Araştırma Makalesi
BibTex RIS Kaynak Göster

Sulu çözeltilerden tetrasiklin giderimi için alg bazlı yeşil biyokompozit sentezi: kinetik, denge ve termodinamik çalışmalar

Yıl 2023, Cilt: 29 Sayı: 4, 401 - 411, 31.08.2023

Öz

Bu çalışmada, aljinat bazı kullanılarak Spirulina sp. biyokütlesinden boncukların geliştirilmesi ve sudaki tetrasiklinin giderimi için adsorbent potansiyellerinin değerlendirilmesi amaçlanmıştır. Bu amaçla biyokompozitin yeşil sentezi yapılmış ve karakterize edilmiştir. Kesikli sistemde yürütülen giderim çalışmalarında; tetrasiklin giderim verimine; çözelti pH’ının, biyokompozit miktarının, temas süresinin ve farklı sıcaklıklarda farklı başlangıç kirletici konsantrasyonunun etkisi çalışılmıştır. İzoterm çalışmalarından elde edilen verilere Langmuir, Freundlich ve 𝐷 − 𝑅 izotermleri uygulanmıştır. 25, 35 ve 45 oC için Langmuir izoterminden elde edilen Qm değerleri sırasıyla 108.95 mg/g, 191.25 mg/g ve 404.75 mg/g olarak bulunmuştur. Elde edilen biyokompozit, yüksek tetrasiklin biyosorpsiyonu ile ilişkili olabilecek hidrofobikliğe ve çeşitli fonksiyonel gruplara (CH2, C-N, C-O, CO3 -2 vb.) sahiptir. Biyokompozitin yüksek Qm değerleri, π-π elektron-verici-alıcı etkileşimi ve fonksiyonel gruplar ile tetrasiklin molekülleri arasındaki kompleks oluşumu nedeniyledir. Tetrasiklin biyosorpsiyonu için determinasyon katsayıları dikkate alınarak yalancı ikinci derece model uygun bulunmuştur. Termodinamik verilerden; artan sıcaklıkla tetrasiklin biyosorpsiyonunun artması, biyosorpsiyon işleminin endotermik ve spontan bir yapıya sahip olduğunu göstermektedir. Sonuç olarak; sentezlenen alg bazlı yeşil biyokompozitin, tetrasiklini sulardan başarılı bir şekilde uzaklaştırmak için kullanılabileceği ortaya konulmuştur.

Kaynakça

  • [1] Azari A, Salari M, Dehghani MH, Alimohammadi M, Ghaffari H, Sharafi K, Shariatifar N, Baziar M. “Efficiency of magnitized graphene oxide nanoparticles in removal of 2,4-dichlorophenol from aqueous solution”. Journal of Mazandaran University of Medical Sciences, 26, 265-281, 2017.
  • [2] Sharafi K, Pirsaheb M, Gupta VK, Agarwal S, Moradi M, Vasseghian Y, Dragoi EN. “Phenol adsorption on scoria stone as adsorbent-application of response surface method and artificial neural networks”. Journal of Molecular Liquids, 274, 699-714, 2019.
  • [3] Naghan DJ, Azari A, Mirzaei N, Velayati A, Tapouk FA, Adabi S, Pirsaheb M, Sharafi K. “Parameters effecting on photocatalytic degradation of the phenol from aqueous solutions in the presence of ZnO nanocatalyst under irradiation of UV-C light”. Bulgarian Chemical Communications, 47, 8-14, 2015.
  • [4] Martinez JL. “Environmental pollution by antibiotics and by antibiotic resistance determinants”. Environmental Pollution, 157, 2893-2902, 2009.
  • [5] Naghipour D, Hoseinzadeh L, Taghavi K, Jaafari J, Amouei A. “Effective removal of tetracycline from aqueous solution using biochar prepared from pine bark: isotherms, kinetics and thermodynamic analyses”. International Journal of Environmental Analytical Chemistry, 101, 1-14, 2021.
  • [6] Dehghan A, Zarei A, Jaafari J, Shams M, Khaneghah AM. “Tetracycline removal from aqueous solutions using zeolitic imidazolate frameworks with different morphologies: a mathematical modeling”. Chemosphere, 217, 250-260, 2019.
  • [7] Naghipour D, Taghavi K, Jaafari J, Kabdaşlı I, Makkiabadi M, Doust MJM, Doust FJM. “Scallop shell coated Fe2O3 nanocomposite as an eco-friendly adsorbent for tetracycline removal”. Environmental Technology, 44, 1-11, 2021.
  • [8] Naghipour D, Hoseinzadeh L, Taghavi K, Jaafari J. “Characterization, kinetic, thermodynamic and isotherm data for diclofenac removal from aqueous solution by activated carbon derived from pine tree”. Data in Brief, 18, 1082-1087, 2018..
  • [9] Chen X, Liu X, Zhu L, Tao X, Wang X. “One-step fabrication of novel MIL-53 (Fe, Al) for synergistic adsorptionphotocatalytic degradation of tetracycline”. Chemosphere, 291, 133032-133042, 2022.
  • [10] Rouhani M, Ashrafi SD, Taghavi K, Joubani MN, Jaafari J. “Evaluation of tetracycline removal by adsorption method using magnetic iron oxide nanoparticles (Fe3O4) and clinoptilolite from aqueous solutions”. Journal of Molecular Liquids, 356, 119040-119052, 2022.
  • [11] Sarmah AK, Meyer MT, Boxall ABA. “A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment”. Chemosphere, 65, 725-759, 2006.
  • [12] Wang Z, Du Y, Yang C, Liu X, Zhang J, Li E, Zhang Q, Wang X. “Occurrence and ecological hazard assessment of selected antibiotics in the surface waters in and around Lake Honghu, China”. Science of The Total Environment, 609, 1423-1432, 2017.
  • [13] Xu L, Zhang H, Xiong P, Zhu Q, Liao C, Jiang G. “Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: A review”. Science of the Total Environment, 753, 141975-141992, 2021.
  • [14] Chen WR, Huang CH. “Adsorption and transformation of tetracycline antibiotics with aluminum oxide”. Chemosphere, 79, 779-785, 2010.
  • [15] Turan B, Sarigol G, Demircivi P. “Adsorption of tetracycline antibiotics using metal and clay embedded cross-linked chitosan”. Materials Chemistry and Physics, 279, 125781-125786, 2022.
  • [16] Sorensen H, Nielsen B, Sengelov G, Tjornelund J. “Toxicity of teracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline-resistant bacteria”. Achieved Environmental Contamination Toxicology, 44, 7-16, 2022.
  • [17] Dai Y, Li J, Shan D. “Adsorption of tetracycline in aqueous solution by biochar derived from waste Auricularia auricula dregs”. Chemosphere, 238, 124432-124444, 2020.
  • [18] Darmokoesoemo H, Setianingsih FR, Putranto TWLC, Kusuma HS. “Horn snail (Telescopium sp) and mud crab (Scylla sp) shells powder as low cost adsorbents for removal of Cu2+ from synthetic wastewater”. Journal of Chemistry, 9, 550-555, 2016.
  • [19] Khera RA, Iqbal M, Ahmad A, Hassan SM, Nazir A, Kausar A, Kusuma HS, Niasr J, Masood N, Younas U. “Kinetics and equilibrium studies of copper, zinc, and nickel ions adsorptive removal on to Archontophoenix alexandrae: conditions optimization by RSM”. Desalination Water Treatment, 201, 289-300, 2020.
  • [20] Badeenezhad A, Azhdarpoor A, Bahrami S, Yousefinejad S. “Removal of methylene blue dye from aqueous solutions by natural clinoptilolite and clinoptilolite modified by iron oxide nanoparticles”. Molecular Simulation, 45(7), 564-571, 2019.
  • [21] Badeenezhad A, Azhdarpoor A. “Efficiency of the activated carbon and clinoptilolite particles coated with iron oxide magnetic nanoparticles in removal of methylene blue” Desalination Water Treatment, 154, 347-355, 2019.
  • [22] Acosta R, Fierro V, Martinez de Yuso A, Nabarlatz D, Celzard A. “Tetracycline adsorption onto activated carbons produced by KOH activation of tyre pyrolysis char”. Chemosphere, 149, 168-176, 2016.
  • [23] Li Z, Chang PH, Jean JS, Jiang WT, Wang CJ. “Interaction between tetracycline and smectite in aqueous solution”, Journal of Colloid Interface Science, 341, 311-319, 2010.
  • [24] Wang YUJ, Jia DEAN, Rui-Juan SUN, Hao-Wen ZHU, Zhou DM. “Adsorption and cosorption of tetracycline and copper(ll) on montmorillonite as affected by solution pH”. Environmental Science Technologhy, 42, 3254-3259, 2008.
  • [25] Huang B, Liu Y, Li B, Liu S, Zeng G, Zeng Z, Wang X, Ning Q, Zheng B, Yang C. “Effect of Cu(II) ions on the enhancement of tetracycline adsorption by Fe3O4@SiO2- Chitosan/graphene oxide nanocomposite”. Carbohydrate Polymers, 157, 576-585, 2017.
  • [26] Choi KJ, Kim SG, Kim SH. “Removal of antibiotics by coagulation and granular activated carbon filtration”. Journal of Hazardous Materials, 151, 38-43, 2018.
  • [27] Li Y, Wang S, Zhang Y, Han R, Wei W. “Enhanced tetracycline adsorption onto hydroxyapatite by Fe(III) incorporation”. Journal of Molecular Liquids, 247, 171-181, 2017.
  • [28] Pandey Ravi LM. “Enhanced adsorption capacity of designed bentonite and alginate beads for the effective removal of methylene blue”. Applied Clay Science, 169, 102-111, 2019.
  • [29] Zhang X, Lin X, He Y, Chen Y, Luo X, Shang R. “Study on adsorption of tetracycline by Cu-immobilized alginate adsorbent from water environment”. International Journal of Biological Macromolecules, 124, 418-428, 2019.
  • [30] Caroni ALPF, de Lima CRM, Pereira MR, Fonseca JLC. “The kinetics of adsorption of tetracycline on chitosan particles”. Journal of Colloid Interface Science, 340, 182-191, 2009.
  • [31] Da Silva Bruckmann F, Ledur CM, Da Silva IZ, Dotto GL, Bohn Rhoden CR. “A DFT theoretical and experimental study about tetracycline adsorption onto magnetic graphene oxide”. Journal of Molecular Liquids, 353, 118837-118849, 2022.
  • [32] Nguyen DTC, Vo DVN, Nguyen TT, Nguyen TTT, Nguyen, LTT, Tran TV. “Optimization of tetracycline adsorption onto zeolitic–imidazolate framework-based carbon using response surface methodology”. Surfaces and Interfaces, 28, 101549-101561, 2022.
  • [33] Huang D, Li B, Ou J, Xue W, Li J, Li Z, Li T, Chen S, Deng R, Guo X. “Megamerger of biosorbents and catalytic technologies for the removal of heavy metals from wastewater: Preparation, final disposal, mechanism and influencing factors”. Journal of Environmental Management, 261, 109879-109902, 2020.
  • [34] Qiao H, Li B, Hu S, Liu C. “Fast cost-effective synthesis of metal ions/biopolymer/silica composites by supramolecular hydrogels crosslink with superior tetracycline sorption performance”. Chemosphere, 294, 133821-133830, 2022.
  • [35] Sahmoune MN. “Evaluation of thermodynamic parameters for adsorption of heavy metals by green adsorbents”. Environmental Chemistry Letters, 17 (2), 697-704, 2019.
  • [36] Cheng Y, Li F, Niu N, Lan T, Yang Y, Zhang T, Liao J, Qing R. “A novel freeze-dried natural microalga powder for highly efficient removal of uranium from wastewater”. Chemosphere, 282, 131084-131093, 2021.
  • [37] Squadrone S, NurraN, Battuello M, Sartor RM, Stella C, Brizio P, Mantia M, PessaniD, Abete MC. “Trace elements, rare earth elements and inorganic arsenic in seaweeds from Giglio Island (Thyrrenian Sea) after the Costa Concordia shipwreck and removal”. Marine Pollution Bulletin, 133, 88-95, 2018.
  • [38] Sagar S, Rastogi A. “Adsorptive elimination of an acidic dye from synthetic wastewater using Yellow green algae along with equilibrium data modelling”. Asian Journal of Research Chemistry, 11(5), 778-786, 2018.
  • [39] Güler ÜA, Türkay M. “Aljinat-TiO2-alg kompozitinin sentezi ve sulu çözeltilerden tetrasiklin gideriminde kullanılabilirliği ve karakterizasyonu”. Karaelmas Fen ve Mühendislik Dergisi, 6(1), 130-135, 2016.
  • [40] Choi YK, Choi TR, Gurav R, Bhatia SK, Park YL, Kim HJ, Kan E, Yang YH. “Adsorption behavior of tetracycline onto Spirulina sp. (microalgae)-derived biochars produced at different temperatures”. Science of the Total Environment, 710, 136282-136293, 2020.
  • [41] Zhou T, Cao L, Zhang Q, Liu Y, Xiang S, Liu T, Ruan R. “Effect of chlortetracycline on the growth and intracellular components of Spirulina platensis and its biodegradation pathway”. Journal of Hazardous Materials, 413, 125310-125321, 2021.
  • [42] Zhang Y, Mo Y, Vincent T, Faur C, Guibal E. “Boosted Cr(VI) sorption coupled reduction from aqueous solution using quaternized algal/alginate@PEI beads”. Chemosphere, 281, 130844-130854, 2021.
  • [43] Soni RA, Sudhakar K, Rana RS. “Spirulina from growth to nutritional product: a review”. Trends Food Science Technologhy, 69, 157-171, 2017.
  • [44] Moghaddam SAE, Harun R, Mokhtar MN, Zakaria R. “Kinetic and equilibrium modeling for the biosorption of metal ion by Zeolite 13X-Algal-Alginate Beads (ZABs)”. Journal of Water Process Engineering, 33, 101057-101065, 2020.
  • [45] Rajasekaran C, Ajeesh CM, Balaji S, Shalini M, Ramamoorthy SIVA, Ranjan DAS, Kalaivani T. “Effect of modified Zarrouk’s medium on growth of different Spirulina strains”. Walailak Journal of Science and Technology (WJST), 13(1), 67-75, 2016.
  • [46] Wang S, Vincent T, Roux JC, Faur C, Guibal E. “Pd(II) and Pt(IV) sorption using alginate and algal-based beads”. Chemical Engineering Journal, 313, 567-579, 2017.
  • [47] Li G, Zhang D, Wang M, Huang J, Huang L. “Preparation of activated carbons from Iris tectorum employing ferric nitrate as dopant for removal of tetracycline from aqueous solutions”. Ecotoxicology and Environmental Safety, 98, 273-282, 2013.
  • [48] Liu Q, Zhong LB, Zhao QB, Frear C, Zheng YM. “Synthesis of Fe3O4/polyacrylonitrile composite electrospun nanofiber mat for effective adsorption of tetracycline”. ACS Applied Materials & Interfaces, 7(27), 14573-14583, 2015.
  • [49] Zhao R, Shi X, Ma T, Rong H, Wang Z, Cui F, Zhu G, Wang C. “Constructing mesoporous adsorption channels and MOFpolymer interfaces in electrospun composite fibers for effective removal of emerging organic contaminants”. ACS Applied Materials & Interfaces, 13(1), 755-764, 2021.
  • [50] Wang J, Hu J, Zhang S. “Studies on the sorption of tetracycline onto clays and marine sediment from seawater”. Journal of Colloid Interface Science, 349, 578-582, 2010.
  • [51] Figueroa, RA., Mackay, AA. “Sorption of oxytetracycline toiron oxides and iron oxide-rich soils”. Environmental Science Technologhy, 39, 6664-6671, 2005.
  • [52] Lian F, Song Z, Liu Z, Zhu L, Xing B. “Mechanistic understanding of tetracycline sorption on waste tire powder and its chars as affected by Cu2+ and pH”. Environmental Pollution, 178, 264-270, 2013.
  • [53] Garg VK, Gupta R, Yadav AB, Kumar R. “Dye removal from aqueous solution by adsorption on treated sawdust”. Bioresource Technologhy, 89, 121-124, 2003.
  • [54] Xiong W, Zeng Z, Zeng G, Yang Z, Xiao R, Li X, Cao J, Zhou C, Chen H, Jia M, Yang Y, Wang W, Tang X. “Metal-organic frameworks derived magnetic carbon-αFe/Fe3C composites as a highly effective adsorbent for tetracycline removal from aqueous solution”. Chemical Engineering Journal, 374, 91-99, 2019.
  • [55] Peng L, Ren Y, Gu J, Qin P, Zeng Q, Shao J, Lei M, Chai L. “Iron improving biochar derived from microalgae on removal of tetracycline from aqueous system”. Environmental Science Pollution Research, 21(12), 7631-7640, 2014.
  • [56] Jafari Kang A, Baghdadi M, Pardakhti A. “Removal of cadmium and lead from aqueous solutions by magnetic acid-treated activated carbon nanocomposite”. Desalination Water Treatment, 3994, 1-17, 2015.
  • [57] Wu FC, Tseng RL, Juang RS. “Comparisons of porous and adsorption properties of carbons activated by steam and KOH”. Journal of Colloid Interface Science, 283, 49-56, 2005.
  • [58] Tang L, Yu JF, Pang Y, Zeng GM, Deng YC, Wang JJ, Ren XY, Ye SJ, Peng B, Feng HP, “Sustainable efficient adsorbent: alkali-acid modified magnetic biochar derived from sewage sludge for aqueous organic contaminant removal”. Chemical Engineering Journal, 336, 160–169, 2018.
  • [59] Mayers D. Surfaces, İnterfaces and Colloids- Principles and Applications. 2nd ed. New York, USA, Wiley-VCH, 1999.
  • [60] Wang J, Guo X, “Adsorption isotherm models: Classification, physical meaning, application and solving method”. Chemosphere, 258, 127279-127304, 2020.
  • [61] Ali MEM, Abd El-Aty AM, Badawy MI, Ali RK. “Removal of pharmaceutical pollutants from synthetic wastewater using chemically modified biomass of green alga Scenedesmus obliquus”. Ecotoxicology and Environmental Safety, 151, 144-152, 2018.
  • [62] Baghdadi M, Ghaffari E, Aminzadeh B. “Removal of carbamazepine from municipal wastewater effluent using optimally synthesized magnetic activated carbon: Adsorption and sedimentation kinetic studies”. Journal of Environmental Chemical Engineering, 4, 3309-3321, 2016.
  • [63] Wang H, Fang C, Wang Q, Chu Y, Song Y, Chen Y, Xue X. “Sorption of tetracycline on biochar derived from rice straw and swine manure”. RSC Advances, 8(29), 16260-16268, 2018.
  • [64] Zhou Y, Liu X, Xiang Y, Wang P, Zhang J, Zhang F, Wei J, Luo L, Lei M, Tang L. “Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution: adsorption mechanism and modelling”. Bioresource Technologhy, 245, 266-273, 2017.
  • [65] Pan J, Bai X, Li Y, Yang B, Yang P, Yu F, Ma J. “HKUST-1 derived carbon adsorbents for tetracycline removal with excellent adsorption performance”. Environmental Research, 205, 112425-112435, 2022.
  • [66] Yadaei H, Nowroozi M, Beyki MH, Shemirani F, Nouroozi S. “Synthesis of magnetic Fe-carbon nanohybrid for adsorption and Fenton oxidation of tetracycline”. Desalination and Water Treatment, 173, 294-312, 2020.

Algae based green biocomposites for tetracycline removal from aqueous solutions: kinetic, equilibrium and thermodynamic studies

Yıl 2023, Cilt: 29 Sayı: 4, 401 - 411, 31.08.2023

Öz

This study aimed to develop beads from biomass and evaluate their adsorbent potential for tetracycline removal from water. For this purpose, a green synthesis of the biocomposite was made and characterized. In the removal studies carried out in the batch system; the effects of solution pH, amount of biocomposite, contact time, and different initial pollutant concentrations at different temperatures on the efficiency of tetracycline removal were studied. Langmuir, Freundlich, and D-R isotherms were applied to the data obtained from isotherm studies. Qm values obtained from Langmuir isotherm for 25, 35 and 45 oC were found to 108.95 mg/g, 191.25 mg/g and 404.75 mg/g, respectively. The resulting biocomposite had hydrophobicity and various functional groups (CH2, CN, CO, CO3 -2 vb.), which may be associated with high tetracycline biosorption. The high Qm values of the biocomposite are due to the π-π electron-donor-acceptor interaction and complex formation between functional groups and tetracycline molecules. Considering the determination coefficients for tetracycline biosorption, the pseudo-second order model was found suitable. From the thermodynamic data; the increase in tetracycline biosorption with increasing temperature indicates that the biosorption process has an endothermic and spontaneous nature. As a result; it has been demonstrated that the synthesized algae-based green biocomposite can be used to successfully remove tetracycline from water.

Kaynakça

  • [1] Azari A, Salari M, Dehghani MH, Alimohammadi M, Ghaffari H, Sharafi K, Shariatifar N, Baziar M. “Efficiency of magnitized graphene oxide nanoparticles in removal of 2,4-dichlorophenol from aqueous solution”. Journal of Mazandaran University of Medical Sciences, 26, 265-281, 2017.
  • [2] Sharafi K, Pirsaheb M, Gupta VK, Agarwal S, Moradi M, Vasseghian Y, Dragoi EN. “Phenol adsorption on scoria stone as adsorbent-application of response surface method and artificial neural networks”. Journal of Molecular Liquids, 274, 699-714, 2019.
  • [3] Naghan DJ, Azari A, Mirzaei N, Velayati A, Tapouk FA, Adabi S, Pirsaheb M, Sharafi K. “Parameters effecting on photocatalytic degradation of the phenol from aqueous solutions in the presence of ZnO nanocatalyst under irradiation of UV-C light”. Bulgarian Chemical Communications, 47, 8-14, 2015.
  • [4] Martinez JL. “Environmental pollution by antibiotics and by antibiotic resistance determinants”. Environmental Pollution, 157, 2893-2902, 2009.
  • [5] Naghipour D, Hoseinzadeh L, Taghavi K, Jaafari J, Amouei A. “Effective removal of tetracycline from aqueous solution using biochar prepared from pine bark: isotherms, kinetics and thermodynamic analyses”. International Journal of Environmental Analytical Chemistry, 101, 1-14, 2021.
  • [6] Dehghan A, Zarei A, Jaafari J, Shams M, Khaneghah AM. “Tetracycline removal from aqueous solutions using zeolitic imidazolate frameworks with different morphologies: a mathematical modeling”. Chemosphere, 217, 250-260, 2019.
  • [7] Naghipour D, Taghavi K, Jaafari J, Kabdaşlı I, Makkiabadi M, Doust MJM, Doust FJM. “Scallop shell coated Fe2O3 nanocomposite as an eco-friendly adsorbent for tetracycline removal”. Environmental Technology, 44, 1-11, 2021.
  • [8] Naghipour D, Hoseinzadeh L, Taghavi K, Jaafari J. “Characterization, kinetic, thermodynamic and isotherm data for diclofenac removal from aqueous solution by activated carbon derived from pine tree”. Data in Brief, 18, 1082-1087, 2018..
  • [9] Chen X, Liu X, Zhu L, Tao X, Wang X. “One-step fabrication of novel MIL-53 (Fe, Al) for synergistic adsorptionphotocatalytic degradation of tetracycline”. Chemosphere, 291, 133032-133042, 2022.
  • [10] Rouhani M, Ashrafi SD, Taghavi K, Joubani MN, Jaafari J. “Evaluation of tetracycline removal by adsorption method using magnetic iron oxide nanoparticles (Fe3O4) and clinoptilolite from aqueous solutions”. Journal of Molecular Liquids, 356, 119040-119052, 2022.
  • [11] Sarmah AK, Meyer MT, Boxall ABA. “A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment”. Chemosphere, 65, 725-759, 2006.
  • [12] Wang Z, Du Y, Yang C, Liu X, Zhang J, Li E, Zhang Q, Wang X. “Occurrence and ecological hazard assessment of selected antibiotics in the surface waters in and around Lake Honghu, China”. Science of The Total Environment, 609, 1423-1432, 2017.
  • [13] Xu L, Zhang H, Xiong P, Zhu Q, Liao C, Jiang G. “Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: A review”. Science of the Total Environment, 753, 141975-141992, 2021.
  • [14] Chen WR, Huang CH. “Adsorption and transformation of tetracycline antibiotics with aluminum oxide”. Chemosphere, 79, 779-785, 2010.
  • [15] Turan B, Sarigol G, Demircivi P. “Adsorption of tetracycline antibiotics using metal and clay embedded cross-linked chitosan”. Materials Chemistry and Physics, 279, 125781-125786, 2022.
  • [16] Sorensen H, Nielsen B, Sengelov G, Tjornelund J. “Toxicity of teracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline-resistant bacteria”. Achieved Environmental Contamination Toxicology, 44, 7-16, 2022.
  • [17] Dai Y, Li J, Shan D. “Adsorption of tetracycline in aqueous solution by biochar derived from waste Auricularia auricula dregs”. Chemosphere, 238, 124432-124444, 2020.
  • [18] Darmokoesoemo H, Setianingsih FR, Putranto TWLC, Kusuma HS. “Horn snail (Telescopium sp) and mud crab (Scylla sp) shells powder as low cost adsorbents for removal of Cu2+ from synthetic wastewater”. Journal of Chemistry, 9, 550-555, 2016.
  • [19] Khera RA, Iqbal M, Ahmad A, Hassan SM, Nazir A, Kausar A, Kusuma HS, Niasr J, Masood N, Younas U. “Kinetics and equilibrium studies of copper, zinc, and nickel ions adsorptive removal on to Archontophoenix alexandrae: conditions optimization by RSM”. Desalination Water Treatment, 201, 289-300, 2020.
  • [20] Badeenezhad A, Azhdarpoor A, Bahrami S, Yousefinejad S. “Removal of methylene blue dye from aqueous solutions by natural clinoptilolite and clinoptilolite modified by iron oxide nanoparticles”. Molecular Simulation, 45(7), 564-571, 2019.
  • [21] Badeenezhad A, Azhdarpoor A. “Efficiency of the activated carbon and clinoptilolite particles coated with iron oxide magnetic nanoparticles in removal of methylene blue” Desalination Water Treatment, 154, 347-355, 2019.
  • [22] Acosta R, Fierro V, Martinez de Yuso A, Nabarlatz D, Celzard A. “Tetracycline adsorption onto activated carbons produced by KOH activation of tyre pyrolysis char”. Chemosphere, 149, 168-176, 2016.
  • [23] Li Z, Chang PH, Jean JS, Jiang WT, Wang CJ. “Interaction between tetracycline and smectite in aqueous solution”, Journal of Colloid Interface Science, 341, 311-319, 2010.
  • [24] Wang YUJ, Jia DEAN, Rui-Juan SUN, Hao-Wen ZHU, Zhou DM. “Adsorption and cosorption of tetracycline and copper(ll) on montmorillonite as affected by solution pH”. Environmental Science Technologhy, 42, 3254-3259, 2008.
  • [25] Huang B, Liu Y, Li B, Liu S, Zeng G, Zeng Z, Wang X, Ning Q, Zheng B, Yang C. “Effect of Cu(II) ions on the enhancement of tetracycline adsorption by Fe3O4@SiO2- Chitosan/graphene oxide nanocomposite”. Carbohydrate Polymers, 157, 576-585, 2017.
  • [26] Choi KJ, Kim SG, Kim SH. “Removal of antibiotics by coagulation and granular activated carbon filtration”. Journal of Hazardous Materials, 151, 38-43, 2018.
  • [27] Li Y, Wang S, Zhang Y, Han R, Wei W. “Enhanced tetracycline adsorption onto hydroxyapatite by Fe(III) incorporation”. Journal of Molecular Liquids, 247, 171-181, 2017.
  • [28] Pandey Ravi LM. “Enhanced adsorption capacity of designed bentonite and alginate beads for the effective removal of methylene blue”. Applied Clay Science, 169, 102-111, 2019.
  • [29] Zhang X, Lin X, He Y, Chen Y, Luo X, Shang R. “Study on adsorption of tetracycline by Cu-immobilized alginate adsorbent from water environment”. International Journal of Biological Macromolecules, 124, 418-428, 2019.
  • [30] Caroni ALPF, de Lima CRM, Pereira MR, Fonseca JLC. “The kinetics of adsorption of tetracycline on chitosan particles”. Journal of Colloid Interface Science, 340, 182-191, 2009.
  • [31] Da Silva Bruckmann F, Ledur CM, Da Silva IZ, Dotto GL, Bohn Rhoden CR. “A DFT theoretical and experimental study about tetracycline adsorption onto magnetic graphene oxide”. Journal of Molecular Liquids, 353, 118837-118849, 2022.
  • [32] Nguyen DTC, Vo DVN, Nguyen TT, Nguyen TTT, Nguyen, LTT, Tran TV. “Optimization of tetracycline adsorption onto zeolitic–imidazolate framework-based carbon using response surface methodology”. Surfaces and Interfaces, 28, 101549-101561, 2022.
  • [33] Huang D, Li B, Ou J, Xue W, Li J, Li Z, Li T, Chen S, Deng R, Guo X. “Megamerger of biosorbents and catalytic technologies for the removal of heavy metals from wastewater: Preparation, final disposal, mechanism and influencing factors”. Journal of Environmental Management, 261, 109879-109902, 2020.
  • [34] Qiao H, Li B, Hu S, Liu C. “Fast cost-effective synthesis of metal ions/biopolymer/silica composites by supramolecular hydrogels crosslink with superior tetracycline sorption performance”. Chemosphere, 294, 133821-133830, 2022.
  • [35] Sahmoune MN. “Evaluation of thermodynamic parameters for adsorption of heavy metals by green adsorbents”. Environmental Chemistry Letters, 17 (2), 697-704, 2019.
  • [36] Cheng Y, Li F, Niu N, Lan T, Yang Y, Zhang T, Liao J, Qing R. “A novel freeze-dried natural microalga powder for highly efficient removal of uranium from wastewater”. Chemosphere, 282, 131084-131093, 2021.
  • [37] Squadrone S, NurraN, Battuello M, Sartor RM, Stella C, Brizio P, Mantia M, PessaniD, Abete MC. “Trace elements, rare earth elements and inorganic arsenic in seaweeds from Giglio Island (Thyrrenian Sea) after the Costa Concordia shipwreck and removal”. Marine Pollution Bulletin, 133, 88-95, 2018.
  • [38] Sagar S, Rastogi A. “Adsorptive elimination of an acidic dye from synthetic wastewater using Yellow green algae along with equilibrium data modelling”. Asian Journal of Research Chemistry, 11(5), 778-786, 2018.
  • [39] Güler ÜA, Türkay M. “Aljinat-TiO2-alg kompozitinin sentezi ve sulu çözeltilerden tetrasiklin gideriminde kullanılabilirliği ve karakterizasyonu”. Karaelmas Fen ve Mühendislik Dergisi, 6(1), 130-135, 2016.
  • [40] Choi YK, Choi TR, Gurav R, Bhatia SK, Park YL, Kim HJ, Kan E, Yang YH. “Adsorption behavior of tetracycline onto Spirulina sp. (microalgae)-derived biochars produced at different temperatures”. Science of the Total Environment, 710, 136282-136293, 2020.
  • [41] Zhou T, Cao L, Zhang Q, Liu Y, Xiang S, Liu T, Ruan R. “Effect of chlortetracycline on the growth and intracellular components of Spirulina platensis and its biodegradation pathway”. Journal of Hazardous Materials, 413, 125310-125321, 2021.
  • [42] Zhang Y, Mo Y, Vincent T, Faur C, Guibal E. “Boosted Cr(VI) sorption coupled reduction from aqueous solution using quaternized algal/alginate@PEI beads”. Chemosphere, 281, 130844-130854, 2021.
  • [43] Soni RA, Sudhakar K, Rana RS. “Spirulina from growth to nutritional product: a review”. Trends Food Science Technologhy, 69, 157-171, 2017.
  • [44] Moghaddam SAE, Harun R, Mokhtar MN, Zakaria R. “Kinetic and equilibrium modeling for the biosorption of metal ion by Zeolite 13X-Algal-Alginate Beads (ZABs)”. Journal of Water Process Engineering, 33, 101057-101065, 2020.
  • [45] Rajasekaran C, Ajeesh CM, Balaji S, Shalini M, Ramamoorthy SIVA, Ranjan DAS, Kalaivani T. “Effect of modified Zarrouk’s medium on growth of different Spirulina strains”. Walailak Journal of Science and Technology (WJST), 13(1), 67-75, 2016.
  • [46] Wang S, Vincent T, Roux JC, Faur C, Guibal E. “Pd(II) and Pt(IV) sorption using alginate and algal-based beads”. Chemical Engineering Journal, 313, 567-579, 2017.
  • [47] Li G, Zhang D, Wang M, Huang J, Huang L. “Preparation of activated carbons from Iris tectorum employing ferric nitrate as dopant for removal of tetracycline from aqueous solutions”. Ecotoxicology and Environmental Safety, 98, 273-282, 2013.
  • [48] Liu Q, Zhong LB, Zhao QB, Frear C, Zheng YM. “Synthesis of Fe3O4/polyacrylonitrile composite electrospun nanofiber mat for effective adsorption of tetracycline”. ACS Applied Materials & Interfaces, 7(27), 14573-14583, 2015.
  • [49] Zhao R, Shi X, Ma T, Rong H, Wang Z, Cui F, Zhu G, Wang C. “Constructing mesoporous adsorption channels and MOFpolymer interfaces in electrospun composite fibers for effective removal of emerging organic contaminants”. ACS Applied Materials & Interfaces, 13(1), 755-764, 2021.
  • [50] Wang J, Hu J, Zhang S. “Studies on the sorption of tetracycline onto clays and marine sediment from seawater”. Journal of Colloid Interface Science, 349, 578-582, 2010.
  • [51] Figueroa, RA., Mackay, AA. “Sorption of oxytetracycline toiron oxides and iron oxide-rich soils”. Environmental Science Technologhy, 39, 6664-6671, 2005.
  • [52] Lian F, Song Z, Liu Z, Zhu L, Xing B. “Mechanistic understanding of tetracycline sorption on waste tire powder and its chars as affected by Cu2+ and pH”. Environmental Pollution, 178, 264-270, 2013.
  • [53] Garg VK, Gupta R, Yadav AB, Kumar R. “Dye removal from aqueous solution by adsorption on treated sawdust”. Bioresource Technologhy, 89, 121-124, 2003.
  • [54] Xiong W, Zeng Z, Zeng G, Yang Z, Xiao R, Li X, Cao J, Zhou C, Chen H, Jia M, Yang Y, Wang W, Tang X. “Metal-organic frameworks derived magnetic carbon-αFe/Fe3C composites as a highly effective adsorbent for tetracycline removal from aqueous solution”. Chemical Engineering Journal, 374, 91-99, 2019.
  • [55] Peng L, Ren Y, Gu J, Qin P, Zeng Q, Shao J, Lei M, Chai L. “Iron improving biochar derived from microalgae on removal of tetracycline from aqueous system”. Environmental Science Pollution Research, 21(12), 7631-7640, 2014.
  • [56] Jafari Kang A, Baghdadi M, Pardakhti A. “Removal of cadmium and lead from aqueous solutions by magnetic acid-treated activated carbon nanocomposite”. Desalination Water Treatment, 3994, 1-17, 2015.
  • [57] Wu FC, Tseng RL, Juang RS. “Comparisons of porous and adsorption properties of carbons activated by steam and KOH”. Journal of Colloid Interface Science, 283, 49-56, 2005.
  • [58] Tang L, Yu JF, Pang Y, Zeng GM, Deng YC, Wang JJ, Ren XY, Ye SJ, Peng B, Feng HP, “Sustainable efficient adsorbent: alkali-acid modified magnetic biochar derived from sewage sludge for aqueous organic contaminant removal”. Chemical Engineering Journal, 336, 160–169, 2018.
  • [59] Mayers D. Surfaces, İnterfaces and Colloids- Principles and Applications. 2nd ed. New York, USA, Wiley-VCH, 1999.
  • [60] Wang J, Guo X, “Adsorption isotherm models: Classification, physical meaning, application and solving method”. Chemosphere, 258, 127279-127304, 2020.
  • [61] Ali MEM, Abd El-Aty AM, Badawy MI, Ali RK. “Removal of pharmaceutical pollutants from synthetic wastewater using chemically modified biomass of green alga Scenedesmus obliquus”. Ecotoxicology and Environmental Safety, 151, 144-152, 2018.
  • [62] Baghdadi M, Ghaffari E, Aminzadeh B. “Removal of carbamazepine from municipal wastewater effluent using optimally synthesized magnetic activated carbon: Adsorption and sedimentation kinetic studies”. Journal of Environmental Chemical Engineering, 4, 3309-3321, 2016.
  • [63] Wang H, Fang C, Wang Q, Chu Y, Song Y, Chen Y, Xue X. “Sorption of tetracycline on biochar derived from rice straw and swine manure”. RSC Advances, 8(29), 16260-16268, 2018.
  • [64] Zhou Y, Liu X, Xiang Y, Wang P, Zhang J, Zhang F, Wei J, Luo L, Lei M, Tang L. “Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution: adsorption mechanism and modelling”. Bioresource Technologhy, 245, 266-273, 2017.
  • [65] Pan J, Bai X, Li Y, Yang B, Yang P, Yu F, Ma J. “HKUST-1 derived carbon adsorbents for tetracycline removal with excellent adsorption performance”. Environmental Research, 205, 112425-112435, 2022.
  • [66] Yadaei H, Nowroozi M, Beyki MH, Shemirani F, Nouroozi S. “Synthesis of magnetic Fe-carbon nanohybrid for adsorption and Fenton oxidation of tetracycline”. Desalination and Water Treatment, 173, 294-312, 2020.
Toplam 66 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çevre Mühendisliği (Diğer)
Bölüm Makale
Yazarlar

Ülker Aslı Güler

Merve Türkay Bu kişi benim

Yayımlanma Tarihi 31 Ağustos 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 29 Sayı: 4

Kaynak Göster

APA Güler, Ü. A., & Türkay, M. (2023). Sulu çözeltilerden tetrasiklin giderimi için alg bazlı yeşil biyokompozit sentezi: kinetik, denge ve termodinamik çalışmalar. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 29(4), 401-411.
AMA Güler ÜA, Türkay M. Sulu çözeltilerden tetrasiklin giderimi için alg bazlı yeşil biyokompozit sentezi: kinetik, denge ve termodinamik çalışmalar. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Ağustos 2023;29(4):401-411.
Chicago Güler, Ülker Aslı, ve Merve Türkay. “Sulu çözeltilerden Tetrasiklin Giderimi için Alg Bazlı yeşil Biyokompozit Sentezi: Kinetik, Denge Ve Termodinamik çalışmalar”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 29, sy. 4 (Ağustos 2023): 401-11.
EndNote Güler ÜA, Türkay M (01 Ağustos 2023) Sulu çözeltilerden tetrasiklin giderimi için alg bazlı yeşil biyokompozit sentezi: kinetik, denge ve termodinamik çalışmalar. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 29 4 401–411.
IEEE Ü. A. Güler ve M. Türkay, “Sulu çözeltilerden tetrasiklin giderimi için alg bazlı yeşil biyokompozit sentezi: kinetik, denge ve termodinamik çalışmalar”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 29, sy. 4, ss. 401–411, 2023.
ISNAD Güler, Ülker Aslı - Türkay, Merve. “Sulu çözeltilerden Tetrasiklin Giderimi için Alg Bazlı yeşil Biyokompozit Sentezi: Kinetik, Denge Ve Termodinamik çalışmalar”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 29/4 (Ağustos 2023), 401-411.
JAMA Güler ÜA, Türkay M. Sulu çözeltilerden tetrasiklin giderimi için alg bazlı yeşil biyokompozit sentezi: kinetik, denge ve termodinamik çalışmalar. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2023;29:401–411.
MLA Güler, Ülker Aslı ve Merve Türkay. “Sulu çözeltilerden Tetrasiklin Giderimi için Alg Bazlı yeşil Biyokompozit Sentezi: Kinetik, Denge Ve Termodinamik çalışmalar”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 29, sy. 4, 2023, ss. 401-1.
Vancouver Güler ÜA, Türkay M. Sulu çözeltilerden tetrasiklin giderimi için alg bazlı yeşil biyokompozit sentezi: kinetik, denge ve termodinamik çalışmalar. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2023;29(4):401-1.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.