Araştırma Makalesi
BibTex RIS Kaynak Göster

Kentsel katı atıkların ve kentsel atıksu arıtma çamurlarının birlikte pirolizi ve sıvı ürün karakterizasyonu

Yıl 2022, Cilt: 28 Sayı: 6, 920 - 928, 30.11.2022

Öz

Kentsel katı atıkların (KKA) ve kentsel atıksu arıtma çamurlarının (AÇ) depolanan miktarlarının azaltılması hem son yıllarda oldukça gündemde olan döngüsel ekonomi kavramı açısından, hem de KKA ve AÇ’lerin daha dikkatli yönetilmesi açısından büyük önem taşımaktadır. Piroliz yöntemi bu atıkların birlikte arıtılmasını sağlamak için kullanılabilecek en uygun yöntemlerden birisidir. Bu çalışmada, KKA ve AÇ’lerin birlikte piroliz edilmesiyle atıkların faydalı ürünlere dönüştürülmesi irdelenmiş ve elde edilen sıvı ürünün karakterizasyonu yapılmıştır. Örnekler her iki atık türünden farklı miktarlarda (ağırlıkça %25-75 oranlarında) karıştırılarak hazırlanmıştır. Piroliz öncesi hazırlanan analitik örneklerin nem, kül, uçucu madde, sabit karbon ve element kompozisyonu (C, H, O, N, S) tespit edilmiştir. Ağırlıkça farklı oranlarda hazırlanan analitik örneklerin 400°C’de birlikte pirolizi gerçekleştirilmiştir. Birlikte piroliz sonrası elde edilen sıvı ürünlerin karakterizasyonu için elementel, ısıl değer, FT-IR ve 1H-NMR analizleri gerçekleştirilmiştir. Analiz sonuçlarına göre, en yüksek sıvı ürün verimi M1 kodlu (%25 KKA ve %75 AÇ’nin karışımı ile hazırlanan) analitik örnekte gözlenmiştir. Genel olarak tüm piroliz sıvı ürünlerinde, büyük kısmın alifatik bileşiklerden oluştuğu tespit edilmiştir. Sürdürülebilir kentsel katı atık yönetimi için her iki atığın da depolama sahalarına gönderilmesi yerine birlikte piroliz edilerek katma değeri olan ürünler elde edilmesi, çevresel ve ekonomik açıdan katkı sağlayacak bir seçenek olarak görülmektedir.

Kaynakça

  • [1] Gherghel A, Teodosiu C, De Gisi S. "A review on wastewater sludge valorisation and its challenges in the context of circular economy". Journal of Cleaner Production, 228, 244-263, 2019.
  • [2] Sun Y, Tao J, Chen G, Yan B, Cheng Z. "Distribution of Hg during sewage sludge and municipal solid waste copyrolysis: influence of multiple factors". Waste Management, 107, 276-284, 2020.
  • [3] T.C. Çevre ve Şehircilik Bakanlığı. "Ulusal Atık Yönetimi ve Eylem Planı 2016-2023". http://webdosya.csb.gov.tr/db/cygm/haberler/ulusal_at -k_yonet-m--eylem_plan--20180328154824.pdf (15.12. 2020).
  • [4] Chen DMC, Bodirsky BL, Krueger T, Mishra A, Popp A. "The world’s growing municipal solid waste: trends and impacts". Environmental Research Letters, 15(7), 1-12, 2020.
  • [5] Türkiye İstatistik Kurumu. "Belediye Atık İstatistikleri, 2018". https://tuikweb.tuik.gov.tr/PreHaberBultenleri.do?id=3 0666 (30.01.2021).
  • [6] Kiselev A, Glushankova I, Rudakova L, Baynkin A, Magaril E, Rada EC. "Energy and material assessment of municipal sewage sludge applications under circular economy". International Journal of Energy Production and Management, 5(3), 234-244, 2020.
  • [7] Türkiye İstatistik Kurumu. "Belediye Atıksu İstatistikleri, 2018". https://tuikweb.tuik.gov.tr/PreHaberBultenleri.do?id=3 0667 (01.02. 2021)
  • [8] Tomasi Morgano M, Leibold H, Richter F, Stapf D, Seifert H. "Screw pyrolysis technology for sewage sludge treatment". Waste Management, 73, 487-495, 2018.
  • [9] Velghe I, Carleer R, Yperman J,Schreurs S. "Study of the pyrolysis of municipal solid waste for the production of valuable products". Journal of Analytical and Applied Pyrolysis, 92(2), 366-375, 2011.
  • [10] Fang S, Yu Z, Lin Y, Hu S, Liao Y,Ma X. "Thermogravimetric analysis of the co-pyrolysis of paper sludge and municipal solid waste". Energy Conversion and Management, 101, 626-631, 2015.
  • [11] Jayaraman K, Gökalp I. "Pyrolysis, combustion and gasification characteristics of miscanthus and sewage sludge". Energy Conversion and Management, 89, 83-91, 2015.
  • [12] Chhabra V, Shastri Y, Bhattacharya S. "Kinetics of pyrolysis of mixed municipal solid waste-a review". Procedia Environmental Sciences, 35, 513-527, 2016.
  • [13] Bridgwater AV. "Review of fast pyrolysis of biomass and product upgrading". Biomass and Bioenergy, 38, 68-94, 2012.
  • [14] Yaman S. "Pyrolysis of biomass to produce fuels and chemical feedstocks". Energy Conversion and Management, 45(5), 651-671, 2004.
  • [15] Szaja A. "Phosphorus recovery from sewage sludge via pyrolysis". Annual Set The Environment Protectio, 15, 361-370, 2013.
  • [16] Agar DA, Kwapinska M,Leahy JJ. "Pyrolysis of wastewater sludge and composted organic fines from municipal solid waste: laboratory reactor characterisation and product distribution". Environmental Science and Pollution Research, 25(36), 35874-35882, 2018.
  • [17] Bøjer M, Jensen PA, Frandsen F, Dam-Johansen K, Madsen OH, Lundtorp K. "Alkali/Chloride release during refuse incineration on a grate: full-scale experimental findings". Fuel Processing Technology, 89(5), 528-539, 2008.
  • [18] Wang X, Chang VW, Li Z, Chen Z,Wang Y. "Co-pyrolysis of sewage sludge and organic fractions of municipal solid waste: Synergistic effects on biochar properties and the environmental risk of heavy metals". Journal of Hazardous Materials, 412, 1-12, 2021.
  • [19] Xu F, Ming X, Jia R, Zhao M, Wang B, Qiao Y, Tian, Y. “Effects of operating parameters on products yield and volatiles composition during fast pyrolysis of food waste in the presence of hydrogen”. Fuel Processing Technology, 210, 1-12, 2020.
  • [20] Yan M, Zhou X, Zhang S, Liao W, Zhu G, Wang J, Kanchanatip E, Khan MS. “Municipal solid waste pyrolysis under circulated pyrolytic gas atmosphere”. Journal of Material Cycles and Waste Management, 23(3), 1141-1151, 2021.
  • [21] Zhou H, Meng A, Long Y, Li Q, Zhang Y. "Interactions of municipal solid waste components during pyrolysis: a TG-FTIR study". Journal of Analytical and Applied Pyrolysis, 108, 19-25, 2014.
  • [22] Merdun H, Sezgin İV, Güzelçiftçi B. "Evaluation of bio-oil compounds of catalytic fast pyrolysis by multivariate analysis". Pamukkale University Journal of Engineering Sciences, 25(3), 297-303, 2019.
  • [23] Hossain MK, Strezov V, Chan KY, Ziolkowski A,Nelson PF. "Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar". Journal of Environmental Management, 92(1), 223-228, 2011.
  • [24] Zhou J, Liu S, Zhou N, Fan L, Zhang Y, Peng P, Anderson E, Ding K, Wang Y, Liu Y, Chen P,Ruan R. "Development and application of a continuous fast microwave pyrolysis system for sewage sludge utilization". Bioresource Technology, 256, 295-301, 2018.
  • [25] Agrafioti E, Bouras G, Kalderis D, Diamadopoulos E. "Biochar production by sewage sludge pyrolysis". Journal of Analytical and Applied Pyrolysis, 101, 72-78, 2013.
  • [26] Wei F, Cao JP, Zhao XY, Ren J, Wang JX, Fan X, Wei XY. “Nitrogen evolution during fast pyrolysis of sewage sludge under inert and reductive atmospheres”. Energy & Fuels, 31(7), 7191-7196, 2017.
  • [27] Huang H-j, Yang T, Lai F-y,Wu G-q. "Co-pyrolysis of sewage sludge and sawdust/rice straw for the production of biochar". Journal of Analytical and Applied Pyrolysis, 125, 61-68, 2017.
  • [28] Türk Standartları. "Atıklar ve Katı Atıklarda Rutubet Tayini". Ankara, Türkiye, 10459, 1992.
  • [29] Türk Standartları. "Çamurların Karakterizasyonu-Kuru Kalıntı ve Su Muhtevası Tayini". Ankara, Türkiye, 9546, 2002.
  • [30] Ansah E, Wang L, Shahbazi A. "Thermogravimetric and calorimetric characteristics during co-pyrolysis of municipal solid waste components". Waste Management, 56, 196-206, 2016.
  • [31] Fang S, Yu Z, Lin Y, Lin Y, Fan Y, Liao Y, Ma X. "Effects of additives on the co-pyrolysis of municipal solid waste and paper sludge by using thermogravimetric analysis". Bioresource Technology, 209, 265-272, 2016.
  • [32] Bianchini A, Bonfiglioli L, Pellegrini M, Saccani C. “Sewage sludge drying process integration with a waste-to-energy power plant”. Waste Management, 42, 159-165, 2015.
  • [33] dos Reis RF, Sergio Cordeiro J, Font X, Laguna Achon C. “The biodrying process of sewage sludge-a review”. Drying Technology, 38(10), 1247-1260, 2019.
  • [34] Tang Y, Ma X, Wang Z, Wu Z, Yu Q. “A study of the thermal degradation of six typical municipal waste components in CO2 and N2 atmospheres using TGA-FTIR”. Thermochimica Acta, 657, 12-19, 2017.
  • [35] Chanaka Udayanga WD, Veksha A, Giannis A, Lisak G, Lim T-T. “Effects of sewage sludge organic and inorganic constituents on the properties of pyrolysis products”. Energy Conversion and Management, 196, 1410-1419, 2019.
  • [36] Paradela F, Pinto F, Gulyurtlu I, Cabrita I,Lapa N. "Study of the co-pyrolysis of biomass and plastic wastes". Clean Technologies and Environmental Policy, 11(1), 115-122, 2008.
  • [37] Tang Y, Huang Q, Sun K, Chi Y,Yan J. "Co-pyrolysis characteristics and kinetic analysis of organic food waste and plastic". Bioresource Technology, 249, 16-23, 2018.
  • [38] Buah WK, Cunliffe AM, Williams PT. "Characterization of products from the pyrolysis of municipal solid waste". Process Safety and Environmental Protection, 85(5), 450-457, 2007.
  • [39] Ding K, Zhong Z, Zhong D, Zhang B,Qian X. "Pyrolysis of municipal solid waste in a fluidized bed for producing valuable pyrolytic oils". Clean Technologies and Environmental Policy, 18(4), 1111-1121, 2016.
  • [40] Kim Y, Parker W. "A technical and economic evaluation of the pyrolysis of sewage sludge for the production of biooil". Bioresource Technology, 99(5), 1409-1416, 2008.
  • [41] Cunliffe AM, Williams PT. "Characterisation of products from the recycling of glass fibre reinforced polyester waste by pyrolysis". Fuel, 82(18), 2223-2230, 2003.
  • [42] Song Q, Zhao HY, Xing WL, Song LH, Yang L, Yang D, Shu X. “Effects of various additives on the pyrolysis characteristics of municipal solid waste”. Waste Management, 78, 621-629, 2018.
  • [43] Song Q, Zhao H, Jia J, Yang L, Lv W, Bao J, Shu X, Gu Q, Zhang P. “Pyrolysis of municipal solid waste with iron-based additives: A study on the kinetic, product distribution and catalytic mechanisms”. Journal of Cleaner Production, 258, 1-14, 2020.
  • [44] Fonts I, Juan A, Gea G, Murillo MB, Arauzo J. “Sewage sludge pyrolysis in a fluidized bed, 2: influence of operating conditions on some physicochemical properties of the liquid product”. Industrial & Engineering Chemistry Research, 48, 2179-2187, 2009.
  • [45] Chhabra V, Bambery K, Bhattacharya S, Shastri Y. "Thermal and in situ infrared analysis to characterise the slow pyrolysis of mixed municipal solid waste (MSW) and its components". Renewable Energy, 148, 388-401, 2020.
  • [46] Lin Y, Liao Y, Yu Z, Fang S, Ma X. "A study on co-pyrolysis of bagasse and sewage sludge using TG-FTIR and PyGC/MS". Energy Conversion and Management, 151, 190-198, 2017.
  • [47] Zhu X, Zhao L, Fu F, Yang Z, Li F, Yuan W, Zhou M, Fang W, Zhen G, Lu X, Zhang X. "Pyrolysis of pre-dried dewatered sewage sludge under different heating rates: characteristics and kinetics study". Fuel, 255, 1-7, 2019.
  • [48] LibreText Chemistry. “Chemical Shifts in ¹H NMR Spectroscopy”. https://chem.libretexts.org/Bookshelves/Organic_Chemi stry/Organic_Chemistry_(LibreTexts)/13%3A_Structure_ Determination_- Nuclear_Magnetic_Resonance_Spectroscopy/13.03%3A_ Chemical_Shifts_in_H_NMR__Spectroscopy (06.02. 2021).
  • [49] Shen L, Zhang DK. "An experimental study of oil recovery from sewage sludge by low temperature pyrolysis in a fluidised-bed". Fuel, 82, 465-472, 2003.

Co-pyrolysis of municipal solid waste and municipal sewage sludge and characterization of liquid product

Yıl 2022, Cilt: 28 Sayı: 6, 920 - 928, 30.11.2022

Öz

The reduction of the sent to landfill amount of municipal solid waste (MSWs) and municipal sewage sludges (SSs) is of great importance both for the circular economy concept, which has been on the agenda in recent years, and more careful management of MSW and SS. Pyrolysis method is one of the most suitable methods that can be utilized to treat these wastes together. In this study, it was evaluated to convert these wastes into useful products by co-pyrolyzing MSW and SS, and obtained liquid products were characterized. Samples were prepared by mixing different percentages (wt. 25-75%) from these wastes. The values of moisture content, ash content, volatile matter, and fixed carbon of prepared samples before the pyrolysis process were determined. The prepared samples were co-pyrolyzed at 400 °C. Elemental analysis (C, H, O, N, S), heating value measurement, FT-IR, and 1H-NMR analysis were carried out to make the characterization of the obtained liquid products after the co-pyrolysis process. According to analysis results, it was observed that M1 (25% of MSW and 75% of SS) showed the highest liquid yield. For all liquid products, it has been determined that most of the pyrolysis liquid products consist of aliphatic compounds. For sustainable municipal solid waste management, valorizing these wastes together instead of sending them to landfill sites, the co-pyrolysis process converts them to valuable products, it also might be considered an option contributing economic and environmental aspects.

Kaynakça

  • [1] Gherghel A, Teodosiu C, De Gisi S. "A review on wastewater sludge valorisation and its challenges in the context of circular economy". Journal of Cleaner Production, 228, 244-263, 2019.
  • [2] Sun Y, Tao J, Chen G, Yan B, Cheng Z. "Distribution of Hg during sewage sludge and municipal solid waste copyrolysis: influence of multiple factors". Waste Management, 107, 276-284, 2020.
  • [3] T.C. Çevre ve Şehircilik Bakanlığı. "Ulusal Atık Yönetimi ve Eylem Planı 2016-2023". http://webdosya.csb.gov.tr/db/cygm/haberler/ulusal_at -k_yonet-m--eylem_plan--20180328154824.pdf (15.12. 2020).
  • [4] Chen DMC, Bodirsky BL, Krueger T, Mishra A, Popp A. "The world’s growing municipal solid waste: trends and impacts". Environmental Research Letters, 15(7), 1-12, 2020.
  • [5] Türkiye İstatistik Kurumu. "Belediye Atık İstatistikleri, 2018". https://tuikweb.tuik.gov.tr/PreHaberBultenleri.do?id=3 0666 (30.01.2021).
  • [6] Kiselev A, Glushankova I, Rudakova L, Baynkin A, Magaril E, Rada EC. "Energy and material assessment of municipal sewage sludge applications under circular economy". International Journal of Energy Production and Management, 5(3), 234-244, 2020.
  • [7] Türkiye İstatistik Kurumu. "Belediye Atıksu İstatistikleri, 2018". https://tuikweb.tuik.gov.tr/PreHaberBultenleri.do?id=3 0667 (01.02. 2021)
  • [8] Tomasi Morgano M, Leibold H, Richter F, Stapf D, Seifert H. "Screw pyrolysis technology for sewage sludge treatment". Waste Management, 73, 487-495, 2018.
  • [9] Velghe I, Carleer R, Yperman J,Schreurs S. "Study of the pyrolysis of municipal solid waste for the production of valuable products". Journal of Analytical and Applied Pyrolysis, 92(2), 366-375, 2011.
  • [10] Fang S, Yu Z, Lin Y, Hu S, Liao Y,Ma X. "Thermogravimetric analysis of the co-pyrolysis of paper sludge and municipal solid waste". Energy Conversion and Management, 101, 626-631, 2015.
  • [11] Jayaraman K, Gökalp I. "Pyrolysis, combustion and gasification characteristics of miscanthus and sewage sludge". Energy Conversion and Management, 89, 83-91, 2015.
  • [12] Chhabra V, Shastri Y, Bhattacharya S. "Kinetics of pyrolysis of mixed municipal solid waste-a review". Procedia Environmental Sciences, 35, 513-527, 2016.
  • [13] Bridgwater AV. "Review of fast pyrolysis of biomass and product upgrading". Biomass and Bioenergy, 38, 68-94, 2012.
  • [14] Yaman S. "Pyrolysis of biomass to produce fuels and chemical feedstocks". Energy Conversion and Management, 45(5), 651-671, 2004.
  • [15] Szaja A. "Phosphorus recovery from sewage sludge via pyrolysis". Annual Set The Environment Protectio, 15, 361-370, 2013.
  • [16] Agar DA, Kwapinska M,Leahy JJ. "Pyrolysis of wastewater sludge and composted organic fines from municipal solid waste: laboratory reactor characterisation and product distribution". Environmental Science and Pollution Research, 25(36), 35874-35882, 2018.
  • [17] Bøjer M, Jensen PA, Frandsen F, Dam-Johansen K, Madsen OH, Lundtorp K. "Alkali/Chloride release during refuse incineration on a grate: full-scale experimental findings". Fuel Processing Technology, 89(5), 528-539, 2008.
  • [18] Wang X, Chang VW, Li Z, Chen Z,Wang Y. "Co-pyrolysis of sewage sludge and organic fractions of municipal solid waste: Synergistic effects on biochar properties and the environmental risk of heavy metals". Journal of Hazardous Materials, 412, 1-12, 2021.
  • [19] Xu F, Ming X, Jia R, Zhao M, Wang B, Qiao Y, Tian, Y. “Effects of operating parameters on products yield and volatiles composition during fast pyrolysis of food waste in the presence of hydrogen”. Fuel Processing Technology, 210, 1-12, 2020.
  • [20] Yan M, Zhou X, Zhang S, Liao W, Zhu G, Wang J, Kanchanatip E, Khan MS. “Municipal solid waste pyrolysis under circulated pyrolytic gas atmosphere”. Journal of Material Cycles and Waste Management, 23(3), 1141-1151, 2021.
  • [21] Zhou H, Meng A, Long Y, Li Q, Zhang Y. "Interactions of municipal solid waste components during pyrolysis: a TG-FTIR study". Journal of Analytical and Applied Pyrolysis, 108, 19-25, 2014.
  • [22] Merdun H, Sezgin İV, Güzelçiftçi B. "Evaluation of bio-oil compounds of catalytic fast pyrolysis by multivariate analysis". Pamukkale University Journal of Engineering Sciences, 25(3), 297-303, 2019.
  • [23] Hossain MK, Strezov V, Chan KY, Ziolkowski A,Nelson PF. "Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar". Journal of Environmental Management, 92(1), 223-228, 2011.
  • [24] Zhou J, Liu S, Zhou N, Fan L, Zhang Y, Peng P, Anderson E, Ding K, Wang Y, Liu Y, Chen P,Ruan R. "Development and application of a continuous fast microwave pyrolysis system for sewage sludge utilization". Bioresource Technology, 256, 295-301, 2018.
  • [25] Agrafioti E, Bouras G, Kalderis D, Diamadopoulos E. "Biochar production by sewage sludge pyrolysis". Journal of Analytical and Applied Pyrolysis, 101, 72-78, 2013.
  • [26] Wei F, Cao JP, Zhao XY, Ren J, Wang JX, Fan X, Wei XY. “Nitrogen evolution during fast pyrolysis of sewage sludge under inert and reductive atmospheres”. Energy & Fuels, 31(7), 7191-7196, 2017.
  • [27] Huang H-j, Yang T, Lai F-y,Wu G-q. "Co-pyrolysis of sewage sludge and sawdust/rice straw for the production of biochar". Journal of Analytical and Applied Pyrolysis, 125, 61-68, 2017.
  • [28] Türk Standartları. "Atıklar ve Katı Atıklarda Rutubet Tayini". Ankara, Türkiye, 10459, 1992.
  • [29] Türk Standartları. "Çamurların Karakterizasyonu-Kuru Kalıntı ve Su Muhtevası Tayini". Ankara, Türkiye, 9546, 2002.
  • [30] Ansah E, Wang L, Shahbazi A. "Thermogravimetric and calorimetric characteristics during co-pyrolysis of municipal solid waste components". Waste Management, 56, 196-206, 2016.
  • [31] Fang S, Yu Z, Lin Y, Lin Y, Fan Y, Liao Y, Ma X. "Effects of additives on the co-pyrolysis of municipal solid waste and paper sludge by using thermogravimetric analysis". Bioresource Technology, 209, 265-272, 2016.
  • [32] Bianchini A, Bonfiglioli L, Pellegrini M, Saccani C. “Sewage sludge drying process integration with a waste-to-energy power plant”. Waste Management, 42, 159-165, 2015.
  • [33] dos Reis RF, Sergio Cordeiro J, Font X, Laguna Achon C. “The biodrying process of sewage sludge-a review”. Drying Technology, 38(10), 1247-1260, 2019.
  • [34] Tang Y, Ma X, Wang Z, Wu Z, Yu Q. “A study of the thermal degradation of six typical municipal waste components in CO2 and N2 atmospheres using TGA-FTIR”. Thermochimica Acta, 657, 12-19, 2017.
  • [35] Chanaka Udayanga WD, Veksha A, Giannis A, Lisak G, Lim T-T. “Effects of sewage sludge organic and inorganic constituents on the properties of pyrolysis products”. Energy Conversion and Management, 196, 1410-1419, 2019.
  • [36] Paradela F, Pinto F, Gulyurtlu I, Cabrita I,Lapa N. "Study of the co-pyrolysis of biomass and plastic wastes". Clean Technologies and Environmental Policy, 11(1), 115-122, 2008.
  • [37] Tang Y, Huang Q, Sun K, Chi Y,Yan J. "Co-pyrolysis characteristics and kinetic analysis of organic food waste and plastic". Bioresource Technology, 249, 16-23, 2018.
  • [38] Buah WK, Cunliffe AM, Williams PT. "Characterization of products from the pyrolysis of municipal solid waste". Process Safety and Environmental Protection, 85(5), 450-457, 2007.
  • [39] Ding K, Zhong Z, Zhong D, Zhang B,Qian X. "Pyrolysis of municipal solid waste in a fluidized bed for producing valuable pyrolytic oils". Clean Technologies and Environmental Policy, 18(4), 1111-1121, 2016.
  • [40] Kim Y, Parker W. "A technical and economic evaluation of the pyrolysis of sewage sludge for the production of biooil". Bioresource Technology, 99(5), 1409-1416, 2008.
  • [41] Cunliffe AM, Williams PT. "Characterisation of products from the recycling of glass fibre reinforced polyester waste by pyrolysis". Fuel, 82(18), 2223-2230, 2003.
  • [42] Song Q, Zhao HY, Xing WL, Song LH, Yang L, Yang D, Shu X. “Effects of various additives on the pyrolysis characteristics of municipal solid waste”. Waste Management, 78, 621-629, 2018.
  • [43] Song Q, Zhao H, Jia J, Yang L, Lv W, Bao J, Shu X, Gu Q, Zhang P. “Pyrolysis of municipal solid waste with iron-based additives: A study on the kinetic, product distribution and catalytic mechanisms”. Journal of Cleaner Production, 258, 1-14, 2020.
  • [44] Fonts I, Juan A, Gea G, Murillo MB, Arauzo J. “Sewage sludge pyrolysis in a fluidized bed, 2: influence of operating conditions on some physicochemical properties of the liquid product”. Industrial & Engineering Chemistry Research, 48, 2179-2187, 2009.
  • [45] Chhabra V, Bambery K, Bhattacharya S, Shastri Y. "Thermal and in situ infrared analysis to characterise the slow pyrolysis of mixed municipal solid waste (MSW) and its components". Renewable Energy, 148, 388-401, 2020.
  • [46] Lin Y, Liao Y, Yu Z, Fang S, Ma X. "A study on co-pyrolysis of bagasse and sewage sludge using TG-FTIR and PyGC/MS". Energy Conversion and Management, 151, 190-198, 2017.
  • [47] Zhu X, Zhao L, Fu F, Yang Z, Li F, Yuan W, Zhou M, Fang W, Zhen G, Lu X, Zhang X. "Pyrolysis of pre-dried dewatered sewage sludge under different heating rates: characteristics and kinetics study". Fuel, 255, 1-7, 2019.
  • [48] LibreText Chemistry. “Chemical Shifts in ¹H NMR Spectroscopy”. https://chem.libretexts.org/Bookshelves/Organic_Chemi stry/Organic_Chemistry_(LibreTexts)/13%3A_Structure_ Determination_- Nuclear_Magnetic_Resonance_Spectroscopy/13.03%3A_ Chemical_Shifts_in_H_NMR__Spectroscopy (06.02. 2021).
  • [49] Shen L, Zhang DK. "An experimental study of oil recovery from sewage sludge by low temperature pyrolysis in a fluidised-bed". Fuel, 82, 465-472, 2003.
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm İnşaat Müh. / Çevre Müh. / Jeoloji Müh.
Yazarlar

Alp Özdemir Bu kişi benim

Aysun Özkan Bu kişi benim

Zerrin Günkaya Bu kişi benim

Müfide Banar Bu kişi benim

Yayımlanma Tarihi 30 Kasım 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 28 Sayı: 6

Kaynak Göster

APA Özdemir, A., Özkan, A., Günkaya, Z., Banar, M. (2022). Kentsel katı atıkların ve kentsel atıksu arıtma çamurlarının birlikte pirolizi ve sıvı ürün karakterizasyonu. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 28(6), 920-928.
AMA Özdemir A, Özkan A, Günkaya Z, Banar M. Kentsel katı atıkların ve kentsel atıksu arıtma çamurlarının birlikte pirolizi ve sıvı ürün karakterizasyonu. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Kasım 2022;28(6):920-928.
Chicago Özdemir, Alp, Aysun Özkan, Zerrin Günkaya, ve Müfide Banar. “Kentsel Katı atıkların Ve Kentsel atıksu arıtma çamurlarının Birlikte Pirolizi Ve sıvı ürün Karakterizasyonu”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 28, sy. 6 (Kasım 2022): 920-28.
EndNote Özdemir A, Özkan A, Günkaya Z, Banar M (01 Kasım 2022) Kentsel katı atıkların ve kentsel atıksu arıtma çamurlarının birlikte pirolizi ve sıvı ürün karakterizasyonu. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 28 6 920–928.
IEEE A. Özdemir, A. Özkan, Z. Günkaya, ve M. Banar, “Kentsel katı atıkların ve kentsel atıksu arıtma çamurlarının birlikte pirolizi ve sıvı ürün karakterizasyonu”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 28, sy. 6, ss. 920–928, 2022.
ISNAD Özdemir, Alp vd. “Kentsel Katı atıkların Ve Kentsel atıksu arıtma çamurlarının Birlikte Pirolizi Ve sıvı ürün Karakterizasyonu”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 28/6 (Kasım 2022), 920-928.
JAMA Özdemir A, Özkan A, Günkaya Z, Banar M. Kentsel katı atıkların ve kentsel atıksu arıtma çamurlarının birlikte pirolizi ve sıvı ürün karakterizasyonu. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2022;28:920–928.
MLA Özdemir, Alp vd. “Kentsel Katı atıkların Ve Kentsel atıksu arıtma çamurlarının Birlikte Pirolizi Ve sıvı ürün Karakterizasyonu”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 28, sy. 6, 2022, ss. 920-8.
Vancouver Özdemir A, Özkan A, Günkaya Z, Banar M. Kentsel katı atıkların ve kentsel atıksu arıtma çamurlarının birlikte pirolizi ve sıvı ürün karakterizasyonu. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2022;28(6):920-8.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.