Araştırma Makalesi
BibTex RIS Kaynak Göster

İkincil arıtılmış kentsel atıksulardaki azot ve fosforun toprak-akifer arıtma sistemi kullanılarak giderilmesinde toprak tiplerinin etkisi

Yıl 2022, Cilt: 28 Sayı: 6, 929 - 936, 30.11.2022

Öz

Bu çalışmada farklı iki tip toprak kullanılarak hazırlanmış laboratuvar ölçekli bir toprak-akifer arıtma sistemi ile ikincil arıtılmış atıksulardaki azot ve fosforun toprak derinliği boyunca giderim verimi ve toprak tiplerinin arıtma verimine etkisi araştırılmıştır. Killi tınlı toprak (KTT) ve tınlı toprak (TT) ile doldurulmuş kolonlarda besleme atıksuyu olarak Denizli İli (Türkiye) kentsel atıksu arıtma tesisi çıkışından alınmış ikincil arıtılmış kentsel atıksu kullanılmıştır. Deneysel çalışmalar sırasında kolonlara takılmış farklı derinliklerdeki vanalardan alınan süzüntü numunelerinde toplam-N, toplam-P, çözünmüş oksijen, pH ve sıcaklık parametreleri ölçülmüştür. 75 cm derinliğindeki son vanalardan alınan süzüntü numunelerinde KTT’de toplam-N %50.85, toplam-P %97.07 oranında giderilirken TT’de bu değerler sırasıyla %36.72 ve %64.43 olarak hesaplanmıştır. Ayrıca, her iki toprak tipinde de toplam-N ve toplam-P giderimi için ilk 10 cm oldukça etkili olmuştur. Çalışma sonucunda TT’nin hem toplam-N hem de toplam-P gideriminde KTT’ye göre daha az etkili olduğu, her iki toprakta da derinlik arttıkça giderim veriminin de arttığı ve deneysel çalışmalar süresince giderim verimlerinde zamana bağlı herhangi bir azalmanın olmadığı görülmüştür.

Kaynakça

  • [1] Aydın F, Ardalı Y. “Seawater desalination technologies". Journal of Engineering and Natural Sciences, 30, 156-178, 2012.
  • [2] Nadav I, Arye G, Tarchitzky J, Chen Y. “Enhanced infiltration regime for treated-wastewater purification in soil aquifer treatment (SAT)”. Journal of Hydrology, 420-421, 275-283, 2012.
  • [3] Viswanathan MN, Al Senafy MN, Rashid T, Al-Awadi E, AlFahad K. “Improvement of tertiary wastewater quality by soil aquifer treatment”. Water Science and Technology, 40(7), 159-163, 1999.
  • [4] Westerhoff P, Pinney M. “Dissolved organic carbon transformations during laboratory-scale groundwater recharge using lagoon-treated wastewater”. Waste Management, 20, 75-83, 2000.
  • [5] Yun-zheng PI, Jian-long W. “A field study of advanced municipal wastewater treatment technology for artificial groundwater recharge”. Journal of Environmental Sciences, 18(6), 1056-1060, 2006.
  • [6] Drewes JE, Reinhard M, Fox P. “Comparing microfiltrationreverse osmosis and soil-aquifer treatment for indirect potable reuse of water”. Water Research, 37(15), 3612-3621, 2003.
  • [7] Cha W, Choi H, Kim J, Kim IS. “Evaluation of wastewater effluents for soil aquifer treatment in South Korea”. Water Science and Technology, 50(2), 315-322, 2004.
  • [8] Ernst M, Sachse A, Steinberg CEW, Jekel M. “Characterization of the DOC in nanofiltration permeates of a tertiary effluent”. Water Research, 34(11), 2879-2886, 2000.
  • [9] Xue S, Zhao QL, Wei LL, Wang LN. “Reduction of dissolved organic matter and trihalomethane formation potential during laboratory-scale soil-aquifer treatment”. Water and Environmental Journal, 22, 148-154, 2008.
  • [10] Akber A, Mukhopadhyay A, Al-Senafy M, Al-Haddad A, AlAwadi E, Al-Qallaf H. “Feasibility of long-term irrigation as a treatment method for municipal wastewater using natural soil in Kuwait”. Agricultural Water Management, 95, 233-242, 2008.
  • [11] Yu T, Bouwer EJ, Coelhan M. “Occurrence and biodegradability studies of selected pharmaceuticals and personal care products in sewage effluent”. Agricultural Water Management, 86, 72-80, 2006.
  • [12] Thawale PR, Juwarkar AA, Singh SK. “Resource conservation through land treatment of municipal wastewater”. Current Science, 90(5,10), 704-711, 2006.
  • [13] Zhang Z, Lei Z, Zhang Z, Sugiura N, Xu X, Yin D. “Organics removal of combined wastewater through shallow soil infiltration treatment: A field and laboratory study”. Journal of Hazardous Materials, 149, 657-665, 2007.
  • [14] American Water Works Association (AWWA). Water Quality and Treatment. New York, USA, McGraw-Hill, 1990.
  • [15] Hussain S, Aziz HA, Isa MH, Adlan MN, Asaari FAH. “Physico-chemical method for ammonia removal from synthetic wastewater using limestone and GAC in batch and column studies”. Bioresource Technology, 98, 874-880, 2006.
  • [16] Peavy HS, Rowe DR, Tchobanoglous G. Environmental Engineering. international ed, New York, USA, McGrawHill Co. 1985.
  • [17] Im H, Yeo I, Maeng SK, Park CH, Choi H. “Simultaneous attenuation of pharmaceuticals, organic matter, and nutrients in wastewater effluent through managed aquifer recharge: Batch and column studies”. Chemosphere, 143, 135-141, 2016.
  • [18] U.S. EPA. “Biological Nutrient Removal Processes and Costs”. United States Environmental Protection Agency Office of Water, Washington DC, USA, Technical Report, EPA-823-R-07-002, 2007.
  • [19] U.S. EPA. “Municipal Nutrient Removal Technologies Reference Document”. United States Environmental Protection Agency Office of Wastewater, USA, Technical Report, EPA 832-R-08-00, 2008.
  • [20] He K, Echigo S, Itoh S. “Effect of operating conditions in soil aquifer treatment on the removals of pharmaceuticals and personal care products”. Science of the Total Environment, 565, 672-681, 2016.
  • [21] Suárez S, Carballa M, Omil F, Lema JM. “How are pharmaceutical and personal care products (PPCPs) removed from urban wastewaters?”. Reviews in Environmental Science and Bio/Technology, 7, 125-138, 2008.
  • [22] Martinsa T, Leitãoa TE, Carvalho MR. “Assessment of wastewater contaminants retention for a Soil-Aquifer Treatment system using soil-column experiments”. Procedia Earth and Planetary Science, 17, 332-335, 2017.
  • [23] Ak M, Gunduz O. “Arıtılmış atıksuların yeniden kullanımında toprak akifer arıtma sistemlerinin rolü”. International Symposium of Water and Wastewater Management, Malatya, Turkey, 26-28 October, 2016.
  • [24] Abel CDT, Sharma SK, Mersha SA, Kennedy MD. “Influence of intermittent infiltration of primary effluent on removal of suspended solids, bulk organic matter, nitrogen and pathogens indicators in a simulated managed aquifer recharge system”. Ecological Engineering, 64, 100-107, 2014.
  • [25] Modrzynski jj, Aamanda j, Wittorf L, Badawi N, Hubalek V, Canelles A, Hallinb S, Albers CN. “Combined removal of organic micropollutants and ammonium in reactive barriers developed for managed aquifer recharge”. Water Research, 2021. https://doi.org/10.1016/j.watres.2020.116669
  • [26] Betancourt WQ, Schijvenb J, Regneryc J, Wingc A, Morrisona CM, Drewesc JE, Gerba CP. “Variable non-linear removal of viruses during transport through a saturated soil column”. Journal of Contaminant Hydrology, 2019. https://doi.org/10.1016/j.jconhyd.2019.04.002
  • [27] Mienis O, Arye G. “Long-term nitrogen behavior under treated wastewater infiltration basins in a soil-aquifer treatment (SAT) system”. Water Research, 134, 192-199, 2018.
  • [28] Ak M, Gunduz O. “Comparison of organic matter removal from synthetic and real wastewater in a laboratory-scale soil aquifer treatment system”. Water Air and Soil Pollution, 224, 1467-1483, 2013.
  • [29] Quanrud DM, Arnold RG, Wilson LG, Conklin MH. “Effect of soil type on water quality improvement during soil aquifer treatment”. Water Science and Technology, 33(10-11), 419-431, 1996.
  • [30] Candela L, Fabregat S, Josa A, Suriol J, Vigues N, Mas J. “Assessment of soil and groundwater impacts by treated urban wastewater reuse. A case study: Application in a golf course (Girona, Spain)”. Science of the Total Environment, 374, 26-35, 2007.
  • [31] Friedman L, Mamane H, Avisar D, Chandran K. “The role of influent organic carbon-to-nitrogen (COD/N) ratio in removal rates and shaping microbial ecology in soil aquifer treatment (SAT)”. Water Research, 146, 197-205, 2018.
  • [32] Nijhawan A, Labhasetwar P, Jain P, Rahate M. “Public consultation on artificial aquifer recharge using treated municipal wastewater”. Resources, Conservation and Recycling, 70, 20-24, 2013.
  • [33] Ak M, Top İ. “Use of treated municipal wastewater for agricultural irrigation”. Pamukkale University Journal of Engineering Sciences, 24(6), 1161-1168, 2018.
  • [34] Fox P, Narayanaswamy K, Genz A, Drewes JE. “Water quality transformations during soil aquifer treatment at the Mesa Northwest Water Reclamation Plant, USA”. Water Science and Technology, 43(10), 343-350, 2001.
  • [35] Idelovitch E, Icekson-Ta, N, Avraham O, Michail M. “The long-term performance of soil aquifer treatment (SAT) for effluent reuse”. Water Science and Technology: Water Supply, 3(4), 239-246, 2003.
  • [36] Essandoh HMK, Tizaoui C, Mohamed MHA. “Removal of dissolved organic carbon and nitrogen during simulated soil aquifer treatment”. Water Research, 47, 3559-3572, 2013.
  • [37] Bouwer H. “Integrated water management: emerging issues and challenges”. Agricultural Water Management, 45(3), 217-228, 2000.
  • [38] Funderburg SW, Moore BE, Sorber CA, Sagik BP. “Method of soil column preparation for the evaluation of viral transport”, Applied and Environmental Microbiology, 38(1), 102-107, 1979.
  • [39] Lian J, Luo Z, Jin M. “Transport and fate of bacteria in sat system recharged with recycling water”. International Biodeterioration & Biodegradation, 76, 98-101, 2013.
  • [40] Nema P, Ojha CSP, Kumar A, Khanna P. “Techno-economic evaluation of soil-aquifer treatment using primary effluent at ahmedabad, India”, Water Resource, 35(9), 2179-2190, 2001.
  • [41] Amy G, Drewes J. “Soil aquifer treatment (SAT) as a natural and sustainable wastewater reclamation/reuse technology: Fate of wastewater effluent organic matter (EfOM) and trace organic compounds”. Environmental Monitoring and Assessment, 129(1-3), 19-26, 2007.
  • [42] Shuang X, QingLiang Z, LiangLiang W, LiNa W, ZhiGang L. “Fate of secondary effluent dissolved organic matter during soil-aquifer treatment”. Chinese Science Bulletin, 52(18), 2496-2505, 2007.
  • [43] Essandoh HMK, Tizaoui C, Mohamed MHA, Amyc G, Brdjanovic D. “Soil aquifer treatment of artificial wastewater under saturated conditions”. Water Research, 45(14), 4211-4226, 2011.
  • [44] Pavelic P, Dillon PJ, Mucha M, Nakai T, Barry KE, Bestland E. “Laboratory assessment of factors affecting soil clogging of soil aquifer treatment systems”. Water Research, 45(10), 3153-3163, 2011.
  • [45] Sharma SK, Harun CM, Amy G. “Framework for assessment of performance of soil aquifer treatment systems”. Water Science and Technology, 57(6), 941-946, 2008.
  • [46] Ak M, Gunduz O. “Fate of nutrients in secondary treated municipal wastewater during percolation through the soil media”. Clean Soil Air Water, 42(8), 1036-1043, 2014.
  • [47] Kopchynski T, Fox P, Alsmadi B, Berner M. “The effects of soil type and effluent pre-treatment on soil aquifer treatment”. Water Science and Technology, 34(11), 235-242, 1996.
  • [48] Laws BV, Dickenson ERV, Johnson TA, Snyder SA, Drewes JE. “attenuation of contaminants of emerging concern during surface-spreading aquifer recharge”. Science of the Total Environment, 409(6), 1087-1094, 2011.
  • [49] Top İ. Toprak Akifer Arıtma Sistemlerinde Toprak Tiplerinin Arıtma Verimine Etkisi. Yüksek Lisans Tezi, Pamukkale Üniversitesi, Denizli, Türkiye, 2020.
  • [50] Denizli Büyükşehir Belediyesi Su ve Kanalizasyon İdaresi Genel Müdürlüğü. “Denizli Merkez Atıksu Arıtma Tesisi projelendirme kriterleri”. https://www.deski.gov.tr/denizli-merkez-atiksu-aritmatesisi (08.07.2019).
  • [51] Gungor K, Unlu K. “Nitrite and nitrate removal efficiencies of soil aquifer treatment columns”. Turkish Journal of Engineering and Environmental Sciences, 29, 159-170, 2005.
  • [52] Rauch T, Drewes JE. “Quantifying biological organic carbon removal in groundwater recharge systems”. Journal of Environmental Engineering, 131(6), 909-923, 2005.
  • [53] Rauch T, Drewes JE. “Using soil biomass as an indicator for the biological removal of effluent-derived organic carbon during soil infiltration”. Water Research, 40, 961-968, 2006.
  • [54] Tchobanoglous G, Burton FL, Stensel HD. Wastewater Engineering: Treatment and Reuse. 4th ed. New York, USA, McGraw Hill, 2003.
  • [55] Environmental Protection Agency (EPA). “Wastewater technology fact sheet: rapid ınfiltration land treatment”, United States Environmental Protection Agency, Office of Water, Washington DC, USA, 2003.
  • [56] Reemtsma T, Gnir R, Jekel M. “Infiltration of combined sewer overflow and tertiary municipal wastewater: an ıntegrated laboratory and field study on nutrients and dissolved organics”, Water Research, 34(4), 1179-1186, 2000.
  • [57] Cha W, Kim J, Choi H. “Evaluation of steel slag for organic and inorganic removals in soil aquifer treatment”. Water Research, 40, 1034-1042, 2006.

The effect of soil types on nitrogen and phosphorus removal from secondary treated municipal wastewater by using soil-aquifer treatment system

Yıl 2022, Cilt: 28 Sayı: 6, 929 - 936, 30.11.2022

Öz

In this study, the removal efficiency of nitrogen and phosphorus in secondary treated wastewaters with a laboratory scale soil-aquifer treatment system prepared using two different types of soils and the effect of soil types on treatment efficiency were investigated. In the columns filled with clayey loam soil (CLS) and loamy soil (LS), secondary treated municipal wastewater taken from the effluent of Denizli province (Turkey) municipal wastewater treatment plant was used as feed wastewater. During the experimental studies, the total-N, total-P, dissolved oxygen, pH and temperature parameters were measured in the permeate samples taken from the valves at different depths attached to the columns. In the permeate samples taken from the last valves at a depth of 75 cm, total-N was 50.85% and total-P 97.07% in CLS, while these values were calculated as 36.72% and 64.43% in LS, respectively. In addition, the first 10 cm was highly effective for total-N and total-P removal in both soil types. Consequently, It was observed that TT was less effective than KTT in both total-N and total-P removal, the removal efficiency increased as the depth increased in both soils, and there was no time-dependent decrease in the removal efficiency during the experimental studies.

Kaynakça

  • [1] Aydın F, Ardalı Y. “Seawater desalination technologies". Journal of Engineering and Natural Sciences, 30, 156-178, 2012.
  • [2] Nadav I, Arye G, Tarchitzky J, Chen Y. “Enhanced infiltration regime for treated-wastewater purification in soil aquifer treatment (SAT)”. Journal of Hydrology, 420-421, 275-283, 2012.
  • [3] Viswanathan MN, Al Senafy MN, Rashid T, Al-Awadi E, AlFahad K. “Improvement of tertiary wastewater quality by soil aquifer treatment”. Water Science and Technology, 40(7), 159-163, 1999.
  • [4] Westerhoff P, Pinney M. “Dissolved organic carbon transformations during laboratory-scale groundwater recharge using lagoon-treated wastewater”. Waste Management, 20, 75-83, 2000.
  • [5] Yun-zheng PI, Jian-long W. “A field study of advanced municipal wastewater treatment technology for artificial groundwater recharge”. Journal of Environmental Sciences, 18(6), 1056-1060, 2006.
  • [6] Drewes JE, Reinhard M, Fox P. “Comparing microfiltrationreverse osmosis and soil-aquifer treatment for indirect potable reuse of water”. Water Research, 37(15), 3612-3621, 2003.
  • [7] Cha W, Choi H, Kim J, Kim IS. “Evaluation of wastewater effluents for soil aquifer treatment in South Korea”. Water Science and Technology, 50(2), 315-322, 2004.
  • [8] Ernst M, Sachse A, Steinberg CEW, Jekel M. “Characterization of the DOC in nanofiltration permeates of a tertiary effluent”. Water Research, 34(11), 2879-2886, 2000.
  • [9] Xue S, Zhao QL, Wei LL, Wang LN. “Reduction of dissolved organic matter and trihalomethane formation potential during laboratory-scale soil-aquifer treatment”. Water and Environmental Journal, 22, 148-154, 2008.
  • [10] Akber A, Mukhopadhyay A, Al-Senafy M, Al-Haddad A, AlAwadi E, Al-Qallaf H. “Feasibility of long-term irrigation as a treatment method for municipal wastewater using natural soil in Kuwait”. Agricultural Water Management, 95, 233-242, 2008.
  • [11] Yu T, Bouwer EJ, Coelhan M. “Occurrence and biodegradability studies of selected pharmaceuticals and personal care products in sewage effluent”. Agricultural Water Management, 86, 72-80, 2006.
  • [12] Thawale PR, Juwarkar AA, Singh SK. “Resource conservation through land treatment of municipal wastewater”. Current Science, 90(5,10), 704-711, 2006.
  • [13] Zhang Z, Lei Z, Zhang Z, Sugiura N, Xu X, Yin D. “Organics removal of combined wastewater through shallow soil infiltration treatment: A field and laboratory study”. Journal of Hazardous Materials, 149, 657-665, 2007.
  • [14] American Water Works Association (AWWA). Water Quality and Treatment. New York, USA, McGraw-Hill, 1990.
  • [15] Hussain S, Aziz HA, Isa MH, Adlan MN, Asaari FAH. “Physico-chemical method for ammonia removal from synthetic wastewater using limestone and GAC in batch and column studies”. Bioresource Technology, 98, 874-880, 2006.
  • [16] Peavy HS, Rowe DR, Tchobanoglous G. Environmental Engineering. international ed, New York, USA, McGrawHill Co. 1985.
  • [17] Im H, Yeo I, Maeng SK, Park CH, Choi H. “Simultaneous attenuation of pharmaceuticals, organic matter, and nutrients in wastewater effluent through managed aquifer recharge: Batch and column studies”. Chemosphere, 143, 135-141, 2016.
  • [18] U.S. EPA. “Biological Nutrient Removal Processes and Costs”. United States Environmental Protection Agency Office of Water, Washington DC, USA, Technical Report, EPA-823-R-07-002, 2007.
  • [19] U.S. EPA. “Municipal Nutrient Removal Technologies Reference Document”. United States Environmental Protection Agency Office of Wastewater, USA, Technical Report, EPA 832-R-08-00, 2008.
  • [20] He K, Echigo S, Itoh S. “Effect of operating conditions in soil aquifer treatment on the removals of pharmaceuticals and personal care products”. Science of the Total Environment, 565, 672-681, 2016.
  • [21] Suárez S, Carballa M, Omil F, Lema JM. “How are pharmaceutical and personal care products (PPCPs) removed from urban wastewaters?”. Reviews in Environmental Science and Bio/Technology, 7, 125-138, 2008.
  • [22] Martinsa T, Leitãoa TE, Carvalho MR. “Assessment of wastewater contaminants retention for a Soil-Aquifer Treatment system using soil-column experiments”. Procedia Earth and Planetary Science, 17, 332-335, 2017.
  • [23] Ak M, Gunduz O. “Arıtılmış atıksuların yeniden kullanımında toprak akifer arıtma sistemlerinin rolü”. International Symposium of Water and Wastewater Management, Malatya, Turkey, 26-28 October, 2016.
  • [24] Abel CDT, Sharma SK, Mersha SA, Kennedy MD. “Influence of intermittent infiltration of primary effluent on removal of suspended solids, bulk organic matter, nitrogen and pathogens indicators in a simulated managed aquifer recharge system”. Ecological Engineering, 64, 100-107, 2014.
  • [25] Modrzynski jj, Aamanda j, Wittorf L, Badawi N, Hubalek V, Canelles A, Hallinb S, Albers CN. “Combined removal of organic micropollutants and ammonium in reactive barriers developed for managed aquifer recharge”. Water Research, 2021. https://doi.org/10.1016/j.watres.2020.116669
  • [26] Betancourt WQ, Schijvenb J, Regneryc J, Wingc A, Morrisona CM, Drewesc JE, Gerba CP. “Variable non-linear removal of viruses during transport through a saturated soil column”. Journal of Contaminant Hydrology, 2019. https://doi.org/10.1016/j.jconhyd.2019.04.002
  • [27] Mienis O, Arye G. “Long-term nitrogen behavior under treated wastewater infiltration basins in a soil-aquifer treatment (SAT) system”. Water Research, 134, 192-199, 2018.
  • [28] Ak M, Gunduz O. “Comparison of organic matter removal from synthetic and real wastewater in a laboratory-scale soil aquifer treatment system”. Water Air and Soil Pollution, 224, 1467-1483, 2013.
  • [29] Quanrud DM, Arnold RG, Wilson LG, Conklin MH. “Effect of soil type on water quality improvement during soil aquifer treatment”. Water Science and Technology, 33(10-11), 419-431, 1996.
  • [30] Candela L, Fabregat S, Josa A, Suriol J, Vigues N, Mas J. “Assessment of soil and groundwater impacts by treated urban wastewater reuse. A case study: Application in a golf course (Girona, Spain)”. Science of the Total Environment, 374, 26-35, 2007.
  • [31] Friedman L, Mamane H, Avisar D, Chandran K. “The role of influent organic carbon-to-nitrogen (COD/N) ratio in removal rates and shaping microbial ecology in soil aquifer treatment (SAT)”. Water Research, 146, 197-205, 2018.
  • [32] Nijhawan A, Labhasetwar P, Jain P, Rahate M. “Public consultation on artificial aquifer recharge using treated municipal wastewater”. Resources, Conservation and Recycling, 70, 20-24, 2013.
  • [33] Ak M, Top İ. “Use of treated municipal wastewater for agricultural irrigation”. Pamukkale University Journal of Engineering Sciences, 24(6), 1161-1168, 2018.
  • [34] Fox P, Narayanaswamy K, Genz A, Drewes JE. “Water quality transformations during soil aquifer treatment at the Mesa Northwest Water Reclamation Plant, USA”. Water Science and Technology, 43(10), 343-350, 2001.
  • [35] Idelovitch E, Icekson-Ta, N, Avraham O, Michail M. “The long-term performance of soil aquifer treatment (SAT) for effluent reuse”. Water Science and Technology: Water Supply, 3(4), 239-246, 2003.
  • [36] Essandoh HMK, Tizaoui C, Mohamed MHA. “Removal of dissolved organic carbon and nitrogen during simulated soil aquifer treatment”. Water Research, 47, 3559-3572, 2013.
  • [37] Bouwer H. “Integrated water management: emerging issues and challenges”. Agricultural Water Management, 45(3), 217-228, 2000.
  • [38] Funderburg SW, Moore BE, Sorber CA, Sagik BP. “Method of soil column preparation for the evaluation of viral transport”, Applied and Environmental Microbiology, 38(1), 102-107, 1979.
  • [39] Lian J, Luo Z, Jin M. “Transport and fate of bacteria in sat system recharged with recycling water”. International Biodeterioration & Biodegradation, 76, 98-101, 2013.
  • [40] Nema P, Ojha CSP, Kumar A, Khanna P. “Techno-economic evaluation of soil-aquifer treatment using primary effluent at ahmedabad, India”, Water Resource, 35(9), 2179-2190, 2001.
  • [41] Amy G, Drewes J. “Soil aquifer treatment (SAT) as a natural and sustainable wastewater reclamation/reuse technology: Fate of wastewater effluent organic matter (EfOM) and trace organic compounds”. Environmental Monitoring and Assessment, 129(1-3), 19-26, 2007.
  • [42] Shuang X, QingLiang Z, LiangLiang W, LiNa W, ZhiGang L. “Fate of secondary effluent dissolved organic matter during soil-aquifer treatment”. Chinese Science Bulletin, 52(18), 2496-2505, 2007.
  • [43] Essandoh HMK, Tizaoui C, Mohamed MHA, Amyc G, Brdjanovic D. “Soil aquifer treatment of artificial wastewater under saturated conditions”. Water Research, 45(14), 4211-4226, 2011.
  • [44] Pavelic P, Dillon PJ, Mucha M, Nakai T, Barry KE, Bestland E. “Laboratory assessment of factors affecting soil clogging of soil aquifer treatment systems”. Water Research, 45(10), 3153-3163, 2011.
  • [45] Sharma SK, Harun CM, Amy G. “Framework for assessment of performance of soil aquifer treatment systems”. Water Science and Technology, 57(6), 941-946, 2008.
  • [46] Ak M, Gunduz O. “Fate of nutrients in secondary treated municipal wastewater during percolation through the soil media”. Clean Soil Air Water, 42(8), 1036-1043, 2014.
  • [47] Kopchynski T, Fox P, Alsmadi B, Berner M. “The effects of soil type and effluent pre-treatment on soil aquifer treatment”. Water Science and Technology, 34(11), 235-242, 1996.
  • [48] Laws BV, Dickenson ERV, Johnson TA, Snyder SA, Drewes JE. “attenuation of contaminants of emerging concern during surface-spreading aquifer recharge”. Science of the Total Environment, 409(6), 1087-1094, 2011.
  • [49] Top İ. Toprak Akifer Arıtma Sistemlerinde Toprak Tiplerinin Arıtma Verimine Etkisi. Yüksek Lisans Tezi, Pamukkale Üniversitesi, Denizli, Türkiye, 2020.
  • [50] Denizli Büyükşehir Belediyesi Su ve Kanalizasyon İdaresi Genel Müdürlüğü. “Denizli Merkez Atıksu Arıtma Tesisi projelendirme kriterleri”. https://www.deski.gov.tr/denizli-merkez-atiksu-aritmatesisi (08.07.2019).
  • [51] Gungor K, Unlu K. “Nitrite and nitrate removal efficiencies of soil aquifer treatment columns”. Turkish Journal of Engineering and Environmental Sciences, 29, 159-170, 2005.
  • [52] Rauch T, Drewes JE. “Quantifying biological organic carbon removal in groundwater recharge systems”. Journal of Environmental Engineering, 131(6), 909-923, 2005.
  • [53] Rauch T, Drewes JE. “Using soil biomass as an indicator for the biological removal of effluent-derived organic carbon during soil infiltration”. Water Research, 40, 961-968, 2006.
  • [54] Tchobanoglous G, Burton FL, Stensel HD. Wastewater Engineering: Treatment and Reuse. 4th ed. New York, USA, McGraw Hill, 2003.
  • [55] Environmental Protection Agency (EPA). “Wastewater technology fact sheet: rapid ınfiltration land treatment”, United States Environmental Protection Agency, Office of Water, Washington DC, USA, 2003.
  • [56] Reemtsma T, Gnir R, Jekel M. “Infiltration of combined sewer overflow and tertiary municipal wastewater: an ıntegrated laboratory and field study on nutrients and dissolved organics”, Water Research, 34(4), 1179-1186, 2000.
  • [57] Cha W, Kim J, Choi H. “Evaluation of steel slag for organic and inorganic removals in soil aquifer treatment”. Water Research, 40, 1034-1042, 2006.
Toplam 57 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm İnşaat Müh. / Çevre Müh. / Jeoloji Müh.
Yazarlar

Mesut Ak Bu kişi benim

İlayda Top Bu kişi benim

Yayımlanma Tarihi 30 Kasım 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 28 Sayı: 6

Kaynak Göster

APA Ak, M., & Top, İ. (2022). İkincil arıtılmış kentsel atıksulardaki azot ve fosforun toprak-akifer arıtma sistemi kullanılarak giderilmesinde toprak tiplerinin etkisi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 28(6), 929-936.
AMA Ak M, Top İ. İkincil arıtılmış kentsel atıksulardaki azot ve fosforun toprak-akifer arıtma sistemi kullanılarak giderilmesinde toprak tiplerinin etkisi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Kasım 2022;28(6):929-936.
Chicago Ak, Mesut, ve İlayda Top. “İkincil arıtılmış Kentsel atıksulardaki Azot Ve Fosforun Toprak-Akifer arıtma Sistemi kullanılarak Giderilmesinde Toprak Tiplerinin Etkisi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 28, sy. 6 (Kasım 2022): 929-36.
EndNote Ak M, Top İ (01 Kasım 2022) İkincil arıtılmış kentsel atıksulardaki azot ve fosforun toprak-akifer arıtma sistemi kullanılarak giderilmesinde toprak tiplerinin etkisi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 28 6 929–936.
IEEE M. Ak ve İ. Top, “İkincil arıtılmış kentsel atıksulardaki azot ve fosforun toprak-akifer arıtma sistemi kullanılarak giderilmesinde toprak tiplerinin etkisi”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 28, sy. 6, ss. 929–936, 2022.
ISNAD Ak, Mesut - Top, İlayda. “İkincil arıtılmış Kentsel atıksulardaki Azot Ve Fosforun Toprak-Akifer arıtma Sistemi kullanılarak Giderilmesinde Toprak Tiplerinin Etkisi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 28/6 (Kasım 2022), 929-936.
JAMA Ak M, Top İ. İkincil arıtılmış kentsel atıksulardaki azot ve fosforun toprak-akifer arıtma sistemi kullanılarak giderilmesinde toprak tiplerinin etkisi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2022;28:929–936.
MLA Ak, Mesut ve İlayda Top. “İkincil arıtılmış Kentsel atıksulardaki Azot Ve Fosforun Toprak-Akifer arıtma Sistemi kullanılarak Giderilmesinde Toprak Tiplerinin Etkisi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 28, sy. 6, 2022, ss. 929-36.
Vancouver Ak M, Top İ. İkincil arıtılmış kentsel atıksulardaki azot ve fosforun toprak-akifer arıtma sistemi kullanılarak giderilmesinde toprak tiplerinin etkisi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2022;28(6):929-36.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.