Araştırma Makalesi
BibTex RIS Kaynak Göster

Zaman gecikmesi içeren üçüncü derece sistemler için kesir dereceli PD denetleyici tasarımı

Yıl 2023, Cilt: 29 Sayı: 3, 289 - 295, 27.06.2023

Öz

İntegral operatörünün eksikliğinden dolayı, oransal türev denetleyiciler kararlılık ve dayanıklılığı sağlama konularında zorlanabilmektedir. Bu zorluk, özellikle yüksek dereceli sistemlerde kendini daha çok hissettirmektedir. Bu yayında, zaman gecikmesi içeren üçüncü derece sistemlerin kararlılığının sağlanması için kesir dereceli oransal türev denetleyicilerin analitik tasarım yöntemi sunulmuştur. Bu yöntemde kararlılığın sağlanması için standart bir kontrol sisteminin sahip olduğu frekans özelliklerine ulaşılması hedeflenmiştir. Sistemin istenen kazanç kesim frekansı, faz kesim frekansı ve faz payı özelliklerini sağlaması hedeflenmiştir. Bu şekilde uygun değerler seçilerek sistemin kararlılığı ve dayanıklılığı elde edilebilecektir. Kesir dereceli bir denetleyicinin seçilme sebebi de bu özelikleri sağlayacak denetleyici parametrelerinin daha doğru şekilde ayarlanabilmesidir. Elde edilen kararlılığın beklenmeyen dış etkilere karşı dayanıklı olması için de sistem fazının düzleştirilmesi hedeflenmiştir. Literatürde faz düzleştirme işlemi, faz türevinin belirlenen bir frekans değerinde sıfırlanması ile gerçekleştirilmektedir. Bu da matematiksel karmaşıklığa yol açabilmektedir. Bu yayında ise faz düzleştirme işlemi yukarıda verilen frekans özelliklerinin doğru şekilde seçilmesi ile grafiksel olarak sağlanmaktadır. Böylece matematiksel karmaşıklıktan kaçınılarak, doğru ve güvenilir bir denetleyici tasarım yöntemi sunulmuştur. Önerilen yöntemin etkinliği literatürden seçilmiş üç farklı model üzerinde gösterilmiştir. Yöntemin sistem dayanıklılığına pozitif katkısı ise sisteme kazancının belli oranlarda değiştirilmesi ile ispatlanmıştır.

Kaynakça

  • [1] Ateş A, Yeroğlu C. “SMDO algoritması ile iki serbestlik dereceli FOPID kontrol çevrimi tasarımı”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 22(8), 671-676, 2016.
  • [2] Matušů R, Şenol B, Pekař L. “Robust stability of fractional order polynomials with complicated uncertainty structure”. PLOS ONE, 12(6), 1-13, 2017.
  • [3] Saxena S, Hote YV, “Design of robust fractional-order controller using the Bode ideal transfer function approach in IMC paradigm”. Nonlinear Dynamics, 107, 983-1001, 2022.
  • [4] Podlubny I. “Fractional-order systems and PIλDμ-controllers”. IEEE Transactions on Automatic Control, 44, 208-214, 1999.
  • [5] Tufenkci S, Senol B, Alagoz BB, Matušů R. “Disturbance rejection FOPID controller design in v-domain”. Journal of Advanced Research, 25, 171-180, 2020.
  • [6] Yüce A, Tan N, Atherton DP. “Fractional order PI controller design for time delay systems”. IFAC-PapersOnLine, 49(10), 94-99, 2016.
  • [7] Luo Y, Zhang T, Lee B, Kang C, Chen Y. “Fractional-order proportional derivative controller synthesis and implementation for hard-disk-drive servo system”. IEEE Transactions on Control Systems Technology, 22(1), 281-289, 2013.
  • [8] Şenol B. “Üçüncü derece zaman gecikmeli sistemler için PI denetleyicilerin analitik tasarımı”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(5), 893-898, 2020.
  • [9] Kavuran G, Ateş A, Alagöz B, Yeroğlu C. “Kesir dereceli model referans denetleyici ile görüntü işleme destekli nesne takip uygulaması”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 22(8), 659-665, 2016.
  • [10] Yumuk E, Güzelkaya M, Eksin İ. “A robust fractional-order controller design with gain and phase margin specifications based on delayed Bode’s ideal transfer function”. Journal of the Franklin Institute, 359(11), 5341-5353, 2022.
  • [11] Sánchez HS, Padula F, Visioli A, Vilanova R. “Tuning rules for robust FOPID controllers based on multi-objective optimization with FOPDT models”. ISA Transactions, 66, 344-361, 2017.
  • [12] Şenol B, Demiroğlu U, Matušů R. “Fractional order proportional derivative control for time delay plant of the second order: The frequency frame”. Journal of the Franklin Institute, 357(12), 7944-7961, 2020.
  • [13] Li X, Gao L. “A Simple Frequency-domain Tuning Method of Fractional-order PID Controllers for Fractional-order Delay Systems”. International Journal of Control, Automation and Systems, 20, 2159-2168, 2022.
  • [14] Muresan CI, Birs I, Ionescu C, Dulf EH, De Keyser R. “A Review of Recent Developments in Autotuning Methods for Fractional-Order Controllers”. Fractal and Fractional, 6(1), 37, 2022.
  • [15] Tufenkci S, Senol B, Matušů R, Alagoz BB. “Optimal V-plane robust stabilization method for interval uncertain fractional order PID control systems”. Fractal and Fractional, 5(1), 1-21, 2021.
  • [16] Erol H. “Delay margin computation in micro grid systems with time delay by using fractional order controller”. Electric Power Components and Systems, 49(6-7), 669-680, 2021.
  • [17] Zhou X, Li D, Zhang L, Duan Q. “Application of an adaptive PID controller enhanced by a differential evolution algorithm for precise control of dissolved oxygen in recirculating aquaculture systems”. Biosystems Engineering, 208, 186-198, 2021.
  • [18] Sung SW, Je CH, Lee J, Lee, DH. “Improved system identification method for Hammerstein-Wiener processes”. Korean Journal of Chemical Engineering, 25(4), 631-636, 2008.
  • [19] Álvarez de Miguel S, Mollocana Lara JG, García Cena CE, Romero M, García de María JM, González-Aguilar J, “Identification model and PI and PID controller design for a novel electric air heater”. Automatika, 58(1), 55-68, 2017.
  • [20] Rivas-Perez R, Castillo-Garcia F, Sotomayor-Moriano J, Feliu-Batlle V. “Design of a fractional order PI controller for steam pressure in the steam drum of a bagasse fired boiler”. IFAC Proceedings, 47(3), 1337-1342, 2014.
  • [21] Demiroğlu U, Şenol B. “Frequency frame approach on tuning FOPI controller for TOPTD thermal processes”. ISA Transactions, 108, 96-105, 2021.
  • [22] Tognetti ES, de Oliveira GA. “Robust state feedback-based design of pıd controllers for high-order systems with timedelay and parametric uncertainties”. Journal of Control, Automation and Electrical Systems, 33, 382-392, 2022.
  • [23] Gurumurthy G, Das DK. “A novel fractional order controller design algorithm for a class of linear systems”. Journal of Control and Decision, 9(2), 218-225, 2022.
  • [24] Flores C, Muñoz J, Monje CA, Milanés V, Lu XY. “Isodamping fractional-order control for robust automated car-following”. Journal of Advanced Research, 25, 181-189, 2020.
  • [25] Şenol B, Demiroğlu U. “Frequency frame approach on loop shaping of first order plus time delay systems using fractional order PI controller”. ISA Transactions, 86, 192-200, 2019.
  • [26] Şenol B, Demiroğlu U, Matušů, R. “İkinci derece zaman gecikmeli modeller için kesir dereceli oransal-integral denetleyici tasarımında analitik yaklaşım”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 37(1), 121-136, 2021.
  • [27] Wang C, Jin Y, Chen YQ. “Auto-tuning of FOPI and FO[PI] controllers with iso-damping property”. Chinese Control Conference, Shanghai, China, 15-18 December 2009.
  • [28] Wang C, Luo Y, Chen YQ. “Fractional order proportional integral (FOPI) and [proportional integral] (FO[PI]) controller designs for first order plus time delay (FOPTD) systems”. Chinese Control and Decision Conference, Guilin, China, 17-19 June 2009.
  • [29] Cheon YJ, Jeon CH, Lee J, Sung SW, Lee DH. “Improved Fourier transform for processes with initial cyclic‐steady‐ state”. AIChE Journal, 56(6), 1536-1544, 2010.
  • [30] Vivek S, Chidambaram M. “An improved relay auto tuning of PID controllers for critically damped SOPTD systems”. Chemical Engineering Communications, 199(11), 1437-1462, 2012.
  • [31] Sung SW, Lee J. “Modeling and control of Wiener-type processes”. Chemical Engineering Science, 59(7), 1515-1521, 2004.

Fractional order PD controller design for third order plants ıncluding time delay

Yıl 2023, Cilt: 29 Sayı: 3, 289 - 295, 27.06.2023

Öz

Due to the lack of integral operator, proportional derivative controllers have difficulties in providing stability and robustness. This difficulty is especially felt in higher order systems. In this publication, analytical design method of fractional proportional derivative controllers is presented to ensure the stability of third order systems with time delay. In this method, it is aimed to achieve the frequency characteristics of a standard control system to ensure stability. It is aimed to provide the desired gain crossover frequency, phase crossover frequency and phase margin properties of the system. In this way, the stability and robustness of the system can be obtained by choosing the appropriate values. The reason for choosing a fractional order controller is that the controller parameters to provide these features can be tuned more accurately. In order for the obtained stability to be robust to unexpected external effects, it is aimed to flatten the system phase. In the literature, phase flattening is performed by setting the phase derivative to zero at a specified frequency value. This can lead to mathematical complexity. In this publication, the phase flattening process is provided graphically by correctly selecting the frequency characteristics given above. Thus, an accurate and reliable controller design method is presented, avoiding mathematical complexity. The effectiveness of the proposed method has been demonstrated on three different models selected from the literature. The positive contribution of the method to the system robustness has been proven by changing the system gain at certain rates.

Kaynakça

  • [1] Ateş A, Yeroğlu C. “SMDO algoritması ile iki serbestlik dereceli FOPID kontrol çevrimi tasarımı”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 22(8), 671-676, 2016.
  • [2] Matušů R, Şenol B, Pekař L. “Robust stability of fractional order polynomials with complicated uncertainty structure”. PLOS ONE, 12(6), 1-13, 2017.
  • [3] Saxena S, Hote YV, “Design of robust fractional-order controller using the Bode ideal transfer function approach in IMC paradigm”. Nonlinear Dynamics, 107, 983-1001, 2022.
  • [4] Podlubny I. “Fractional-order systems and PIλDμ-controllers”. IEEE Transactions on Automatic Control, 44, 208-214, 1999.
  • [5] Tufenkci S, Senol B, Alagoz BB, Matušů R. “Disturbance rejection FOPID controller design in v-domain”. Journal of Advanced Research, 25, 171-180, 2020.
  • [6] Yüce A, Tan N, Atherton DP. “Fractional order PI controller design for time delay systems”. IFAC-PapersOnLine, 49(10), 94-99, 2016.
  • [7] Luo Y, Zhang T, Lee B, Kang C, Chen Y. “Fractional-order proportional derivative controller synthesis and implementation for hard-disk-drive servo system”. IEEE Transactions on Control Systems Technology, 22(1), 281-289, 2013.
  • [8] Şenol B. “Üçüncü derece zaman gecikmeli sistemler için PI denetleyicilerin analitik tasarımı”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(5), 893-898, 2020.
  • [9] Kavuran G, Ateş A, Alagöz B, Yeroğlu C. “Kesir dereceli model referans denetleyici ile görüntü işleme destekli nesne takip uygulaması”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 22(8), 659-665, 2016.
  • [10] Yumuk E, Güzelkaya M, Eksin İ. “A robust fractional-order controller design with gain and phase margin specifications based on delayed Bode’s ideal transfer function”. Journal of the Franklin Institute, 359(11), 5341-5353, 2022.
  • [11] Sánchez HS, Padula F, Visioli A, Vilanova R. “Tuning rules for robust FOPID controllers based on multi-objective optimization with FOPDT models”. ISA Transactions, 66, 344-361, 2017.
  • [12] Şenol B, Demiroğlu U, Matušů R. “Fractional order proportional derivative control for time delay plant of the second order: The frequency frame”. Journal of the Franklin Institute, 357(12), 7944-7961, 2020.
  • [13] Li X, Gao L. “A Simple Frequency-domain Tuning Method of Fractional-order PID Controllers for Fractional-order Delay Systems”. International Journal of Control, Automation and Systems, 20, 2159-2168, 2022.
  • [14] Muresan CI, Birs I, Ionescu C, Dulf EH, De Keyser R. “A Review of Recent Developments in Autotuning Methods for Fractional-Order Controllers”. Fractal and Fractional, 6(1), 37, 2022.
  • [15] Tufenkci S, Senol B, Matušů R, Alagoz BB. “Optimal V-plane robust stabilization method for interval uncertain fractional order PID control systems”. Fractal and Fractional, 5(1), 1-21, 2021.
  • [16] Erol H. “Delay margin computation in micro grid systems with time delay by using fractional order controller”. Electric Power Components and Systems, 49(6-7), 669-680, 2021.
  • [17] Zhou X, Li D, Zhang L, Duan Q. “Application of an adaptive PID controller enhanced by a differential evolution algorithm for precise control of dissolved oxygen in recirculating aquaculture systems”. Biosystems Engineering, 208, 186-198, 2021.
  • [18] Sung SW, Je CH, Lee J, Lee, DH. “Improved system identification method for Hammerstein-Wiener processes”. Korean Journal of Chemical Engineering, 25(4), 631-636, 2008.
  • [19] Álvarez de Miguel S, Mollocana Lara JG, García Cena CE, Romero M, García de María JM, González-Aguilar J, “Identification model and PI and PID controller design for a novel electric air heater”. Automatika, 58(1), 55-68, 2017.
  • [20] Rivas-Perez R, Castillo-Garcia F, Sotomayor-Moriano J, Feliu-Batlle V. “Design of a fractional order PI controller for steam pressure in the steam drum of a bagasse fired boiler”. IFAC Proceedings, 47(3), 1337-1342, 2014.
  • [21] Demiroğlu U, Şenol B. “Frequency frame approach on tuning FOPI controller for TOPTD thermal processes”. ISA Transactions, 108, 96-105, 2021.
  • [22] Tognetti ES, de Oliveira GA. “Robust state feedback-based design of pıd controllers for high-order systems with timedelay and parametric uncertainties”. Journal of Control, Automation and Electrical Systems, 33, 382-392, 2022.
  • [23] Gurumurthy G, Das DK. “A novel fractional order controller design algorithm for a class of linear systems”. Journal of Control and Decision, 9(2), 218-225, 2022.
  • [24] Flores C, Muñoz J, Monje CA, Milanés V, Lu XY. “Isodamping fractional-order control for robust automated car-following”. Journal of Advanced Research, 25, 181-189, 2020.
  • [25] Şenol B, Demiroğlu U. “Frequency frame approach on loop shaping of first order plus time delay systems using fractional order PI controller”. ISA Transactions, 86, 192-200, 2019.
  • [26] Şenol B, Demiroğlu U, Matušů, R. “İkinci derece zaman gecikmeli modeller için kesir dereceli oransal-integral denetleyici tasarımında analitik yaklaşım”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 37(1), 121-136, 2021.
  • [27] Wang C, Jin Y, Chen YQ. “Auto-tuning of FOPI and FO[PI] controllers with iso-damping property”. Chinese Control Conference, Shanghai, China, 15-18 December 2009.
  • [28] Wang C, Luo Y, Chen YQ. “Fractional order proportional integral (FOPI) and [proportional integral] (FO[PI]) controller designs for first order plus time delay (FOPTD) systems”. Chinese Control and Decision Conference, Guilin, China, 17-19 June 2009.
  • [29] Cheon YJ, Jeon CH, Lee J, Sung SW, Lee DH. “Improved Fourier transform for processes with initial cyclic‐steady‐ state”. AIChE Journal, 56(6), 1536-1544, 2010.
  • [30] Vivek S, Chidambaram M. “An improved relay auto tuning of PID controllers for critically damped SOPTD systems”. Chemical Engineering Communications, 199(11), 1437-1462, 2012.
  • [31] Sung SW, Lee J. “Modeling and control of Wiener-type processes”. Chemical Engineering Science, 59(7), 1515-1521, 2004.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrik Mühendisliği (Diğer)
Bölüm Makale
Yazarlar

Uğur Demiroğlu Bu kişi benim

Bilal Şenol Bu kişi benim

Radek Matusu Bu kişi benim

Yayımlanma Tarihi 27 Haziran 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 29 Sayı: 3

Kaynak Göster

APA Demiroğlu, U., Şenol, B., & Matusu, R. (2023). Fractional order PD controller design for third order plants ıncluding time delay. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 29(3), 289-295.
AMA Demiroğlu U, Şenol B, Matusu R. Fractional order PD controller design for third order plants ıncluding time delay. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Haziran 2023;29(3):289-295.
Chicago Demiroğlu, Uğur, Bilal Şenol, ve Radek Matusu. “Fractional Order PD Controller Design for Third Order Plants ıncluding Time Delay”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 29, sy. 3 (Haziran 2023): 289-95.
EndNote Demiroğlu U, Şenol B, Matusu R (01 Haziran 2023) Fractional order PD controller design for third order plants ıncluding time delay. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 29 3 289–295.
IEEE U. Demiroğlu, B. Şenol, ve R. Matusu, “Fractional order PD controller design for third order plants ıncluding time delay”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 29, sy. 3, ss. 289–295, 2023.
ISNAD Demiroğlu, Uğur vd. “Fractional Order PD Controller Design for Third Order Plants ıncluding Time Delay”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 29/3 (Haziran 2023), 289-295.
JAMA Demiroğlu U, Şenol B, Matusu R. Fractional order PD controller design for third order plants ıncluding time delay. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2023;29:289–295.
MLA Demiroğlu, Uğur vd. “Fractional Order PD Controller Design for Third Order Plants ıncluding Time Delay”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 29, sy. 3, 2023, ss. 289-95.
Vancouver Demiroğlu U, Şenol B, Matusu R. Fractional order PD controller design for third order plants ıncluding time delay. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2023;29(3):289-95.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.