203-215, 2016.
  • [18] Han, F, Zhang M, Shang H, Liu Z, & Zhou W. "Microbial community succession, species interactions and metabolic pathways of sulfur-based autotrophic denitrification system in organic-limited nitrate wastewater". Bioresource Technology, 315, 1-9, 2020.
  • [19] Uçar D, Çokgör EU, Şahinkaya E. “Evaluation of nitrate and perchlorate reduction using sulfur-based autotrophic and mixotrophic denitrifying processes”. Water Science and Technology: Water Supply, 16(1), 208-218, 2016.
  • [20] Sahinkaya E, Dursun N, Kilic A, Demirel S, Uyanik S, Cinar O. “Simultaneous heterotrophic and sulfur-oxidizing autotrophic denitrification process for drinking water treatment: Control of sulfate production”. Water Research, 45(20), 6661-6667, 2011.
  • [21] Ucar D, Cokgor, E. U, Sahinkaya, E. "Heterotrophicautotrophic sequential system for reductive nitrate and perchlorate removal". Environmental Technology, 37(2), 183-191, 2016.
  • [22] Yapıcı CŞA, Toprak D, Yıldız M, Uyanık S, Karaaslan Y, Uçar D. "A combo technology of autotrophic and heterotrophic denitrification processes for groundwater treatment". Chinese Journal of Chemical Engineering. 37, 121-127, 2021.
  • [23] Pasqualino JC, Meneses M, Abella M, Castells F, “LCA as a decision support tool for the environmental improvement of the operation of a municipal wastewater treatment plant”. Environmental Science and Technology, 43(9), 3300-3307, 2009.
  • [24] Çetinkaya AY. “Life cycle assessment of environmental effects and nitrate removal for membrane capacitive deionization technology”. Environmental Monitoring and Assessment, 192(8), 1-8, 2020.
  • [25] Vineyard D, Hicks A, Karthikeyan KG, Davidson C, Barak P. “Life cycle assessment of electrodialysis for sidestream nitrogen recovery in municipal wastewater treatment”. Cleaner Environmental Systems, 2, 1-8, 2021.
  • [26] Theis T, Hicks A. "Methanol Use in Wastewater Denitrification". University of Illinois, Chicago, ABD, Bilimsel Rapor, 1105602.000 01010712PT01, 2012.
  • [27] Morera S, Corominas L, Poch M, Aldaya M, Comas J. “Water footprint assessment in wastewater treatment plants”. Journal of Cleaner Production, 112, 4741-4748, 2016.
  • [28] Vlasopoulos N, Memon FA, Butler D, Murphy R. “Life cycle assessment of wastewater treatment technologies treating petroleum process waters”. Science of the Total Environment, 367(1), 58-70, 2006.
  • [29] Gómez-Llanos E, Durán-Barroso P, Matías-Sánchez A. “Management effectiveness assessment in wastewater treatment plants through a new water footprint indicator”. Journal of Cleaner Production, 198, 463-471, 2018.
  • [30] Muratoğlu A. “Assessment of water footprint of production: A case study for Diyarbakır province”. Journal of The Faculty of Engineering and Architecture of Gazi University, 35(2), 845-858, 2020.
  • [31] Nezamoleslami R, Hosseinian SM. “An improved water footprint model of steel production concerning virtual water of personnel: The case of Iran”. Journal of Environmental Management, 260, 1-11, 2020.
  • [32] Gu Y, Dong YN, Wang H, Keller A, Xu J, Chiramba T, Li F. “Quantification of the water, energy and carbon footprints of wastewater treatment plants in China considering a water-energy nexus perspective”. Ecological Indicators, 60, 402-409, 2016.
  • [33] International Organization for Standardization. “Environmental Management-Life Cycle Assessment - Principles and Framework (ISO 14040:2006)”. Environmental Management Systems Requirement. Switzerland, 44, 2004.
  • [34] Sahinkaya E, Kilic A, Duygulu B. “Pilot and full scale applications of sulfur-based autotrophic denitrification process for nitrate removal from activated sludge process effluent”. Water Research, 60, 210-217, 2014.
  • [35] American Public Health Association, American Water Works Association (APHA). “Standard Methods for the Examination of Water and Wastewater”. Washington, USD, 2000.
  • [36] Cord-Ruwisch R. “A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfatereducing bacteria”. Journal of Microbiological Methods, 4(1), 33-36, 1985.
  • [37] Ecoinvent. “ecoinvent-database”. https://ecoinvent.org/the-ecoinvent-database (12.11.2021).
  • [38] Open LCA. ”ecoinvent 3.5”. https://www.openlca.org/ecoinvent-3-5 (12.11.2021).
  • [39] Zhang J, Tian H, Wang X, Tong YW. “Effects of activated carbon on mesophilic and thermophilic anaerobic digestion of food waste: Process performance and life cycle assessment”, Chemical Engineering Journal, 399, 1-10, 2020.
  • [40] Huijbregts MAJ, Steinmann ZJN, Elshout PMFM, Stam G, Verones F, Vieira MDM, Zijp M, van Zelm R. “ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level”. The International Journal of Life Cycle Assessment, 22(2), 138-147, 2017.
  • [41] Chen KH, Wang HC, Han JL, Liu WZ, Cheng HY, Liang B, Wang AJ. “The application of footprints for assessing the sustainability of wastewater treatment plants: A review”. Journal of Cleaner Production, 277, 1-15, 2020.
  • [42] Liu H, Jiang W, Wan D, Qu J. “Study of a combined heterotrophic and sulfur autotrophic denitrification technology for removal of nitrate in water”. Journal of Hazardous Materials, 169(1-3), 23-28, 2009.

Environmental effects of sulfur-based autotrophic and methanol based heterotrophic denitrification processes

Yıl 2022, Cilt: 28 Sayı: 6, 912 - 919, 30.11.2022

Öz

The utilization of inorganic electron donors in denitrification is gaining popularity because of its advantages over organic electron donors, such as low cost and less effluent organic contamination risk. Elemental sulfur is widely used in autotrophic denitrification, but acidity and sulfate production are the main drawbacks of sulfur-based denitrification. Limestone or dissolved alkalinity sources are used to provide alkalinity. A life cycle assessment (LCA) of three denitrification processes (limestone-assisted SO-based, bicarbonate-based SO-based, and methanol-based denitrification) were performed to determine their environmental impacts (abiotic depletion, global warming potential, ozone depletion, human toxicity, freshwater aquatic ecotoxicity, seawater ecotoxicity, terrestrial ecotoxicity, photochemical oxidation (POCP), acidification and eutrophication) by using the CML 1A baseline of SimaPro 9.1.1 software for LCA, and AWARE V1.03 for water footprint. In all groups, 25 mg of NO3 - -N/L was successfully removed; however, using NaHCO3 in S0 -based denitrification, the environmental impact was higher than in other processes. The lowest environmental impact occurred limestone-assisted SO-based process. The highest environmental impact is due to the use of electricity, and 65 kg of the global warming potential of 75.38 kg CO2 equivalent in the bicarbonatefed group is due to the use of electricity. Water footprint for 1 kg NO3 - - N/m3 functional unit was found to be 24.3 m3 , 30.7 m3 and, 45.1 m3 for heterotrophic denitrification, limestone and, bicarbonate-based autotrophic, respectively. Autotrophic denitrification has advantages over heterotrophic denitrification in terms of cost and water quality, but the use of NaHCO3 as a source of alkalinity should be avoided.

Kaynakça

  • [1] Karunanidhi D, Aravinthasamy P, Subramani T, Kumar M. “Human health risks associated with multipath exposure of groundwater nitrate and environmental friendly actions for quality improvement and sustainable management: a case study from Texvalley (Tiruppur region) of India”. Chemosphere, 265, 1-11, 2021.
  • [2] Kwon E, Park J, Park WB, Kang BR, Woo NC. “Nitrate contamination of coastal groundwater: Sources and transport mechanisms along a volcanic aquifer”. Science of the Total Environment, 768, 1-11, 2021.
  • [3] Wang H, Lu K, Shen C, Song X, Hu B, Liu, G. “Human health risk assessment of groundwater nitrate at a two geomorphic units transition zone in northern China”. Journal of Environmental Sciences, 110, 38-47, 2021.
  • [4] Adimalla N, Qian H, Tiwari DM. “Groundwater chemistry, distribution and potential health risk appraisal of nitrate enriched groundwater: A case study from the semi-urban region of South India”. Ecotoxicology and Environmental Safety, 207, 1-10, 2021.
  • [5] Hatipoglu G, Kurt Z. “Modeling irrigation with nitrate contaminated groundwater”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(3), 468-480, 2020.
  • [6] Della Rocca C, Belgiorno V, Meriç S. “Overview of in-situ applicable nitrate removal processes”. Desalination, 204(1-3), 46-62, 2007.
  • [7] Türk Standartları Enstitüsü. "Sular-İçme ve Kullanma Suları." Ankara, Türkiye, 266, 1997.
  • [8] Ucar D, Di F, Yücel A, Nacar T, Sahinkaya E. “Effect of nitrogen loading on denitrification, denitritation and filtration performances of membrane bioreactors fed with biogenic and chemical elemental sulfur”. Chemical Engineering Journal, 419, 1-10, 2021.
  • [9] Ucar D, Cokgor EU, Sahinkaya E, Cetin U, Bereketoglu C, Calimlioglu B, Goncu B, Yurtsever A. “Simultaneous nitrate and perchlorate removal from groundwater by heterotrophic-autotrophic sequential system”. International Biodeterioration & Biodegradation, 116, 83-90, 2017.
  • [10] Büyük G, Akça E, Kume T, Nagano T. “Investigation of nitrate pollution in groundwater used for irrigation in Konya Karapinar region, central Anatolia”. KSÜ Doğa Bilimleri Dergisi, 19(2), 168-173, 2016.
  • [11] Davraz A, Batur B. “Hydrogeochemistry characteristics of groundwater and health risk assessment in YalvaçGelendost basin (Turkey)”. Applied Water Science, 11(4), 1-21, 2021.
  • [12] Oh SE, Bum MS, Yoo YB, Zubair A, Kim IS. “Nitrate removal by simultaneous sulfur utilizing autotrophic and heterotrophic denitrification under different organics and alkalinity conditions: Batch experiments”. Water Science and Technology, 47(1), 237-244, 2003.
  • [13] Ağıl Z, Akgul V, Duyar A, Cirik K. “Nitrat gideriminde kullanılan biyo reaktörlerde heterotrofik, ototrofik ve miksotrofik proseslerin değerlendirilmesi”. KSÜ Mühendislik Bilimleri Dergisi, 21(3), 217-225, 2018.
  • [14] Ucar D, Cokgor EU, Şahinkaya E. “Simultaneous nitrate and perchlorate reduction using sulfur-based autotrophic and heterotrophic denitrifying processes”. Journal of Chemical Technology & Biotechnology, 91(5), 1471-1477, 2016.
  • [15] Sahinkaya E, Dursun N. “Sulfur-oxidizing autotrophic and mixotrophic denitrification processes for drinking water treatment: Elimination of excess sulfate production and alkalinity requirement”. Chemosphere, 89(2), 144-149, 2012.
  • [16] Asik G, Yilmaz T, Di Capua F, Ucar D, Esposito E, Sahinkaya E. “Sequential sulfur-based denitrification/denitritation and nanofiltration processes for drinking water treatment”. Journal of Environmental Management, 295, 1-9, 2021.
  • [17] Zhu, J, Wang Q, Yuan M, Tan GY, A, Sun F, Wang C., Lee PH. "Microbiology and potential applications of aerobic methane oxidation coupled to denitrification (AME-D) process: a review". Water Research, 90, 203-215, 2016.
  • [18] Han, F, Zhang M, Shang H, Liu Z, & Zhou W. "Microbial community succession, species interactions and metabolic pathways of sulfur-based autotrophic denitrification system in organic-limited nitrate wastewater". Bioresource Technology, 315, 1-9, 2020.
  • [19] Uçar D, Çokgör EU, Şahinkaya E. “Evaluation of nitrate and perchlorate reduction using sulfur-based autotrophic and mixotrophic denitrifying processes”. Water Science and Technology: Water Supply, 16(1), 208-218, 2016.
  • [20] Sahinkaya E, Dursun N, Kilic A, Demirel S, Uyanik S, Cinar O. “Simultaneous heterotrophic and sulfur-oxidizing autotrophic denitrification process for drinking water treatment: Control of sulfate production”. Water Research, 45(20), 6661-6667, 2011.
  • [21] Ucar D, Cokgor, E. U, Sahinkaya, E. "Heterotrophicautotrophic sequential system for reductive nitrate and perchlorate removal". Environmental Technology, 37(2), 183-191, 2016.
  • [22] Yapıcı CŞA, Toprak D, Yıldız M, Uyanık S, Karaaslan Y, Uçar D. "A combo technology of autotrophic and heterotrophic denitrification processes for groundwater treatment". Chinese Journal of Chemical Engineering. 37, 121-127, 2021.
  • [23] Pasqualino JC, Meneses M, Abella M, Castells F, “LCA as a decision support tool for the environmental improvement of the operation of a municipal wastewater treatment plant”. Environmental Science and Technology, 43(9), 3300-3307, 2009.
  • [24] Çetinkaya AY. “Life cycle assessment of environmental effects and nitrate removal for membrane capacitive deionization technology”. Environmental Monitoring and Assessment, 192(8), 1-8, 2020.
  • [25] Vineyard D, Hicks A, Karthikeyan KG, Davidson C, Barak P. “Life cycle assessment of electrodialysis for sidestream nitrogen recovery in municipal wastewater treatment”. Cleaner Environmental Systems, 2, 1-8, 2021.
  • [26] Theis T, Hicks A. "Methanol Use in Wastewater Denitrification". University of Illinois, Chicago, ABD, Bilimsel Rapor, 1105602.000 01010712PT01, 2012.
  • [27] Morera S, Corominas L, Poch M, Aldaya M, Comas J. “Water footprint assessment in wastewater treatment plants”. Journal of Cleaner Production, 112, 4741-4748, 2016.
  • [28] Vlasopoulos N, Memon FA, Butler D, Murphy R. “Life cycle assessment of wastewater treatment technologies treating petroleum process waters”. Science of the Total Environment, 367(1), 58-70, 2006.
  • [29] Gómez-Llanos E, Durán-Barroso P, Matías-Sánchez A. “Management effectiveness assessment in wastewater treatment plants through a new water footprint indicator”. Journal of Cleaner Production, 198, 463-471, 2018.
  • [30] Muratoğlu A. “Assessment of water footprint of production: A case study for Diyarbakır province”. Journal of The Faculty of Engineering and Architecture of Gazi University, 35(2), 845-858, 2020.
  • [31] Nezamoleslami R, Hosseinian SM. “An improved water footprint model of steel production concerning virtual water of personnel: The case of Iran”. Journal of Environmental Management, 260, 1-11, 2020.
  • [32] Gu Y, Dong YN, Wang H, Keller A, Xu J, Chiramba T, Li F. “Quantification of the water, energy and carbon footprints of wastewater treatment plants in China considering a water-energy nexus perspective”. Ecological Indicators, 60, 402-409, 2016.
  • [33] International Organization for Standardization. “Environmental Management-Life Cycle Assessment - Principles and Framework (ISO 14040:2006)”. Environmental Management Systems Requirement. Switzerland, 44, 2004.
  • [34] Sahinkaya E, Kilic A, Duygulu B. “Pilot and full scale applications of sulfur-based autotrophic denitrification process for nitrate removal from activated sludge process effluent”. Water Research, 60, 210-217, 2014.
  • [35] American Public Health Association, American Water Works Association (APHA). “Standard Methods for the Examination of Water and Wastewater”. Washington, USD, 2000.
  • [36] Cord-Ruwisch R. “A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfatereducing bacteria”. Journal of Microbiological Methods, 4(1), 33-36, 1985.
  • [37] Ecoinvent. “ecoinvent-database”. https://ecoinvent.org/the-ecoinvent-database (12.11.2021).
  • [38] Open LCA. ”ecoinvent 3.5”. https://www.openlca.org/ecoinvent-3-5 (12.11.2021).
  • [39] Zhang J, Tian H, Wang X, Tong YW. “Effects of activated carbon on mesophilic and thermophilic anaerobic digestion of food waste: Process performance and life cycle assessment”, Chemical Engineering Journal, 399, 1-10, 2020.
  • [40] Huijbregts MAJ, Steinmann ZJN, Elshout PMFM, Stam G, Verones F, Vieira MDM, Zijp M, van Zelm R. “ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level”. The International Journal of Life Cycle Assessment, 22(2), 138-147, 2017.
  • [41] Chen KH, Wang HC, Han JL, Liu WZ, Cheng HY, Liang B, Wang AJ. “The application of footprints for assessing the sustainability of wastewater treatment plants: A review”. Journal of Cleaner Production, 277, 1-15, 2020.
  • [42] Liu H, Jiang W, Wan D, Qu J. “Study of a combined heterotrophic and sulfur autotrophic denitrification technology for removal of nitrate in water”. Journal of Hazardous Materials, 169(1-3), 23-28, 2009.
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm İnşaat Müh. / Çevre Müh. / Jeoloji Müh.
Yazarlar

Elif Yakamercan Bu kişi benim

Deniz Uçar Bu kişi benim

Yayımlanma Tarihi 30 Kasım 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 28 Sayı: 6

Kaynak Göster

APA Yakamercan, E., & Uçar, D. (2022). Kükürt bazlı ototrofik ve metanol bazlı heterotrofik denitrifikasyon süreçlerinin çevresel etkileri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 28(6), 912-919.
AMA Yakamercan E, Uçar D. Kükürt bazlı ototrofik ve metanol bazlı heterotrofik denitrifikasyon süreçlerinin çevresel etkileri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Kasım 2022;28(6):912-919.
Chicago Yakamercan, Elif, ve Deniz Uçar. “Kükürt Bazlı Ototrofik Ve Metanol Bazlı Heterotrofik Denitrifikasyon süreçlerinin çevresel Etkileri”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 28, sy. 6 (Kasım 2022): 912-19.
EndNote Yakamercan E, Uçar D (01 Kasım 2022) Kükürt bazlı ototrofik ve metanol bazlı heterotrofik denitrifikasyon süreçlerinin çevresel etkileri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 28 6 912–919.
IEEE E. Yakamercan ve D. Uçar, “Kükürt bazlı ototrofik ve metanol bazlı heterotrofik denitrifikasyon süreçlerinin çevresel etkileri”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 28, sy. 6, ss. 912–919, 2022.
ISNAD Yakamercan, Elif - Uçar, Deniz. “Kükürt Bazlı Ototrofik Ve Metanol Bazlı Heterotrofik Denitrifikasyon süreçlerinin çevresel Etkileri”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 28/6 (Kasım 2022), 912-919.
JAMA Yakamercan E, Uçar D. Kükürt bazlı ototrofik ve metanol bazlı heterotrofik denitrifikasyon süreçlerinin çevresel etkileri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2022;28:912–919.
MLA Yakamercan, Elif ve Deniz Uçar. “Kükürt Bazlı Ototrofik Ve Metanol Bazlı Heterotrofik Denitrifikasyon süreçlerinin çevresel Etkileri”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 28, sy. 6, 2022, ss. 912-9.
Vancouver Yakamercan E, Uçar D. Kükürt bazlı ototrofik ve metanol bazlı heterotrofik denitrifikasyon süreçlerinin çevresel etkileri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2022;28(6):912-9.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.