Araştırma Makalesi
BibTex RIS Kaynak Göster

Fonksiyonel gruplu polistirenlerin fotolitografik özelliklerinin incelenmesi

Yıl 2022, Cilt: 28 Sayı: 7, 993 - 1000, 30.12.2022

Öz

Bu çalışmada farklı molekül kütleli PS’lerin fonksiyonel modifikatörlerle (maleik anhidrit (MA) ve asetik anhidrit (AA)), BF3O(C2H5)2 katalizörlüğünde optimum reaksiyon şartlarında kimyasal modifikasyonu yapılmış ve aromatik halkasına aktif fonksiyonel gruplar (MAPS: -CO-CH=CH-COOH ve AAPS: -CO-CH3) bağlanmıştır. Sentezlenen modifiye PS’lere bağlanan karboksil ve asetil grupların yapısına bağlı olarak fotolitografik özellikleri, çözünürlük tayini ve FTIR analizi ile incelenmiş ayrıca sensibilizatör-aktivatör borneol maddesinin fotolitografik özellikler üzerindeki etkisi araştırılmıştır. Sonuçta optimum reaksiyon şartları PS: modifikatör mol oranı 1:0.2; modifikatör: katalizör mol oranı 1:1 olarak bulunmuş ve düşük molekül ağırlıklı PS’lerin yapısına daha fazla fonksiyonel grup bağlandığı tespit edilmiştir. Modifiye PS’lerin toluende PS’ye göre daha az çözündüğü (sırasıyla %70.04 ve %85.48) tesbit edilmiştir. Işınlamadan sonra yapılan çözünürlük testlerinde en iyi değer %54.51 ile MAPS’den elde edilirken AAPS’nin çözünürlük değerlerinde dikkate değer bir değişim olmamıştır (%83.46). Borneol maddesinin ilavesinden sonra yapılan ışınlama işlemiyle MAPS’nin çözünürlük değeri %49.67’ye kadar düşerken, AAPS’nin çözünürlük değerlerinde önemli bir değişim olmamıştır (%84.50). Ayrıca MAPS’lerde ışınlama süresine bağlı olarak çözünürlük değerlerinde azalma gözlemlenirken bu durum AAPS’lerde görülmemiştir. UV ışınlama sonrasında MAPS’lerin çözünürlüğündeki azalma MAPS’lerin ışığa duyarlılık özelliği gösterdiğini ve ışınlama etkisiyle çapraz bağlanma yeteneğine sahip negatif fotorezist olduğunu göstermiştir. Borneol’ün de fotorezist özelliği desteklediği görülmüştür. AAPS’ler ise PS’ye göre daha düşük çözünürlük değerleri vermesine karşın UV-ışınlamadan sonra çözünürlük değerlerinde dikkate değer bir değişiklik görülmemiş ve AAPS’lerin fotorezist özellik göstermediği belirlenmiştir.

Kaynakça

  • [1] Hakim ML. “Synthesis of phenolic-based resist materials for photolithography”. Oriental Journal of Chemistry, 32(1), 165-170, 2016.
  • [2] Yang R, Soper SA, Wang W. “A new UV lithography photoresist based on composite of EPON resins 165 and 154 for fabrication of high aspect ratio microstructures’’. Sensors and Actuators A: Physical, 135(2), 625-636, 2007.
  • [3] Sharma M, Naik AA, Raghunathan P, Eswaran SV. “Evaluation of microlithographic performance of ‘deep UV’ resists: Synthesis, and 2D NMR studies on alternating ‘high ortho’novolak resins”. Journal of Chemical Sciences, 124(2), 395-401, 2012.
  • [4] Crabtree RH. The Organometallic Chemistry of the Transition Metals. 5th ed. NewYork, USA, John Wiley & Sons, 2009.
  • [5] IUPAC. Photosensitive Polymer: Compendium of Chemical Terminology. 2nd ed. Cambridge, UK, IUPAC, 2004.
  • [6] Söğütlü C, Sönmez A. “The effect of UV lights on color changes on some local wood processed with differential preservatives”. Journal of the Faculty of Engineering and Architecture of Gazi University. 21(1), 151-159, 2006.
  • [7] Tandoğan B, Eker Şanlı G. “Removal PCBs in soil using of H2O2 during UVA applications”. Journal of the Faculty of Engineering and Architecture of Gazi University, 36(2), 779-792, 2021.
  • [8] Zhang L, Li P, Gong Z, Li X. “Photocatalytic degradation of polycyclic aromatic hydrocarbons on soil surfaces using TiO2 under UV light”. Journal of Hazardous Materials, 158(2-3), 478-484, 2008.
  • [9] Köysüren Ö, Köysüren HN. “Preparation of polyvinyl alcohol composite nanofibers and solid-phase photocatalytic degradation of polyvinyl alcohol”. Journal of the Faculty of Engineering and Architecture of Gazi University, 33(4), 1411-1418, 2018.
  • [10] Barakat MA, Kumar R. Photocatalytic activity enhancement of titanium dioxide nanoparticles. 1st ed. Cham, Switzerland, Springer, 2016.
  • [11] Karaca G, Taşdemir Y. “Removal of polycyclic aromatic hydrocarbons (PAHs) from organized industry district treatment sludges with photochemıcal degradation: ambient air applications”. Journal of the Faculty of Engineering and Architecture of Gazi University, 30(4), 557-565, 2015.
  • [12] Subramanian K, Krishnasamy V, Nanjundan S, Reddy AR. “Photosensitive polymer: synthesis, characterization and properties of a polymer having pendant photo crosslinkable group”. European Polymer Journal, 36(11), 2343-2350, 2000.
  • [13] Nagata M, Inaki K. “Synthesis and characterization of photocrosslinkable poly (l-lactide) s with a pendent cinnamate group”. European Polymer Journal, 45(4), 1111-1117, 2009.
  • [14] Tsai CJ, Chen Y. “Luminescent poly (p-phenylenevinylene) with 4-methylcoumarin side groups: Synthesis, optical properties and photo-crosslinking behaviors”. Reactive and Functional Polymers, 66(11), 1327-1335, 2006.
  • [15] Zhou J, Zhang J, Ma Y, Tong J. “Surface photo-crosslinking of corn starch sheets”. Carbohydrate Polymers, 74, 405-410, 2008.
  • [16] Luo C, Xu C, Lv L, Li H, Huang X, Liu W. “Review of recent advances in inorganic photoresists”. RSC Advances, 10(14), 8385-8395, 2020.
  • [17] Gangnaik AS, Georgiev YM, Holmes JD. ‘’New generation electron beam resists: a review’’. Chemistry of Materials, 29(5), 1898-1917, 2017.
  • [18] Zanchetta E, Giustina GD, Grenci G, Pozzato A, Tormen M, Brusatin G. “Novel hybrid organic-inorganic spin‐on resist for electron‐or photon‐based nanolithography with outstanding resistance to dry etching”. Advanced Materials, 25 (43), 6261-6265, 2013.
  • [19] Diby AK, Voytekunas VY, Abadie MJM. “Kinetic study of negative dry-film photoresists”. Express Polymer Letters, 1(10), 673-680, 2007.
  • [20] Frederick RT, Saha S, Diulus JT, Luo F, Amador JM, Li M, ParkDH, Garfunkel EL, Keszler DA, Herman GS. “Thermal and radiation chemistry of butyltin oxo hydroxo: A model inorganic photoresist”. Microelectronic Engineering, 205, 26-31, 2019.
  • [21] Guieysse B, Viklund G, Toes AC, Mattiasson B. “Combined UV-biological degradation of PAHs’’. Chemosphere, 55(11), 1493-1499, 2004.
  • [22] Bakan F, Sezen M. “Polimer yüzeylerinin fonksiyonelleştirilmesi için odaklanmış iyon demeti ile nano yapılandırma uygulamaları”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 23(7), 893-898, 2016.
  • [23] Lin YJ, Teng LS, Lee A, Chen YL. “Effect of photosensitizer diethylamine on the photodegradation of polychlorinated biphenyls”. Chemosphere, 55(6), 879-884, 2004.
  • [24] Kim SH, Kim ST. “Technology Trends for Photoresist and Research on Photo Acid Generator for Chemical Amplified Photoresist”. Journal of the Chosun Natural Science, 2(4), 252-264, 2009.
  • [25] Jiguet S, Bertsch A, Judelewicz M, Hofmann H, Renaud P. “SU-8 nanocomposite photoresist with low stress properties for micro fabrication applications”. Microelectronic Engineering, 83(10), 1966-1970, 2006.
  • [26] Harkal U, Muehlberg A, Webster D. “UV curable glycidyl carbamate based resins”. Progress in Organic Coatings, 73, 19-25, 2012.
  • [27] Santos MS, Alves A, Madeira LM. ‘’Chemical and photochemical degradation of polybrominated diphenyl ethers in liquid systems-a review’’. Water Research, 88, 39-59, 2016.
  • [28] Chang FC, Chiu TC, Yen JH, Wang YS. “Dechlorination pathways of ortho-substituted PCBs by UV irradiation in n-hexane and their correlation to the charge distribution on carbon atom”. Chemosphere, 51(8), 775-784, 2003.
  • [29] Przybilla KJ, Roeschert H, Pawlowski G. “Hexafluoroacetone in resist chemistry: a versatile new concept for materials for deep-UV lithography”. In Advances in Resist Technology and Processing, 1672, 500-512, 1992.
  • [30] Mahy R, Bouammali B, Oulmidi A, Challioui A, Derouet D, Brosse J. “Photosensitive polymers with cinnamate units in the side position of chains: synthesis, monomer reactivity ratios and photoreactivity”. European Polymer Journal, 42, 2389-2397, 2006.
  • [31] Kim J, Kim W, Lee D. “Adhesion properties of UVcrosslinked polystyrene-block-polybutadiene blockpolystyrene copolymer and tackifier mixture”. Polymer, 43, 5005-5010, 2002.
  • [32] Roy D, Basu PK, Raghunathan P, Eswaran SV. “DNQnovolac photoresists revisited: 1H and 13C NMR evidence for a novel photoreaction mechanism”. Magnetic Resonance in Chemistry, 41(2), 84-90, 2003.
  • [33] Öteyaka MÖ, Aybar K, Öteyaka HC. “A comparative study of the effect of polyurethane nanofiber and powders filler on the mechanical properties of carbon fiber and glass fiber composites”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 28(1), 51-57, 2022.
  • [34] Mironov AE, Kim J, Huang Y, Steinforth AW, Sievers DJ, Eden JG. “Photolithography in the vacuum ultraviolet (172 nm) with sub-400 nm resolution: photoablative patterning of nanostructures and optical components in bulk polymers and thin films on semiconductors”. Nanoscale, 12(32), 16796-16804, 2020.
  • [35] Cerit A. “Modifiye Polistirenlerin Fiziko-Mekanik Özelliklerinin İncelenmesi”. Politeknik Dergisi, 19(1), 67-70, 2016.
  • [36] Ak M, Soğancı T, Gümüşay O, Çukurluoğlu S. “Synthesis of conducting polymer with green chemistry and its electrochromic properties”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 23(6), 753-758, 2017.
  • [37] Ahmetli G, Cerit A, Kocaman S. “Synthesis and characterization of UV-crosslinkable unsaturated ketone group containing polystyrene films”. Progress in Organic Coatings, 5(76), 884-892, 2013.
  • [38] Kurbanova RA, et al. "Side‐chain functionalization of polystyrene with maleic anhydride in the presence of lewis acids". Journal of Applied Polymer Science, 59(2), 235-241, 1996.
  • [39] Onder IL, Okudan A. “Functionalization of polystyrene with cyclic anhydrides and their spectroscopic adhesive and corrosive characterizations”. International Polymer Processing, 27(2), 270-276, 2012.
  • [40] Özkeçeci A. Yüksek Molekül Ağırlıklı Emülsiyon Polistirenin Açilasyon Reaksiyonu ve Fiziko−Mekanik Özelliklerinin İncelenmesi. Yüksek Lisans Tezi, Selçuk Üniversitesi, Konya, Türkiye, 2006.
  • [41] Deveci H. Karboksil Gruplu Stiren Kopolimerleri ve Modifiye Polistirenlerin Sentezi ve Özelliklerinin İncelenmesi. Doktora Tezi, Selçuk Üniversitesi, Konya, Türkiye, 2008.
  • [42] Erdik E. Organik Kimyada Spektroskopik Yöntemler. 7. Baskı, Ankara, Türkiye, Gazi Büro Kitabevi, 2020.
  • [43] Cerit, A. Vinilketon Gruplu Modifiye Polistirenlerin Sentezi ve Işınlamanın Fiziko-Mekanik Özelliklerine Etkisi. Doktora Tezi, Selçuk Üniversitesi, Konya, Türkiye, 2012.
  • [44] Ma S, Con C, Yavuz M, Cui B. “Polystyrene negative resist for high-resolution electron beam lithography”. Nanoscale Research Letters, 6(1), 1-6, 2011.
  • [45] Nargang TM, Brockmann L, Nikolov PM, Schild D, Helmer D, Keller N & Rapp BE. “Liquid polystyrene: a roomtemperature photocurable soft lithography compatible pour-and-cure-type polystyrene”. Lab on a Chip, 14(15), 2698-2708, 2014.
  • [46] Dhamodharan R, Nasrullah MJ. "Polystyrene based photoresist materials: Synthesis via polymer modification chemistry and lithographic evaluations". American Chemical Society Conference, Washington, USA, 28 March- 1 April 2004.

Evaluation of photolitographic properties of functional groups containing polystyrenes

Yıl 2022, Cilt: 28 Sayı: 7, 993 - 1000, 30.12.2022

Öz

In this study, different molecular weighted PSs were chemically modified by two functional modifiers (maleic anhydride (MA) and acetic anhydride (AA)) under optimum reaction conditions with BF3O(C2H5)2 catalyst and the bonding of active functional groups (MAPS: -CO-CH=CH-COOH and AAPS: -CO-CH3) to the aromatic ring of the polymer was carried out. Depending on the structure of the carboxyl and acetyl groups attached to the aromatic ring, the photolithographic properties were examined by solubility and FT-IR analysis, also the effect of borneol, which is used as a sensitizer-activator, on photolithographic properties was investigated. As a result, the optimum reaction conditions was found to be as PS:modifier mole ratio 1:0.2; modifier:catalyst molar ratio 1:1 and it was determined that more functional groups were attached to the structure of lower molecular weighted PS. It was determined that modified PSs dissolved less in toluene than virgin PS (70.04% and 85.48% respectively). In dissolution tests performed after irradiation, the best value was obtained from MAPS (54.51%), while there was no significant change in the dissolution values of AAPS (83.46%). However the solubility value of MAPS decreased to 49.67% with the irradiation process performed after the addition of borneol substance but there was no significant change in the solubility values of AAPS (84.50%). In addition, it was observed that the dissolution values decreased depending on the irradiation time in MAPS, but it was not observed in AAPS. The decrease in dissolution of MAPS after UV irradiation has proven that MAPSs are light sensitive and they are negative photoresists that crosslinked by light effect. It was observed that the borneol also supports the photoresist feature. Although AAPS gives lower dissolution values than virgin PS but no significant change was observed in dissolution values after UVirradiation and it was determined that AAPS did not present photoresist properties.

Kaynakça

  • [1] Hakim ML. “Synthesis of phenolic-based resist materials for photolithography”. Oriental Journal of Chemistry, 32(1), 165-170, 2016.
  • [2] Yang R, Soper SA, Wang W. “A new UV lithography photoresist based on composite of EPON resins 165 and 154 for fabrication of high aspect ratio microstructures’’. Sensors and Actuators A: Physical, 135(2), 625-636, 2007.
  • [3] Sharma M, Naik AA, Raghunathan P, Eswaran SV. “Evaluation of microlithographic performance of ‘deep UV’ resists: Synthesis, and 2D NMR studies on alternating ‘high ortho’novolak resins”. Journal of Chemical Sciences, 124(2), 395-401, 2012.
  • [4] Crabtree RH. The Organometallic Chemistry of the Transition Metals. 5th ed. NewYork, USA, John Wiley & Sons, 2009.
  • [5] IUPAC. Photosensitive Polymer: Compendium of Chemical Terminology. 2nd ed. Cambridge, UK, IUPAC, 2004.
  • [6] Söğütlü C, Sönmez A. “The effect of UV lights on color changes on some local wood processed with differential preservatives”. Journal of the Faculty of Engineering and Architecture of Gazi University. 21(1), 151-159, 2006.
  • [7] Tandoğan B, Eker Şanlı G. “Removal PCBs in soil using of H2O2 during UVA applications”. Journal of the Faculty of Engineering and Architecture of Gazi University, 36(2), 779-792, 2021.
  • [8] Zhang L, Li P, Gong Z, Li X. “Photocatalytic degradation of polycyclic aromatic hydrocarbons on soil surfaces using TiO2 under UV light”. Journal of Hazardous Materials, 158(2-3), 478-484, 2008.
  • [9] Köysüren Ö, Köysüren HN. “Preparation of polyvinyl alcohol composite nanofibers and solid-phase photocatalytic degradation of polyvinyl alcohol”. Journal of the Faculty of Engineering and Architecture of Gazi University, 33(4), 1411-1418, 2018.
  • [10] Barakat MA, Kumar R. Photocatalytic activity enhancement of titanium dioxide nanoparticles. 1st ed. Cham, Switzerland, Springer, 2016.
  • [11] Karaca G, Taşdemir Y. “Removal of polycyclic aromatic hydrocarbons (PAHs) from organized industry district treatment sludges with photochemıcal degradation: ambient air applications”. Journal of the Faculty of Engineering and Architecture of Gazi University, 30(4), 557-565, 2015.
  • [12] Subramanian K, Krishnasamy V, Nanjundan S, Reddy AR. “Photosensitive polymer: synthesis, characterization and properties of a polymer having pendant photo crosslinkable group”. European Polymer Journal, 36(11), 2343-2350, 2000.
  • [13] Nagata M, Inaki K. “Synthesis and characterization of photocrosslinkable poly (l-lactide) s with a pendent cinnamate group”. European Polymer Journal, 45(4), 1111-1117, 2009.
  • [14] Tsai CJ, Chen Y. “Luminescent poly (p-phenylenevinylene) with 4-methylcoumarin side groups: Synthesis, optical properties and photo-crosslinking behaviors”. Reactive and Functional Polymers, 66(11), 1327-1335, 2006.
  • [15] Zhou J, Zhang J, Ma Y, Tong J. “Surface photo-crosslinking of corn starch sheets”. Carbohydrate Polymers, 74, 405-410, 2008.
  • [16] Luo C, Xu C, Lv L, Li H, Huang X, Liu W. “Review of recent advances in inorganic photoresists”. RSC Advances, 10(14), 8385-8395, 2020.
  • [17] Gangnaik AS, Georgiev YM, Holmes JD. ‘’New generation electron beam resists: a review’’. Chemistry of Materials, 29(5), 1898-1917, 2017.
  • [18] Zanchetta E, Giustina GD, Grenci G, Pozzato A, Tormen M, Brusatin G. “Novel hybrid organic-inorganic spin‐on resist for electron‐or photon‐based nanolithography with outstanding resistance to dry etching”. Advanced Materials, 25 (43), 6261-6265, 2013.
  • [19] Diby AK, Voytekunas VY, Abadie MJM. “Kinetic study of negative dry-film photoresists”. Express Polymer Letters, 1(10), 673-680, 2007.
  • [20] Frederick RT, Saha S, Diulus JT, Luo F, Amador JM, Li M, ParkDH, Garfunkel EL, Keszler DA, Herman GS. “Thermal and radiation chemistry of butyltin oxo hydroxo: A model inorganic photoresist”. Microelectronic Engineering, 205, 26-31, 2019.
  • [21] Guieysse B, Viklund G, Toes AC, Mattiasson B. “Combined UV-biological degradation of PAHs’’. Chemosphere, 55(11), 1493-1499, 2004.
  • [22] Bakan F, Sezen M. “Polimer yüzeylerinin fonksiyonelleştirilmesi için odaklanmış iyon demeti ile nano yapılandırma uygulamaları”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 23(7), 893-898, 2016.
  • [23] Lin YJ, Teng LS, Lee A, Chen YL. “Effect of photosensitizer diethylamine on the photodegradation of polychlorinated biphenyls”. Chemosphere, 55(6), 879-884, 2004.
  • [24] Kim SH, Kim ST. “Technology Trends for Photoresist and Research on Photo Acid Generator for Chemical Amplified Photoresist”. Journal of the Chosun Natural Science, 2(4), 252-264, 2009.
  • [25] Jiguet S, Bertsch A, Judelewicz M, Hofmann H, Renaud P. “SU-8 nanocomposite photoresist with low stress properties for micro fabrication applications”. Microelectronic Engineering, 83(10), 1966-1970, 2006.
  • [26] Harkal U, Muehlberg A, Webster D. “UV curable glycidyl carbamate based resins”. Progress in Organic Coatings, 73, 19-25, 2012.
  • [27] Santos MS, Alves A, Madeira LM. ‘’Chemical and photochemical degradation of polybrominated diphenyl ethers in liquid systems-a review’’. Water Research, 88, 39-59, 2016.
  • [28] Chang FC, Chiu TC, Yen JH, Wang YS. “Dechlorination pathways of ortho-substituted PCBs by UV irradiation in n-hexane and their correlation to the charge distribution on carbon atom”. Chemosphere, 51(8), 775-784, 2003.
  • [29] Przybilla KJ, Roeschert H, Pawlowski G. “Hexafluoroacetone in resist chemistry: a versatile new concept for materials for deep-UV lithography”. In Advances in Resist Technology and Processing, 1672, 500-512, 1992.
  • [30] Mahy R, Bouammali B, Oulmidi A, Challioui A, Derouet D, Brosse J. “Photosensitive polymers with cinnamate units in the side position of chains: synthesis, monomer reactivity ratios and photoreactivity”. European Polymer Journal, 42, 2389-2397, 2006.
  • [31] Kim J, Kim W, Lee D. “Adhesion properties of UVcrosslinked polystyrene-block-polybutadiene blockpolystyrene copolymer and tackifier mixture”. Polymer, 43, 5005-5010, 2002.
  • [32] Roy D, Basu PK, Raghunathan P, Eswaran SV. “DNQnovolac photoresists revisited: 1H and 13C NMR evidence for a novel photoreaction mechanism”. Magnetic Resonance in Chemistry, 41(2), 84-90, 2003.
  • [33] Öteyaka MÖ, Aybar K, Öteyaka HC. “A comparative study of the effect of polyurethane nanofiber and powders filler on the mechanical properties of carbon fiber and glass fiber composites”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 28(1), 51-57, 2022.
  • [34] Mironov AE, Kim J, Huang Y, Steinforth AW, Sievers DJ, Eden JG. “Photolithography in the vacuum ultraviolet (172 nm) with sub-400 nm resolution: photoablative patterning of nanostructures and optical components in bulk polymers and thin films on semiconductors”. Nanoscale, 12(32), 16796-16804, 2020.
  • [35] Cerit A. “Modifiye Polistirenlerin Fiziko-Mekanik Özelliklerinin İncelenmesi”. Politeknik Dergisi, 19(1), 67-70, 2016.
  • [36] Ak M, Soğancı T, Gümüşay O, Çukurluoğlu S. “Synthesis of conducting polymer with green chemistry and its electrochromic properties”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 23(6), 753-758, 2017.
  • [37] Ahmetli G, Cerit A, Kocaman S. “Synthesis and characterization of UV-crosslinkable unsaturated ketone group containing polystyrene films”. Progress in Organic Coatings, 5(76), 884-892, 2013.
  • [38] Kurbanova RA, et al. "Side‐chain functionalization of polystyrene with maleic anhydride in the presence of lewis acids". Journal of Applied Polymer Science, 59(2), 235-241, 1996.
  • [39] Onder IL, Okudan A. “Functionalization of polystyrene with cyclic anhydrides and their spectroscopic adhesive and corrosive characterizations”. International Polymer Processing, 27(2), 270-276, 2012.
  • [40] Özkeçeci A. Yüksek Molekül Ağırlıklı Emülsiyon Polistirenin Açilasyon Reaksiyonu ve Fiziko−Mekanik Özelliklerinin İncelenmesi. Yüksek Lisans Tezi, Selçuk Üniversitesi, Konya, Türkiye, 2006.
  • [41] Deveci H. Karboksil Gruplu Stiren Kopolimerleri ve Modifiye Polistirenlerin Sentezi ve Özelliklerinin İncelenmesi. Doktora Tezi, Selçuk Üniversitesi, Konya, Türkiye, 2008.
  • [42] Erdik E. Organik Kimyada Spektroskopik Yöntemler. 7. Baskı, Ankara, Türkiye, Gazi Büro Kitabevi, 2020.
  • [43] Cerit, A. Vinilketon Gruplu Modifiye Polistirenlerin Sentezi ve Işınlamanın Fiziko-Mekanik Özelliklerine Etkisi. Doktora Tezi, Selçuk Üniversitesi, Konya, Türkiye, 2012.
  • [44] Ma S, Con C, Yavuz M, Cui B. “Polystyrene negative resist for high-resolution electron beam lithography”. Nanoscale Research Letters, 6(1), 1-6, 2011.
  • [45] Nargang TM, Brockmann L, Nikolov PM, Schild D, Helmer D, Keller N & Rapp BE. “Liquid polystyrene: a roomtemperature photocurable soft lithography compatible pour-and-cure-type polystyrene”. Lab on a Chip, 14(15), 2698-2708, 2014.
  • [46] Dhamodharan R, Nasrullah MJ. "Polystyrene based photoresist materials: Synthesis via polymer modification chemistry and lithographic evaluations". American Chemical Society Conference, Washington, USA, 28 March- 1 April 2004.
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Kimya Müh. / Tekstil Müh. / Gıda Müh.
Yazarlar

Alaaddin Cerit Bu kişi benim

Yayımlanma Tarihi 30 Aralık 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 28 Sayı: 7

Kaynak Göster

APA Cerit, A. (2022). Fonksiyonel gruplu polistirenlerin fotolitografik özelliklerinin incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 28(7), 993-1000.
AMA Cerit A. Fonksiyonel gruplu polistirenlerin fotolitografik özelliklerinin incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Aralık 2022;28(7):993-1000.
Chicago Cerit, Alaaddin. “Fonksiyonel Gruplu Polistirenlerin Fotolitografik özelliklerinin Incelenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 28, sy. 7 (Aralık 2022): 993-1000.
EndNote Cerit A (01 Aralık 2022) Fonksiyonel gruplu polistirenlerin fotolitografik özelliklerinin incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 28 7 993–1000.
IEEE A. Cerit, “Fonksiyonel gruplu polistirenlerin fotolitografik özelliklerinin incelenmesi”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 28, sy. 7, ss. 993–1000, 2022.
ISNAD Cerit, Alaaddin. “Fonksiyonel Gruplu Polistirenlerin Fotolitografik özelliklerinin Incelenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 28/7 (Aralık 2022), 993-1000.
JAMA Cerit A. Fonksiyonel gruplu polistirenlerin fotolitografik özelliklerinin incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2022;28:993–1000.
MLA Cerit, Alaaddin. “Fonksiyonel Gruplu Polistirenlerin Fotolitografik özelliklerinin Incelenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 28, sy. 7, 2022, ss. 993-1000.
Vancouver Cerit A. Fonksiyonel gruplu polistirenlerin fotolitografik özelliklerinin incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2022;28(7):993-1000.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.