Araştırma Makalesi
BibTex RIS Kaynak Göster

Analysis of transportable off-grid solar power generation for rural electricity supply: an application study of Sanliurfa, Turkey

Yıl 2023, Cilt: 29 Sayı: 5, 458 - 467, 31.10.2023

Öz

Despite the advances in technology, electrical energy needs in rural and less developed regions are not yet fully met in terms of cost and sustainability. Nowadays, small-scale Photovoltaic (PV) systems can be transported to other regions and easily reinstalled so that these systems can be used in areas where needed for home usage and humanitarian purposes. There is no doubt that a PV-based microgrid is needed in rural and remote areas where energy is often important, and grid energy is not available or unstable. Mobility microgrid design studies can reduce time, effort, and costs significantly in such cases. Therefore, the design, modeling, and technical simulation of an isolated system based on solar energy are investigated and analyzed in this paper. This study also highlights the future trends of transportable-based isolated (off-grid) microgrid design which provides a sustainable solution for small-scale PV power generation. Additionally, an optimal solution approach for power management with Energy Storage (ES) and PV energy technologies is presented in the developed of an off-grid PV system. Aside from the designed system's cost-benefit analysis, important criteria such as lifespan, battery performance, and energy production have been evaluated. The Distributed Energy Resources (DER) with the load flow in 24-hour scenario is modeled, and simulated, also the findings are presented. Specifically, an application study for a 60.75 kWp isolated (off-grid) PV system with the 105.98 kWh ES, and 16 kVA diesel generator is discussed in terms of financial, regional, and technical parameters as well as numerical modeling, and MATLAB simulation for the province of Sanliurfa in Turkey.

Kaynakça

  • [1] Sufyan M, Rahim AR, Tan C, Azam M, Rohani S. “Optimal sizing and energy scheduling of isolated microgrids considering the battery lifetime”. Journal of Plos One, 14(2), 2-3, 2019.
  • [2] Faccio M, Gamberi M, Bortolini M, Nedaei M, “State-of-Art review of the optimization methods to design the configuration of hybrid renewable energy systems”. Front Energy, 12(4), 591-622, 2018.
  • [3] Dorf RC. Systems, Controls, Embedded Systems, Energy, and Machines. 1st Edition, Boca Raton, 2017.
  • [4] Parhizi S, Lotfi H, Khodaei A, Bahramirad S. “State -of-Art in research on microgrids: A review”. IEEE Xplore, 3(1), 890-925, 2015.
  • [5] Caspary G. “Gauging the future competitiveness of renewable energy in colombia”. Energy Economics, 31(3), 445-450, 2009.
  • [6] Afgan NH, Carvalho MG. “Sustainability assessment of a hybrid energy system”. International Journal of Hydrogen Energy, 29(13), 1327-1342, 2004.
  • [7] Mengi OO, Altas IH. “A new energy management technique for PV/Wind/Grid renewable energy system”. International Journal of Photoenergy, 2015, 1-19, 2015.
  • [8] Aghajani G, Ghadimi N. “Multi-objective energy management in a microgrid”. Energy Reports, 4(1), 218-225, 2018.
  • [9] Suchitra D, Jegatheesan R, Subramaniyan V, Venkatesam RS. “Energy management of a microgrid using multiobjective genetic algorithm”. Middle-East Journal of Scientific Research, 24(4), 1266-1274, 2016.
  • [10] Gabbar HA, El-Hendawi M, El-Saady G, El-Nobi AI. “Supervisory controller for power management of AC/DC microgrid”. IEEE Conference on Smart Energy Grid Engineering, Oshawa, Canada, 21-24 August 2016.
  • [11] Vera YEG, Dufo-López R, Bernal-Agustín JL. “Energy management in microgrids with renewable energy sources: A literature review”. Applied Sciences, 9(18), 1-28, 2019.
  • [12] Shayeghi H, Shahryari E, Moradzadeh M, Siano P. “A survey on microgrid energy management considering flexible energy sources”. Energies, 12(11), 1-26, 2019.
  • [13] Arıkan O, İşen E, Kekezoğlu B, “Performance analysis of stand-alone hybrid (wind-photovoltaic) energy system”. Pamukkale University Journal of Engineering Sciences, 25(5), 571-576, 2019.
  • [14] Öztürk M, Bozkurt Çırak B, Özek N. “Life cycle cost analysis of domestic photovoltaic system”. Pamukkale University Journal of Engineering Sciences, 18(1), 1-11, 2012.
  • [15] Sulukan E. “Techno-economic and environmental analysis of a photovoltaic system in Istanbul”. Pamukkale University Journal of Engineering Sciences, 26(1), 127-132, 2020.
  • [16] Al-Karaghouli A, Kazmerski LL. “Optimization and lifecycle cost of health clinic PV system for a rural area in southern Iraq using HOMER”. Solar Energy, 84(4), 710-714, 2010.
  • [17] Selbaş R, Yakut AK, Şencan A. “An application for electricity production with solar tower model”. Pamukkale University Journal of Engineering Sciences, 9(2), 179-184, 2003.
  • [18] Akinyele DO. “Environmental performance evaluation of a grid-independent solar photovoltaic power generation (SPPG) plant”. Energy, 130(1), 515-529, 2017.
  • [19] Patil VR, Biradar VI, Shreyas R, Garg P, Orosz MS. Thirumalai NC. “Techno-economic comparison of solar organic rankine cycle (ORC) and photovoltaic (PV) systems with energy storage”. Renewable Energy, 113(1), 1250-1260, 2017.
  • [20] Yan R, Saha TK, Meredith P, Goodwin S. “Analysis of the year long performance of differently tilted photovoltaic systems in Brisbane, Australia”. Energy Conversion and Management, 74(1), 102-108, 2013.
  • [21] Akgul BA, Cinkilic ME, Yegingil I. “Design and modeling an off-grid photovoltaic system to meet the electrical energy requirement of a house in Gaziantep region, performing technical analysis and basic simulation”. Euroasia Journal of Mathematics, Engineering, Natural & Medical Sciences, 8(14), 145-159, 2021.
  • [22] Franceschi J, Rothkop J, Miller G. “Off-grid solar PV power for humanitarian action: from emergency communications to refugee camp microgrids”. Procedia Engineering, 78(1), 229-235, 2014.
  • [23] Evans DL. “Simplified method for predicting photovoltaic array output”. Solar Energy, 27(6), 555-560, 1981.
  • [24] Zlateva M. “Assessment of the annual performance of solar collectors by means of the utilizability method”. E3S Web of Conference PEPM. 207(1), 1-10, 2020.
  • [25] Louis L, Bucciarelli JR. “The effect of day-to-day correlation in solar radiation on the probability of loss-ofpower in a stand-alone photovoltaic energy system”. Solar Energy, 36(1), 11-14, 1986.
  • [26] Klein SA, Beckman WA. “Loss-of-load probabilities for stand-alone photovoltaic systems”. Solar Energy, 39(6), 499-512, 1987.
  • [27] Modiri-Delshad M, Kaboli SHA, Renani E, Rahim NA. “Backtracking search algorithm for solving economic dispatch problems with valve-point effects and multiple fuel options”. Energy, 116(1), 637-649, 2016.
  • [28] Khorramdel H, Aghaei J, Khorramdel B, Siano P. “Optimal battery sizing in microgrids using probabilistic unit commitment”. IEEE Transactions on Industrial Informatics, 12(2), 834-843, 2016.
  • [29] Arçelik AŞ. “Arçelik 144HC-450W Solar Panel”. https://www.arcelikkurumsalcozumler.com/solarpanel/ (10.05.2022).
  • [30] Torreglosa JP, Garcia P, Fernandez LM, Jurado F. “Predictive control for the energy management of a fuelcell–battery–supercapacitor tramway”. IEEE Transactions on Industrial Informatics, 10(1), 276-285, 2014.
  • [31] Zhejiang Sandi Electric Co., Ltd. “100 kWh PV Energy Storage Lithium Battery with BMS System off-grid Inverter all in one”. http://www.cnsandi.cn/sdp/911164/4/main4781195/0/Home.html (10.05.2022).
  • [32] Romana A, Setiawan EA, Joyonegoro K. “Comparison of two calculation methods for designing the solar electric power system for small islands”. E3S Web of Conferences, 67(1), 1-6, 2018.
  • [33] Samedi S, Singh C. “Reliability evaluation of generation systems with solar power”. International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), Durham, UK, 07-10 July 2014.
  • [34] KARJEN Karadeniz Generator Systems. “Diesel Generator Sets, KJPT/16 Diesel Type Generator”. https://karjen.com/katalog/KJPT-16.pdf (05.04.2022).
  • [35] Kumar BS, Sudhakar K. “Performance evaluation of MW grid connected solar photovoltaic power plant in India”. Energy Reports, 1(1), 184-192, 2015.
  • [36] European Commission, “Photovoltaic geographical information system for solar PV systems”. https://ec.europa.eu/jrc/en/pvgis (10.05.2022).
  • [37] Alberto ADB, Simao A. “Iterative minimization of partial finite state machines”. Central European Journal of Computer Science, 3(2), 91-103, 2013.
  • [38] Đurić MB, Đurišić ZR. “Combined fourier and zero crossing technique for frequency measurement in power networks in the presence of harmonics”. RE&PQJ, 1(3), 463-469, 2005.
  • [39] Steffen B, Beuse M, Tautorat P, Schmidt TS. “Experience curves for operations and maintenance costs of renewable energy technologies”. Joule, 4(2), 359-375, 2020.
  • [40] Canada S, Moore L, Post H, Strachan J. “Operation and maintenance field experience for off-grid residential photovoltaic systems”. Progress in Photovoltaics, 13(1), 67-74, 2005.
  • [41] McKeon BB, Furukawa J, Fenstermacher S. “Advanced lead–acid batteries and the development of grid-scale energy storage systems”. Proceedings of the IEEE, 102(6), 951-963, 2014.
  • [42] Akgul BA, Alisinanoglu F, Ozyazici MS. “Obtaining maximum radiation by determining optimum tilt angles in large-scale grid-connected PV plants, efficiency analysis of solar tracking systems: A case study for Sanliurfa, Turkey”. Int. Journal of Industrial Electronics and Electrical Engineering, 10(7), 25-28, 2022.
  • [43] Sharma KR, Palit D, Krithika PR. “Economics and management of off-grid solar PV system”. Green Energy and Technology, 1(1), 137-164, 2015.
  • [44] Skoczek A, Sample T, Dunlop ED. “The results of performance measurements of field-aged crystalline silicon photovoltaic modules”. Progress in Photovoltaics, 227-240, 17(4), 227-240, 2009.
  • [45] Dunlop E, Halton D, Ossenbrink H. “20 years of life and more: where is the end of life of a PV module?”. IEEE Photovoltaic Specialists Conference, Lake Buena Vista, USA, 03-07 January 2005.

Kırsal alanlarda elektrik temini için şebekeden bağımsız mobilite güneş enerjisi üretimi analizi: Şanlıurfa Türkiye’de bir uygulama çalışması

Yıl 2023, Cilt: 29 Sayı: 5, 458 - 467, 31.10.2023

Öz

Teknolojideki gelişmelere rağmen, kırsal ve az gelişmiş bölgelerde elektrik enerjisi ihtiyacı maliyet ve sürdürülebilirlik açısından henüz tam olarak karşılanamamaktadır. Günümüzde küçük ölçekli Fotovoltaik (PV) sistemler başka bölgelere taşınabilmekte ve kolaylıkla yeniden kurulabilmektedir. Bu sayede ev kullanımı ve insani amaçlar için ihtiyaç duyulan alanlarda bu sistemler kullanılabilir. Enerjinin genellikle önemli olduğu ve şebeke enerjisinin mevcut olmadığı veya istikrarsız olduğu kırsal ve uzak bölgelerde PV tabanlı bir mikro şebekeye ihtiyaç duyulduğuna şüphe yoktur. Mobilite mikroşebeke tasarım çalışmaları, bu gibi durumlarda zaman, çaba ve maliyetleri önemli ölçüde azaltabilir. Bu nedenle, güneş enerjisine dayalı izole edilmiş bir (şebeke dışı) mikroşebekenin tasarımı, modellemesi ve teknik simülasyonu bu yazıda incelenmekte ve analiz edilmektedir. Bu çalışma aynı zamanda küçük ölçekli FV güç üretimi için sürdürülebilir bir çözüm sağlayan mobilite mikroşebeke tasarımının gelecekteki eğilimlerini de vurgulamaktadır. Ek olarak, geliştirilen mikroşebekede Enerji Depolama (ES) ve PV enerji teknolojileri ile güç yönetimi için en uygun çözüm yaklaşımı sunulmaktadır. Tasarlanan sistemin faydamaliyet analizinin yanı sıra kullanım ömrü, pil performansı, enerji üretimi gibi önemli kriterler değerlendirilmiştir. 24 saatlik senaryoda yük akışı ile Dağıtılmış Enerji Kaynakları (DER) modellenerek, simüle edilmiş ve bulgular da sunulmuştur. Spesifik olarak, Türkiye’nin Şanlıurfa şehrinde, 105.98kWh ES ve 16 kVA dizel jeneratör ile 60.75 kWp izole edilmiş (şebeke dışı) PV sistemi için bir uygulama çalışması, finansal, bölgesel ve teknik parametrelerin yanı sıra sayısal modelleme ve MATLAB simülasyonu ile birlikte ele alınmaktadır.

Kaynakça

  • [1] Sufyan M, Rahim AR, Tan C, Azam M, Rohani S. “Optimal sizing and energy scheduling of isolated microgrids considering the battery lifetime”. Journal of Plos One, 14(2), 2-3, 2019.
  • [2] Faccio M, Gamberi M, Bortolini M, Nedaei M, “State-of-Art review of the optimization methods to design the configuration of hybrid renewable energy systems”. Front Energy, 12(4), 591-622, 2018.
  • [3] Dorf RC. Systems, Controls, Embedded Systems, Energy, and Machines. 1st Edition, Boca Raton, 2017.
  • [4] Parhizi S, Lotfi H, Khodaei A, Bahramirad S. “State -of-Art in research on microgrids: A review”. IEEE Xplore, 3(1), 890-925, 2015.
  • [5] Caspary G. “Gauging the future competitiveness of renewable energy in colombia”. Energy Economics, 31(3), 445-450, 2009.
  • [6] Afgan NH, Carvalho MG. “Sustainability assessment of a hybrid energy system”. International Journal of Hydrogen Energy, 29(13), 1327-1342, 2004.
  • [7] Mengi OO, Altas IH. “A new energy management technique for PV/Wind/Grid renewable energy system”. International Journal of Photoenergy, 2015, 1-19, 2015.
  • [8] Aghajani G, Ghadimi N. “Multi-objective energy management in a microgrid”. Energy Reports, 4(1), 218-225, 2018.
  • [9] Suchitra D, Jegatheesan R, Subramaniyan V, Venkatesam RS. “Energy management of a microgrid using multiobjective genetic algorithm”. Middle-East Journal of Scientific Research, 24(4), 1266-1274, 2016.
  • [10] Gabbar HA, El-Hendawi M, El-Saady G, El-Nobi AI. “Supervisory controller for power management of AC/DC microgrid”. IEEE Conference on Smart Energy Grid Engineering, Oshawa, Canada, 21-24 August 2016.
  • [11] Vera YEG, Dufo-López R, Bernal-Agustín JL. “Energy management in microgrids with renewable energy sources: A literature review”. Applied Sciences, 9(18), 1-28, 2019.
  • [12] Shayeghi H, Shahryari E, Moradzadeh M, Siano P. “A survey on microgrid energy management considering flexible energy sources”. Energies, 12(11), 1-26, 2019.
  • [13] Arıkan O, İşen E, Kekezoğlu B, “Performance analysis of stand-alone hybrid (wind-photovoltaic) energy system”. Pamukkale University Journal of Engineering Sciences, 25(5), 571-576, 2019.
  • [14] Öztürk M, Bozkurt Çırak B, Özek N. “Life cycle cost analysis of domestic photovoltaic system”. Pamukkale University Journal of Engineering Sciences, 18(1), 1-11, 2012.
  • [15] Sulukan E. “Techno-economic and environmental analysis of a photovoltaic system in Istanbul”. Pamukkale University Journal of Engineering Sciences, 26(1), 127-132, 2020.
  • [16] Al-Karaghouli A, Kazmerski LL. “Optimization and lifecycle cost of health clinic PV system for a rural area in southern Iraq using HOMER”. Solar Energy, 84(4), 710-714, 2010.
  • [17] Selbaş R, Yakut AK, Şencan A. “An application for electricity production with solar tower model”. Pamukkale University Journal of Engineering Sciences, 9(2), 179-184, 2003.
  • [18] Akinyele DO. “Environmental performance evaluation of a grid-independent solar photovoltaic power generation (SPPG) plant”. Energy, 130(1), 515-529, 2017.
  • [19] Patil VR, Biradar VI, Shreyas R, Garg P, Orosz MS. Thirumalai NC. “Techno-economic comparison of solar organic rankine cycle (ORC) and photovoltaic (PV) systems with energy storage”. Renewable Energy, 113(1), 1250-1260, 2017.
  • [20] Yan R, Saha TK, Meredith P, Goodwin S. “Analysis of the year long performance of differently tilted photovoltaic systems in Brisbane, Australia”. Energy Conversion and Management, 74(1), 102-108, 2013.
  • [21] Akgul BA, Cinkilic ME, Yegingil I. “Design and modeling an off-grid photovoltaic system to meet the electrical energy requirement of a house in Gaziantep region, performing technical analysis and basic simulation”. Euroasia Journal of Mathematics, Engineering, Natural & Medical Sciences, 8(14), 145-159, 2021.
  • [22] Franceschi J, Rothkop J, Miller G. “Off-grid solar PV power for humanitarian action: from emergency communications to refugee camp microgrids”. Procedia Engineering, 78(1), 229-235, 2014.
  • [23] Evans DL. “Simplified method for predicting photovoltaic array output”. Solar Energy, 27(6), 555-560, 1981.
  • [24] Zlateva M. “Assessment of the annual performance of solar collectors by means of the utilizability method”. E3S Web of Conference PEPM. 207(1), 1-10, 2020.
  • [25] Louis L, Bucciarelli JR. “The effect of day-to-day correlation in solar radiation on the probability of loss-ofpower in a stand-alone photovoltaic energy system”. Solar Energy, 36(1), 11-14, 1986.
  • [26] Klein SA, Beckman WA. “Loss-of-load probabilities for stand-alone photovoltaic systems”. Solar Energy, 39(6), 499-512, 1987.
  • [27] Modiri-Delshad M, Kaboli SHA, Renani E, Rahim NA. “Backtracking search algorithm for solving economic dispatch problems with valve-point effects and multiple fuel options”. Energy, 116(1), 637-649, 2016.
  • [28] Khorramdel H, Aghaei J, Khorramdel B, Siano P. “Optimal battery sizing in microgrids using probabilistic unit commitment”. IEEE Transactions on Industrial Informatics, 12(2), 834-843, 2016.
  • [29] Arçelik AŞ. “Arçelik 144HC-450W Solar Panel”. https://www.arcelikkurumsalcozumler.com/solarpanel/ (10.05.2022).
  • [30] Torreglosa JP, Garcia P, Fernandez LM, Jurado F. “Predictive control for the energy management of a fuelcell–battery–supercapacitor tramway”. IEEE Transactions on Industrial Informatics, 10(1), 276-285, 2014.
  • [31] Zhejiang Sandi Electric Co., Ltd. “100 kWh PV Energy Storage Lithium Battery with BMS System off-grid Inverter all in one”. http://www.cnsandi.cn/sdp/911164/4/main4781195/0/Home.html (10.05.2022).
  • [32] Romana A, Setiawan EA, Joyonegoro K. “Comparison of two calculation methods for designing the solar electric power system for small islands”. E3S Web of Conferences, 67(1), 1-6, 2018.
  • [33] Samedi S, Singh C. “Reliability evaluation of generation systems with solar power”. International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), Durham, UK, 07-10 July 2014.
  • [34] KARJEN Karadeniz Generator Systems. “Diesel Generator Sets, KJPT/16 Diesel Type Generator”. https://karjen.com/katalog/KJPT-16.pdf (05.04.2022).
  • [35] Kumar BS, Sudhakar K. “Performance evaluation of MW grid connected solar photovoltaic power plant in India”. Energy Reports, 1(1), 184-192, 2015.
  • [36] European Commission, “Photovoltaic geographical information system for solar PV systems”. https://ec.europa.eu/jrc/en/pvgis (10.05.2022).
  • [37] Alberto ADB, Simao A. “Iterative minimization of partial finite state machines”. Central European Journal of Computer Science, 3(2), 91-103, 2013.
  • [38] Đurić MB, Đurišić ZR. “Combined fourier and zero crossing technique for frequency measurement in power networks in the presence of harmonics”. RE&PQJ, 1(3), 463-469, 2005.
  • [39] Steffen B, Beuse M, Tautorat P, Schmidt TS. “Experience curves for operations and maintenance costs of renewable energy technologies”. Joule, 4(2), 359-375, 2020.
  • [40] Canada S, Moore L, Post H, Strachan J. “Operation and maintenance field experience for off-grid residential photovoltaic systems”. Progress in Photovoltaics, 13(1), 67-74, 2005.
  • [41] McKeon BB, Furukawa J, Fenstermacher S. “Advanced lead–acid batteries and the development of grid-scale energy storage systems”. Proceedings of the IEEE, 102(6), 951-963, 2014.
  • [42] Akgul BA, Alisinanoglu F, Ozyazici MS. “Obtaining maximum radiation by determining optimum tilt angles in large-scale grid-connected PV plants, efficiency analysis of solar tracking systems: A case study for Sanliurfa, Turkey”. Int. Journal of Industrial Electronics and Electrical Engineering, 10(7), 25-28, 2022.
  • [43] Sharma KR, Palit D, Krithika PR. “Economics and management of off-grid solar PV system”. Green Energy and Technology, 1(1), 137-164, 2015.
  • [44] Skoczek A, Sample T, Dunlop ED. “The results of performance measurements of field-aged crystalline silicon photovoltaic modules”. Progress in Photovoltaics, 227-240, 17(4), 227-240, 2009.
  • [45] Dunlop E, Halton D, Ossenbrink H. “20 years of life and more: where is the end of life of a PV module?”. IEEE Photovoltaic Specialists Conference, Lake Buena Vista, USA, 03-07 January 2005.
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrik Mühendisliği (Diğer)
Bölüm Makale
Yazarlar

Batur Alp Akgül Bu kişi benim

Fatih Alisinanoğlu

Sadettin Ozyazıcı

Muhammet Fatih Hasoğlu

Bülent Haznedar

Yayımlanma Tarihi 31 Ekim 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 29 Sayı: 5

Kaynak Göster

APA Akgül, B. A., Alisinanoğlu, F., Ozyazıcı, S., Hasoğlu, M. F., vd. (2023). Analysis of transportable off-grid solar power generation for rural electricity supply: an application study of Sanliurfa, Turkey. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 29(5), 458-467.
AMA Akgül BA, Alisinanoğlu F, Ozyazıcı S, Hasoğlu MF, Haznedar B. Analysis of transportable off-grid solar power generation for rural electricity supply: an application study of Sanliurfa, Turkey. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Ekim 2023;29(5):458-467.
Chicago Akgül, Batur Alp, Fatih Alisinanoğlu, Sadettin Ozyazıcı, Muhammet Fatih Hasoğlu, ve Bülent Haznedar. “Analysis of Transportable off-Grid Solar Power Generation for Rural Electricity Supply: An Application Study of Sanliurfa, Turkey”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 29, sy. 5 (Ekim 2023): 458-67.
EndNote Akgül BA, Alisinanoğlu F, Ozyazıcı S, Hasoğlu MF, Haznedar B (01 Ekim 2023) Analysis of transportable off-grid solar power generation for rural electricity supply: an application study of Sanliurfa, Turkey. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 29 5 458–467.
IEEE B. A. Akgül, F. Alisinanoğlu, S. Ozyazıcı, M. F. Hasoğlu, ve B. Haznedar, “Analysis of transportable off-grid solar power generation for rural electricity supply: an application study of Sanliurfa, Turkey”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 29, sy. 5, ss. 458–467, 2023.
ISNAD Akgül, Batur Alp vd. “Analysis of Transportable off-Grid Solar Power Generation for Rural Electricity Supply: An Application Study of Sanliurfa, Turkey”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 29/5 (Ekim 2023), 458-467.
JAMA Akgül BA, Alisinanoğlu F, Ozyazıcı S, Hasoğlu MF, Haznedar B. Analysis of transportable off-grid solar power generation for rural electricity supply: an application study of Sanliurfa, Turkey. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2023;29:458–467.
MLA Akgül, Batur Alp vd. “Analysis of Transportable off-Grid Solar Power Generation for Rural Electricity Supply: An Application Study of Sanliurfa, Turkey”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 29, sy. 5, 2023, ss. 458-67.
Vancouver Akgül BA, Alisinanoğlu F, Ozyazıcı S, Hasoğlu MF, Haznedar B. Analysis of transportable off-grid solar power generation for rural electricity supply: an application study of Sanliurfa, Turkey. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2023;29(5):458-67.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.